Research article

1-parameter formal deformations and abelian extensions of Lie color triple systems

  • Received: 02 October 2021 Revised: 19 January 2022 Accepted: 20 January 2022 Published: 11 May 2022
  • The purpose of this paper is to discuss Lie color triple systems. The cohomology theory of Lie color triple systems is established, then 1-parameter formal deformations and abelian extensions of Lie color triple systems are studied using cohomology.

    Citation: Qiang Li, Lili Ma. 1-parameter formal deformations and abelian extensions of Lie color triple systems[J]. Electronic Research Archive, 2022, 30(7): 2524-2539. doi: 10.3934/era.2022129

    Related Papers:

  • The purpose of this paper is to discuss Lie color triple systems. The cohomology theory of Lie color triple systems is established, then 1-parameter formal deformations and abelian extensions of Lie color triple systems are studied using cohomology.



    加载中


    [1] W. Lister, A structure theory of Lie triple systems, Trans. Amer. Math. Soc., 72 (1952), 217–242. https://doi.org/10.1090/S0002-9947-1952-0045702-9 doi: 10.1090/S0002-9947-1952-0045702-9
    [2] K. Yamaguti, On the cohomology space of Lie triple system, Kumamoto J. Sci. Ser. A, 5 (1960), 44–52.
    [3] F. Kubo, Y. Taniguchi, A controlling cohomology of the deformation theory of Lie triple systems, J. Algebra, 278 (2004), 242–250. https://doi.org/10.1016/j.jalgebra.2004.01.005 doi: 10.1016/j.jalgebra.2004.01.005
    [4] L. Ma, L. Chen, On $\delta$-Jordan Lie triple systems, Linear Multilinear Algebra, 65 (2017), 731–751. https://doi.org/10.1080/03081087.2016.1202184 doi: 10.1080/03081087.2016.1202184
    [5] T. Zhang, Notes on cohomologies of Lie triple systems, J. Lie Theory, 24 (2014), 909–929.
    [6] S. Okubo, Parastatistics as Lie supertriple systems, J. Math. Phys., 35 (1994), 2785–2803. https://doi.org/10.1063/1.530486 doi: 10.1063/1.530486
    [7] S. Okubo, N. Kamiya, Jordan-Lie superalgebra and Jordan-Lie triple system, J. Algebra, 198 (1997), 388–411. https://doi.org/10.1006/jabr.1997.7144 doi: 10.1006/jabr.1997.7144
    [8] N. Kamiya, S. Okubo, A construction of simple Jordan superalgebra of $F$ type from a Jordan-Lie triple system, Ann. Mat. Pura. Appl., 181 (2002), 339–348. https://doi.org/10.1007/s102310100045 doi: 10.1007/s102310100045
    [9] S. Okubo, N. Kamiya, Quasi-classical Lie superalgebras and Lie supertriple systems, Comm. Algebra, 30 (2002), 3825–3850. https://doi.org/10.1081/AGB-120005822 doi: 10.1081/AGB-120005822
    [10] Y. Cao, J. Zhang, Y. Cui, On split Lie color triple systems, Open Math., 17 (2019), 267–281. https://doi.org/10.1515/math-2019-0023 doi: 10.1515/math-2019-0023
    [11] F. Ammar, S. Mabrouk, A. Makhlouf, Cohomology and deformations of Hom-algebras, J. Lie Theory, 21 (2011), 813–836.
    [12] L. Chen, Y. Yi, M. Chen, Y. Tang, Cohomology and 1-parameter formal deformations of Hom-$\delta$-Lie triple systems, Adv. Appl. Clifford Algebras, 29 (2019), 1–14. https://doi.org/10.1007/s00006-019-0982-z doi: 10.1007/s00006-019-0982-z
    [13] Y. Ma, L. Chen, J. Lin, Central extensions and deformations of Hom-Lie triple systems, Comm. Algebra, 46 (2018), 1212–1230. https://doi.org/10.1080/00927872.2017.1339063 doi: 10.1080/00927872.2017.1339063
    [14] L. Ma, L. Chen, J. Zhao, $\delta$-Hom-Jordan Lie superalgebras, Comm. Algebra, 46 (2018), 1668–1697. https://doi.org/10.1080/00927872.2017.1354008 doi: 10.1080/00927872.2017.1354008
    [15] J. Feldvoss, Representations of Lie color algebras, Adv. Math., 157 (2001), 95–137. https://doi.org/10.1006/aima.2000.1942 doi: 10.1006/aima.2000.1942
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1346) PDF downloads(78) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog