This paper deals with a distributed optimal control problem to the coupled chemotaxis-fluid models. We first explore the global-in-time existence and uniqueness of a strong solution. Then, we define the cost functional and establish the existence of Lagrange multipliers. Finally, we derive some extra regularity for the Lagrange multiplier.
Citation: Yunfei Yuan, Changchun Liu. Optimal control for the coupled chemotaxis-fluid models in two space dimensions[J]. Electronic Research Archive, 2021, 29(6): 4269-4296. doi: 10.3934/era.2021085
[1] | Yunfei Yuan, Changchun Liu . Optimal control for the coupled chemotaxis-fluid models in two space dimensions. Electronic Research Archive, 2021, 29(6): 4269-4296. doi: 10.3934/era.2021085 |
[2] | Zhonghua Qiao, Xuguang Yang . A multiple-relaxation-time lattice Boltzmann method with Beam-Warming scheme for a coupled chemotaxis-fluid model. Electronic Research Archive, 2020, 28(3): 1207-1225. doi: 10.3934/era.2020066 |
[3] | Hyung-Chun Lee . Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, 2021, 29(3): 2533-2552. doi: 10.3934/era.2020128 |
[4] | Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao . Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, 2021, 29(3): 2489-2516. doi: 10.3934/era.2020126 |
[5] | Ling Xue, Min Zhang, Kun Zhao, Xiaoming Zheng . Controlled dynamics of a chemotaxis model with logarithmic sensitivity by physical boundary conditions. Electronic Research Archive, 2022, 30(12): 4530-4552. doi: 10.3934/era.2022230 |
[6] | Guanrong Li, Yanping Chen, Yunqing Huang . A hybridized weak Galerkin finite element scheme for general second-order elliptic problems. Electronic Research Archive, 2020, 28(2): 821-836. doi: 10.3934/era.2020042 |
[7] | Jingshi Li, Jiachuan Zhang, Guoliang Ju, Juntao You . A multi-mode expansion method for boundary optimal control problems constrained by random Poisson equations. Electronic Research Archive, 2020, 28(2): 977-1000. doi: 10.3934/era.2020052 |
[8] | Nisachon Kumankat, Kanognudge Wuttanachamsri . Well-posedness of generalized Stokes-Brinkman equations modeling moving solid phases. Electronic Research Archive, 2023, 31(3): 1641-1661. doi: 10.3934/era.2023085 |
[9] | Linlin Tan, Bianru Cheng . Global well-posedness of 2D incompressible Navier–Stokes–Darcy flow in a type of generalized time-dependent porosity media. Electronic Research Archive, 2024, 32(10): 5649-5681. doi: 10.3934/era.2024262 |
[10] | Alejandro Ballesteros-Coll, Koldo Portal-Porras, Unai Fernandez-Gamiz, Iñigo Aramendia, Daniel Teso-Fz-Betoño . Generative adversarial network for inverse design of airfoils with flow control devices. Electronic Research Archive, 2025, 33(5): 3271-3284. doi: 10.3934/era.2025144 |
This paper deals with a distributed optimal control problem to the coupled chemotaxis-fluid models. We first explore the global-in-time existence and uniqueness of a strong solution. Then, we define the cost functional and establish the existence of Lagrange multipliers. Finally, we derive some extra regularity for the Lagrange multiplier.
In this paper, we study the coupled chemotaxis-fluid models with the initial-bounary conditions
{nt+u⋅∇n=Δn−∇⋅(n∇c)+γn−μn2,in Q≡(0,T)×Ω,ct+u⋅∇c=Δc−c+n+f,in Q,ut+u⋅∇u=Δu−∇π+n∇φ,in Q,∇⋅u=0,in Q,∂n∂ν=∂c∂ν=0,u=0,on (0,T)×∂Ω,n(x,0)=n0(x),c(x,0)=c0(x),u(x,0)=u0(x),in Ω, | (1.1) |
where
In order to understand the development of system (1.1), let us mention some previous contributions in this direction. Jin [11] dealed with the time periodic problem of (1.1) in spatial dimension
Espejo and Suzuki [6] discussed the chemotaxis-fluid model
nt+u⋅∇n=Δn−∇⋅(n∇c)+n(γ−μn), | (1.2) |
ct+u⋅∇c=Δc−c+n, | (1.3) |
ut=Δu−∇π+n∇φ, | (1.4) |
∇⋅u=0, | (1.5) |
∂n∂ν=∂c∂ν=0,u=0. | (1.6) |
They proved the global existence of weak solution. Tao and Winkler [17] proved the existence of global classical solution and the uniform boundedness. Tao and Winkler [18] also obtained the global classical solution and uniform boundedness under the condition of
The optimal control problems governed by the coupled partial differential equations is important. Colli et al. [4] studied the distributed control problem for a phase-field system of conserved type with a possibly singular potential. Liu and Zhang [14] considered the optimal control of a new mechanochemical model with state constraint. Chen et al. [3] studied the distributed optimal control problem for the coupled Allen-Cahn/Cahn-Hilliard equations. Recently, Guillén-González et al. [9] studied a bilinear optimal control problem for the chemo-repulsion model with the linear production term. The existence, uniqueness and regularity of strong solutions of this model are deduced. They also derived the first-order optimality conditions by using a Lagrange multipliers theorem. Frigeri et al. [8] studied an optimal control problem for two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems with degenerate mobility and singular potential. Some other results can be found in [2,5,13,15,19].
In this paper, we discuss the optimal control problem for (1.1). We adjust the external source
In this section, we will construct the existence and some priori estimates of the linearized problem for the chemotaxis-Navier-Stokes system in a bounded domain
In the following lemmas we will state the Gagliardo-Nirenberg interpolation inequality [7].
Lemma 2.1. Let
1p−lN=a(1q−kN)+(1−a)1r. | (2.1) |
Then, for any
‖Dlu‖Lp⩽c1‖Dku‖aLq‖u‖1−aLr+c2‖u‖Lr |
with the following exception: If
The following log-interpolation inequality has been proved by [1].
Lemma 2.2. Let
‖u‖3L3(Ω)≤δ‖u‖2H1(Ω)‖(u+1)log(u+1)‖L1(Ω)+p(δ−1)‖u‖L1(Ω), |
where
We first consider the existence of solutions to the linear problem of system (1.1). Assume functions
{ut−Δu+ˆu⋅∇u=−∇π+ˆn∇φ,in Q,∇⋅u=0,in Q,u=0,on ∂Ω,u(x,0)=u0(x),in Ω. | (2.2) |
By using fixed point method, the existence of solutions can be easily obtained. Therefore, we ignore the process of proof and just give the regularity estimate.
Lemma 2.3. Let
Proof. Multiplying the first equation of (2.2) by
12ddt∫Ωu2dx+∫Ω|∇u|2dx+∫Ωu2dx=∫Ωˆn∇φ⋅udx+∫Ωu2dx≤‖ˆn‖L2‖u‖L2+‖u‖2L2≤C(‖ˆn‖2L2+‖u‖2L2). |
By Gronwall's inequality, we have
‖u‖2L2+∫T0‖u‖2H1dτ≤C(∫T0‖ˆn‖2L2dτ+‖u0‖2L2). |
Operating the Helmholtz projection operator
ut+Au+P(ˆu⋅∇u)=P(ˆn∇φ), |
where
12ddt∫Ω|∇u|2dx+∫Ω|Δu|2dx+∫Ω|∇u|2dx=∫ΩP(ˆu∇u)Δudx−∫ΩP(ˆn∇φ)Δudx+∫Ω|∇u|2dx. |
For the terms on the right, we have
∫ΩP(ˆu∇u)Δudx−∫ΩP(ˆn∇φ)Δudx+∫Ω|∇u|2dx≤‖ˆu‖L4‖∇u‖L4‖Δu‖L2+‖ˆn‖L2‖Δu‖L2+‖∇u‖2L2≤‖ˆu‖L4‖∇u‖1/2L2‖Δu‖3/2L2+‖ˆu‖L4‖∇u‖L2‖Δu‖L2+‖ˆn‖L2‖Δu‖L2+‖∇u‖2L2≤12‖Δu‖2L2+C(‖ˆu‖4L4+‖ˆu‖2L4+1)‖∇u‖2L2+‖ˆn‖2L2. |
Therefore, we get
ddt‖∇u‖2L2+‖∇u‖2H1≤C(‖ˆu‖4L4+‖ˆu‖2L4+1)‖∇u‖2L2+C‖ˆn‖2L2+C. |
By Gronwall's inequality, we derive
‖∇u‖2L2+∫T0‖∇u‖2H1dτ≤C. |
Multiplying the first equation of (2.2) by
∫T0∫Ω|ut|2dxdt≤C. |
Summing up, we complete the proof.
For the above solution
{ct−Δc+u⋅∇c+c=ˆn++f,in Q,∂c∂ν=0,on (0,T)×∂Ω,c(x,0)=c0(x),in Ω. | (2.3) |
Along with fixed point method, the existence of solutions can be easily obtained. Thus we omit the proof and only give the regularity estimate.
Lemma 2.4. Let
Proof. Multiplying the first equation of (2.3) by
12ddt∫Ωc2dx+∫Ω|∇c|2dx+∫Ωc2dx≤‖ˆn‖L2‖c‖L2+‖f‖L2‖c‖L2. |
Therefore, we have
‖c‖2L2+‖c‖2H1≤C(‖c0‖2L2+∫t0(‖ˆn‖2L2+‖f‖2L2)dτ). |
Multiplying the first equation of (2.3) by
12ddt∫Ω|∇c|2dx+∫Ω|Δc|2dx+∫Ω|∇c|2dx=∫Ωu∇cΔcdx−∫ΩΔcˆndx−∫ΩΔcfdx. |
Using the Young inequality and the Hölder inequality, we obtain
∫Ωu∇cΔcdx−∫ΩΔcˆndx−∫ΩΔcfdx≤‖u‖L4‖∇c‖L4‖Δc‖L2+‖ˆn‖L2‖Δc‖L2+‖f‖L2‖Δc‖L2≤C‖u‖H1(‖∇c‖12L2‖Δc‖12L2+‖∇c‖L2)‖Δc‖L2+‖ˆn‖L2‖Δc‖L2+‖f‖L2‖Δc‖L2=C‖u‖H1‖∇c‖12L2‖Δc‖32L2+C‖∇c‖L2‖Δc‖L2+‖ˆn‖L2‖Δc‖L2+‖f‖L2‖Δc‖L2≤12‖Δc‖2L2+C‖u‖4H1‖∇c‖2L2+C(‖ˆn‖2L2+‖f‖2L2). |
Combining this and above inequalities, we conclude
ddt‖∇c‖2L2+‖∇c‖2H1≤C‖u‖4H1‖∇c‖2L2+C(‖ˆn‖2L2+‖f‖2L2). |
We therefore verify that
‖∇c‖2L2+∫t0‖∇c‖2H1≤C(∫t0‖ˆn‖2L2dτ+∫t0‖f‖2L2dτ). |
Applying
12ddt∫Ω|Δc|2dx+∫Ω|∇Δc|2dx+∫Ω|Δc|2dx=∫Ω∇(u∇c)∇Δcdx−∫Ω∇ˆn+∇Δcdx−∫Ω∇f∇Δcdx. |
For the terms on the right, we obtain
∫Ω∇(u∇c)∇Δcdx−∫Ω∇ˆn+∇Δcdx−∫Ω∇f∇Δcdx≤‖∇Δc‖L2(‖u‖L4‖Δc‖L4+‖∇u‖L4‖∇c‖L4)+‖∇ˆn‖L2‖∇Δc‖L2+‖∇f‖L2‖∇Δc‖L2≤‖∇Δc‖L2(‖u‖L4‖Δc‖12L2‖∇Δc‖12L2+‖u‖L4‖Δc‖L2+‖∇u‖12L2‖Δu‖12L2‖∇c‖12L2‖Δc‖12L2+‖∇u‖L2‖∇c‖12L2‖Δc‖12L2+‖∇u‖12L2‖Δu‖12L2‖∇c‖L2+‖∇u‖L2‖∇c‖L2)+‖∇ˆn‖L2‖∇Δc‖L2+‖∇f‖L2‖∇Δc‖L2≤12‖∇Δc‖2L2+C(1+‖Δc‖2L2+‖Δu‖2L2+‖∇ˆn‖2L2+‖∇f‖2L2). |
Straightforward calculations yield
‖Δc‖2L2+∫t0‖Δc‖2H1dτ≤C(1+∫t0‖ˆn‖2H1dτ+∫t0‖f‖2H1dτ). |
Multiplying the first equation of (2.3) by
∫T0∫Ω|ct|2dxdt≤C, |
and thereby precisely arrive at the conclusion.
With above solutions
{nt−Δn+u⋅∇n+n=−∇⋅(n∇c)+(1+γ)ˆn+−μˆn+n,in Q,∂n∂ν|∂Ω=0,n(x,0)=n0(x),in Ω. | (2.4) |
By a similar argument as the above two problems, the existence of solutions can be easily obtained. Therefore, we only give the regularity estimate.
Lemma 2.5. Suppose
Proof. Firstly, we verify the nonnegativity of
ddt∫A(t)ndx−∫∂A(t)∂n∂νds+∫A(t)ndx=(1+γ)∫A(t)ˆn+dx−μ∫A(t)ˆn+ndx. |
Since
∫A(t)ndxdτ+∫t0∫A(t)ndxdτ=0. |
Then, we get
Next, multiplying the first equation of (2.4) by
12ddt∫Ωn2dx+∫Ω(n2+|∇n|2)dx+μ∫Ωˆn+n2dx=∫Ωn∇c∇ndx+(1+γ)∫Ωnˆn+dx≤‖n‖L4‖∇c‖L4‖∇n‖L2+(1+γ)‖ˆn‖L2‖n‖L2≤C(‖n‖12L2‖∇n‖12L2+‖n‖L2)‖c‖H2‖∇n‖L2+(1+γ)‖ˆn‖L2‖n‖L2≤C(‖n‖2L2‖c‖4H2+‖n‖2L2‖c‖2H2+‖ˆn‖L2)+12‖n‖2H1. |
So, we derive that
‖n‖2L2+∫T0‖n‖2H1dt≤C(1+∫T0‖ˆn‖2L2dt). |
Multiplying the first equation of (2.4) by
12ddt∫Ω|∇n|2dx+∫Ω|Δn|2dx+∫Ω|∇n|2dx=∫Ωu∇nΔndx+∫Ω(∇⋅(n∇c)Δn−(1+γ)ˆn+Δn+μˆn+nΔn)dx≤‖u‖L4‖∇n‖L4‖Δn‖L2+‖n‖L4‖Δc‖L4‖Δn‖L2+‖∇n‖L4‖∇c‖L4‖Δn‖L2+(1+γ)‖ˆn‖L2‖Δn‖L2+μ‖n‖L4‖ˆn‖L4‖Δn‖L2≤C‖u‖H1(‖∇n‖12L2‖Δn‖12L2+‖∇n‖L2)‖Δn‖L2+‖n‖L4(‖Δc‖12L2‖∇Δc‖12L2+‖Δc‖L2)‖Δn‖L2+μ‖n‖L4‖ˆn‖L4‖Δn‖L2+(‖∇n‖12L2‖Δn‖12L2+‖∇n‖L2)‖∇c‖H1‖Δn‖L2+(1+γ)‖ˆn‖L2‖Δn‖L2≤12‖Δn‖2L2+C(‖∇n‖2L2+‖n‖4L4+‖Δc‖4L2+‖∇Δc‖2L2+‖ˆn‖2L2+‖ˆn‖4L4)≤12‖Δn‖2L2+C(1+‖∇n‖2L2+‖n‖4L2+‖n‖2L2‖∇n‖2L2+‖∇Δc‖2L2+‖ˆn‖2L2+‖ˆn‖4L4). |
Straightforward calculations yield
‖∇n‖2L2+∫T0∫Ω(|Δn|2+|∇n|2+ˆn+|∇n|2)dxdt≤C. |
Multiplying the first equation of (2.4) by
∫T0∫Ω|nt|2dxdt≤C. |
The proof is complete.
Introduce the spaces
Xu=L4(0,T;L4(Ω)),Xn=L4(0,T;L4(Ω))∩L2(0,T;H1(Ω)),Yu=L∞(0,T;H1(Ω))∩L2(0,T;H2(Ω)),Yn=L∞(0,T;H1(Ω))∩L2(0,T;H2(Ω)). |
Define a map
F:Xu×Xn→Xu×Xn,F(ˆu,ˆn)=(u,n), |
where the
{nt−Δn+u⋅∇n+n=−∇⋅(n∇c)+(1+γ)ˆn+−μˆn+n,in (0,T)×Ω≡Q,ct−Δc+u⋅∇c+c=ˆn++f,in (0,T)×Ω≡Q,ut−Δu+ˆu⋅∇u=−∇π+ˆn∇φ,in (0,T)×Ω≡Q,∇⋅u=0,in (0,T)×Ω≡Q,∂n∂ν=∂c∂ν=0,u=0,on (0,T)×∂Ω,n(x,0)=n0(x),c(x,0)=c0(x),u(x,0)=u0(x),in Ω. |
Next, we use fixed point method to prove the local existence of solutions of the problem (1.1).
Lemma 2.6. The map
Proof. Let
From Lemma 2.6,
{nt−Δn+u⋅∇n+n=−∇⋅(n∇c)+α(1+γ)n−μn2,in Q,ct−Δc+u⋅∇c+c=n+αf,in Q,ut−Δu+u⋅∇u=−∇π+αn∇φ,in Q,∇⋅u=0,in Q,∂n∂ν=∂c∂ν=0,u=0,on (0,T)×∂Ω,n(x,0)=n0(x),c(x,0)=c0(x),u(x,0)=u0(x),in Ω. | (3.1) |
In order to prove the existence of solution, we first give some a priori estimates.
Lemma 3.1. Let
‖n‖L1+∫t0(‖n‖L1+‖n‖L2)dτ≤C, | (3.2) |
‖∇u‖2L2+∫t0‖∇u‖2H1dτ≤C, | (3.3) |
‖∇c‖2L2+∫t0‖∇c‖2H1dτ≤C. | (3.4) |
Proof. With Lemma 2.5 in hand, we get
ddt∫Ωndx+∫Ωndx+μ∫Ωn2dx=α(1+γ)∫Ωndx≤μ2∫Ωn2dx+C. |
Solving this differential inequality, we obtain that
‖n‖L1+∫t0(‖n‖L1+‖n‖L2)dτ≤C. |
Multiplying the third equation of (3.1) by
12ddt∫Ωu2dx+∫Ω|∇u|2dx+∫Ωu2dx=α∫Ωn∇φ⋅udx+∫Ωu2dx≤‖n‖L2‖u‖L2+‖u‖2L2≤C(‖n‖2L2+‖u‖2L2). |
Therefore, we see that
‖u‖2L2+∫t0‖u‖H1dτ≤C. |
By the Gagliardo-Nirenberg interpolation inequality, we deduce that
∫t0‖u‖4L4dτ≤C∫t0(‖u‖2L2‖∇u‖2L2d+‖u‖2L2)τ≤‖u‖2L2∫t0‖∇u‖2L2dτ+∫t0‖u‖2L2dτ≤C. |
Multiplying the third equation of (3.1) by
ddt‖∇u‖2L2+‖∇u‖2H1≤C(‖u‖4L4+‖u‖2L4+1)‖∇u‖2L2+C‖n‖2L2+C. |
Thus, we know
‖∇u‖2L2+∫t0‖∇u‖2H1dτ≤C. |
Multiplying the second equation of (3.1) by
12ddt∫Ωc2dx+∫Ω|∇c|2dx+∫Ωc2dx≤‖n‖L2‖c‖L2+α‖f‖L2‖c‖L2. |
Then, we have
‖c‖L2+∫t0‖c‖H1dτ≤C. |
Multiplying the second equation of (3.1) by
ddt‖∇c‖2L2+‖∇c‖2H1≤C‖u‖4H1‖∇c‖2L2+C(‖n‖2L2+‖f‖2L2). |
Further, we have
‖∇c‖2L2+∫t0‖∇c‖2H1dτ≤C. |
The proof is complete.
Lemma 3.2. Let
‖(n+1)ln(n+1)‖L1+‖∇c‖2L2+‖∇c‖2H1≤C. | (3.5) |
Proof. We rewrite the first equation of (3.1) as
ddt(n+1)+u⋅∇(n+1)−Δ(n+1)=−∇⋅((n+1)⋅∇c)+Δc+α(1+γ)n−μn2. |
Multiplying the above equation by
ddt∫Ω(n+1)ln(n+1)dx+4∫Ω|∇√n+1|2dx≤∫Ω∇(n+1)⋅∇cdx+∫ΩΔcln(n+1)dx+α(1+γ)∫Ωnln(n+1)dx=I1+I2+I3. |
For
I1=−∫ΩnΔcdx≤‖n‖L2‖Δc‖L2≤δ‖Δc‖2L2+C‖n‖2L2. |
For the term
I2=∫ΩΔcln(n+1)dx≤δ‖Δc‖2L2+C‖ln(n+1)‖2L2≤δ‖Δc‖2L2+C∫Ω(n+1)ln(n+1)dx. |
For the rest term
I3=α(1+γ)∫Ωnln(n+1)dx≤(1+γ)∫Ω(n+1)ln(n+1)dx. |
Combining
ddt∫Ω(n+1)ln(n+1)dx+4∫Ω|∇√n+1|2dx≤δ‖Δc‖2L2+C∫Ω(n+1)ln(n+1)dx+C‖n‖2L2. | (3.6) |
Multiplying the second equation of (3.1) by
12ddt∫Ω|∇c|2dx+∫Ω|Δc|2dx+∫Ω|∇c|2dx=∫Ωu∇cΔcdx−∫ΩΔcndx−α∫ΩΔcfdx. |
Straightforward calculations yield
ddt‖∇c‖2L2+‖∇c‖2H1≤C‖∇c‖2L2+C(‖n‖2L2+‖f‖2L2). | (3.7) |
Combing (3.6) and (3.7), it follows that
ddt∫Ω(n+1)ln(n+1)dx+ddt‖∇c‖2L2+(1−δ)‖∇c‖2H1+4∫Ω|∇√n+1|2dx≤C∫Ω(n+1)ln(n+1)dx+C(‖f‖2L2+‖n‖2L2). |
Taking
‖(n+1)ln(n+1)‖L1+‖∇c‖2L2+‖∇c‖2H1≤C. |
The proof is complete.
Lemma 3.3. Assume
‖n‖2L2+‖Δc‖2L2+∫t0‖n‖H1dτ+∫t0‖Δc‖H1dτ≤C. | (3.8) |
Proof. Taking the
12ddt∫Ωn2dx+∫Ω(n2+|∇n|2)dx+μ∫Ωn3dx=∫Ωn∇c∇ndx+α(1+γ)∫Ωn2dx=−12∫Ωn2Δcdx+α(1+γ)∫Ωn2dx. |
Here, we note that
|∫Ωn2Δcdx|≤‖n‖2L3‖Δc‖L3≤C‖n‖2L3(‖∇Δc‖23L2‖∇c‖13L2+‖∇c‖L2)≤C‖n‖2L3(‖∇Δc‖23L2+1). |
From Lemma 2.2 and (3.2), it follows that
−χ2∫Ωn2Δcdx≤C(δ‖n‖2H1‖(n+1)log(n+1)‖L1+p(δ−1)‖n‖L1)23(‖∇Δc‖23L2+1)≤C(δ‖n‖2H1+p(δ−1))23(‖∇Δc‖23L2+1)≤C(δ‖n‖43H1‖∇Δc‖23L2+δ‖n‖43H1+p23(δ−1)‖∇Δc‖23L2+p23(δ−1))≤δ‖∇Δc‖2L2+Cδ12‖n‖2H1+C−1/2δp(δ−1). |
As an immediate consequence
ddt‖n‖2L2+‖n‖2H1≤δ‖∇Δc‖2L2+Cδ12‖n‖2H1+C‖n‖2L2. | (3.9) |
Applying
12ddt∫Ω|Δc|2dx+∫Ω|∇Δc|2dx+∫Ω|Δc|2dx=∫Ω∇(u∇c)∇Δcdx−∫Ω∇n∇Δcdx−∫Ω∇f∇Δcdx=I4+I5. |
For
I4=∫Ω∇(u∇c)∇Δcdx≤‖∇Δc‖L2(‖u‖L4‖Δc‖L4+‖∇u‖L4‖∇c‖L4)≤‖∇Δc‖L2(‖u‖L4‖Δc‖12L2‖∇Δc‖12L2+‖u‖L4‖Δc‖L2+‖∇u‖12L2‖Δu‖12L2‖∇c‖12L2‖Δc‖12L2+‖∇u‖L2‖∇c‖12L2‖Δc‖12L2+‖∇u‖12L2‖Δu‖12L2‖∇c‖L2+‖∇u‖L2‖∇c‖L2)≤14‖∇Δc‖2L2+C(1+‖Δc‖2L2+‖Δu‖2L2). |
For the term
I5=−∫Ω∇n∇Δcdx−∫Ω∇f∇Δcdx≤C(‖∇n‖2L2+‖∇f‖2L2)+14‖∇Δc‖2L2. |
Along with
ddt‖Δc‖2L2+‖∇Δc‖2L2+‖Δc‖2L2≤C(1+‖Δc‖2L2+‖Δu‖2L2+‖∇n‖2L2+‖∇f‖2L2). | (3.10) |
Combining (3.9) and (3.10), it follows that
ddt(‖n‖2L2+‖Δc‖2L2)+‖Δc‖2L2+(1−Cδ12)‖n‖2H1+(1−δ)‖∇Δc‖2L2≤C(1+‖Δc‖2L2+‖Δu‖2L2+‖∇n‖2L2+‖∇f‖2L2). |
By choosing
‖n‖2L2+‖Δc‖2L2+∫t0‖n‖H1dτ+∫t0‖Δc‖H1dτ≤C. |
The proof is complete.
Lemma 3.4. Assume
‖∇n‖2L2+∫t0‖n‖2H2dτ≤C. | (3.11) |
Proof. Taking the
12ddt∫Ω|∇n|2dx+∫Ω|Δn|2dx+∫Ω|∇n|2dx=∫Ωu∇nΔndx+∫Ω∇⋅(n∇c)Δndx+(1+γ)∫Ω|∇n|2dx+μ∫Ωn2Δndx=I6+I7+I8. |
For the term
I6=∫Ωu∇nΔndx=−12∫Ω∇u(∇n)2dx≤‖∇u‖L2‖∇n‖2L4≤‖∇u‖L2(‖∇n‖12L2‖Δn‖12L2+‖∇n‖L2)2≤δ‖Δn‖2L2+C‖∇n‖2L2. |
For the term
I7=∫Ω∇⋅(n∇c)Δndx=∫Ω(∇n∇c+nΔc)Δndx≤‖Δn‖L2(‖∇n‖L3‖∇c‖L6+‖n‖C‖Δc‖L2)≤C‖Δn‖L2(‖∇n‖H13‖∇c‖H1+‖n‖H43‖Δc‖L2)≤C‖n‖H2‖n‖H43‖c‖H2≤C‖n‖53H2‖n‖13L2‖c‖H2≤δ‖n‖2H2+C(δ)‖n‖2L2‖c‖6H2≤δ‖n‖2H2+C. |
For the term
I8=(1+γ)∫Ω|∇n|2dx+μ∫Ωn2Δndx=(1+γ)∫Ω|∇n|2dx−2μ∫Ω|∇n|2ndx≤(1+γ)‖∇n‖2L2. |
Combine the estimates about
ddt‖∇n‖2L2+(1−4δ)‖n‖2H2≤C‖∇n‖2L2+C. |
By taking
‖∇n‖2L2+∫t0‖n‖2H2dτ≤C. |
Therefore, this proof is complete.
Lemma 3.5. The operator
Proof. Let
F(ˆnm,ˆum)→(ˆn,ˆu) weakly in Yu×Yn and strongly in Xu×Xn. |
Let
Theorem 3.1. Let
‖n‖L∞(0,T;H1(Ω))+‖n‖L2(0,T;H2(Ω))+‖nt‖L2(0,T;L2(Ω))+‖c‖L∞(0,T;H2(Ω))+‖c‖L2(0,T;H3(Ω))+‖ct‖L2(0,T;L2(Ω))+‖u‖L∞(0,T;H1(Ω))+‖u‖L2(0,T;H2(Ω))+‖ut‖L2(0,T;L2(Ω))≤C. | (3.12) |
Proof. From Lemmas 3.1, 3.3 and 3.4, it is easy to verify the existence of solution and (3.11). Therefore, we will prove the uniqueness of the solution in the following part. For convenience, we set
nt−Δn+u1⋅∇n+u∇n2=−∇⋅(n1∇c)−∇(n∇c2)+γn−μn(n1+n2),in (0,T)×Ω≡Q, | (3.13) |
ct−Δc+u1⋅∇c+u∇c2+c=n,in (0,T)×Ω≡Q, | (3.14) |
ut−Δu+u1⋅∇u+u⋅∇u2=n∇φ,in (0,T)×Ω≡Q, | (3.15) |
∇⋅u=0,in (0,T)×Ω≡Q, | (3.16) |
∂n∂ν=∂c∂ν=0,u=0,on (0,T)×∂Ω, | (3.17) |
n0(x)=c0(x)=u0(x)=0,in Ω. | (3.18) |
Taking the
12ddt∫Ωn2dx+∫Ω|∇n|2dx+∫Ωn2dx≤−∫Ωu∇n2ndx+∫Ωn1∇c∇ndx+∫Ωn∇c2∇ndx+(1+γ)∫Ωn2dx=I9+I10+I11+I12. |
For the term
I9=−∫Ωu∇n2ndx≤‖∇n2‖L2‖u‖L4‖n‖L4≤C‖∇n2‖L2‖u‖H1(‖n‖12L2‖∇n‖12L2+‖n‖L2)≤δ3‖∇n‖2L2+C‖n‖2L2. |
For the term
I10=∫Ωn1∇c∇ndx≤‖∇n‖L2‖n1‖L4‖∇c‖L4≤C‖∇n‖L2‖n1‖H1‖∇c‖H1≤δ3‖∇n‖2L2+C. |
For the term
I11=∫Ωn∇c2∇ndx≤‖∇n‖L2‖∇c2‖L4‖n‖L4≤‖∇n‖L2‖∇c2‖H1‖n‖H1≤δ3‖∇n‖2L2+C. |
With the use of estimates
ddt‖n‖2L2+‖n‖H1≤δ‖∇n‖2L2+C‖n‖2L2+C. | (3.19) |
Taking the
12ddt∫Ωc2dx+∫Ω|∇c|2dx+∫Ωc2dx=−∫Ωu1∇ccdx−∫Ωu∇c2cdx+∫Ωncdx≤‖c‖2L4‖∇u1‖L2+‖u‖L2‖∇c2‖L4‖c‖L4+‖n‖L2‖c‖L2≤C(‖c‖12L2‖∇c‖12L2+‖c‖L2)2‖∇u1‖L2+(‖c‖12L2‖∇c‖12L2+‖c‖L2)‖u‖L2‖∇c2‖H1+‖n‖L2‖c‖L2≤δ‖∇c‖2L2+C‖c‖2L2. |
Then, we get
ddt‖c‖2L2+‖c‖H1≤δ‖∇c‖2L2+C‖c‖2L2. | (3.20) |
Taking the
12∫Ωu2dx+∫Ω|∇u|2dx=∫Ωn∇φudx. |
Straightforward calculations yield
ddt‖u‖2L2+‖u‖H1≤C(‖u‖2L2+‖n‖2L2). | (3.21) |
Then, a combination of (3.19), (3.20) and (3.21) yields
ddt(‖n‖2L2+‖c‖2L2+‖u‖2L2)+(‖n‖H1+‖c‖H1+‖u‖H1)≤δ(‖∇n‖2L2+‖∇c‖2L2+‖∇u‖2L2)+(‖n‖2L2+‖c‖2L2+‖u‖2L2)+C. |
By choosing
ddt(‖n‖2L2+‖c‖2L2+‖u‖2L2)≤C(‖n‖2L2+‖c‖2L2+‖u‖2L2)+C. |
Applying Gronwall's lemma to the resulting differential inequality, we finally obtain the uniqueness of the solution.
In this section, we will prove the existence of the optimal solution of control problem. The method we use for treating this problem was inspired by some ideas of Guillén-González et al [9]. Assume
Minimize the cost functional
J(n,c,u,f)=β12‖n−nd‖2L2(Qd)+β22‖c−cd‖2L2(Qd)+β32‖u−ud‖2L2(Qd)+β42‖n(T)−nΩ‖2L2(Ωd)+β52‖c(T)−cΩ‖2L2(Ωd)+β62‖u(T)−uΩ‖2L2(Ωd)+β72‖f(x,t)‖2L2(Qc), | (4.1) |
subject to the system (1.1). Moreover, the nonnegative constants
nd∈L2(Qd),cd∈L2(Qd),ud∈L2(Qd),nΩ∈L2(Ωc),cΩ∈L2(Ωc),uΩ∈L2(Ωc),f∈U. |
The set of admissible solutions of optimal control problem (4.1) is defined by
Sad={s=(n,c,u,f)∈H:s is a strong solution of (1.1)}. |
The function space
H=Yn×Yc×Yu×U, |
where
Now, we prove the existence of a global optimal control for problem (1.1).
Theorem 4.1. Suppose
Proof. Along with Theorem 3.1, we conduct that
limm→+∞J(nm,cm,um,fm)=inf(n,c,u,f)∈SadJ(n,c,u,f). | (4.2) |
According to the definition of
{nmt+um⋅∇nm=Δnm−∇⋅(nm⋅∇cm)+γnm−μn2m,in Q,cmt+um⋅∇cm=Δcm−cm+nm+fm,in Q,umt+um⋅∇um=Δum−∇π+nm∇φ,in Q,∇⋅um=0,in Q,∂nm∂ν|∂Ω=∂cm∂ν|∂Ω=0,um|∂Ω=0,nm(0)=n0,cm(0)=c0,um(0)=u0,in Ω. | (4.3) |
Observing that
nm→ˉn, weakly in L2(0,T;H2(Ω)) and weakly* in L∞(0,T;H1(Ω)),cm→ˉc, weakly in L2(0,T;H3(Ω)) and weakly* in L∞(0,T;H2(Ω)),um→ˉu, weakly in L2(0,T;H2(Ω)) and weakly* in L∞(0,T;H1(Ω)),fm→ˉf, weakly in L2(0,T;H1(Ωc)), and ˜f∈U. |
According to the Aubin-Lions lemma [16] and the compact embedding theorems, we obtain
nm→ˉn, strongly in C([0,T];L2(Ω))∩L2(0,T;H1(Ω)),cm→ˉc, strongly in C([0,T];H1(Ω))∩L2(0,T;H2(Ω)),um→ˉu, strongly in C([0,T];L2(Ω))∩L2(0,T;H1(Ω)). |
Since
∇⋅(nm∇cm)→χ, weakly in L2(0,T;L2(Ω)). |
Recalling that
nm∇cm→ˉn∇ˉc, weakly in L∞(0,T;L2(Ω)). |
Therefore, we get that
limm→+∞J(nm,cm,um,fm)=inf(u,c,u,f)∈SadJ(u,c,u,f)≤J(ˉn,ˉc,ˉu,ˉf). |
On the other hand, we deduce from the weak lower semicontinuity of the cost functional
J(ˉn,ˉc,ˉu,ˉf)≤lim infm→+∞J(nm,cm,um,fm). |
Therefore, this implies that
In order to derive the first-order necessary optimality conditions for a local optimal solution of problem (4.1). To this end, we will use a result on existence of Lagrange multipliers in Banach spaces ([20]). First, we discuss the following problem
minJ(s) subject to s∈S={s∈H:G(s)∈N}, | (5.1) |
where
A+={ρ∈X′:⟨ρ,a⟩X′≥0,∀a∈A}. |
We consider the following Banach spaces
X=Vn×Vc×Vu×L2(0,T;H1(Ωc)),Y=L2(Q)×L2(0,T;H1(Ω))×L2(Q)×H1(Ω)×H2(Ω)×H1(Ω), |
where
Vn={n∈Yn:∂n∂ν on (0,T)×∂Ω},Vc={n∈Yc:∂c∂ν on (0,T)×∂Ω},Vu={n∈Yu:u=0 on (0,T)×∂Ω and ∇⋅u=0 in (0,T)×Ω} |
and the operator
G1:X→L2(Q),G2:X→L2(0,T;H1(Ω)),G3:X→L2(Q),G4:X→H1(Ω),G5:X→H2(Ω),G6:X→H1(Ω), |
which are defined at each point
{G1=nt+u⋅∇n−Δn+∇⋅(n⋅∇c)−γn+μn2,G2=ct+u⋅∇c−Δc+c−n−f,G3=ut+u⋅∇u−Δu+∇π−n∇φ,G4=n(0)−n0,G5=c(0)−c0,G6=u(0)−u0. | (5.2) |
The function spaces are given as follows
H=Vn×Vc×Vu×U. |
We see that
minJ(s) subject to s∈Sad={s∈H:G(s)=0}. | (5.3) |
Taking the differentiability of
Lemma 5.1. The functional
J′(ˉs)[r]=β1∫T0∫Ωd(ˉn−nd)˜ndxdt+β2∫T0∫Ωd(ˉc−cd)˜cdxdt+β3∫T0∫Ωd(ˉu−ud)˜u(T)dxdt+β4∫Ωd(ˉn(T)−nΩ)˜n(T)dx+β5∫Ωd(ˉc(T)−cΩ)˜cdx+β6∫Ωd(ˉu(T)−uΩ)˜u(T)dx+β7∫T0∫Ωdˉf˜fdxdt. | (5.4) |
Lemma 5.2. The operator
G′(ˉs)[r]=(G′1(ˉs)[r],G′2(ˉs)[r],G′3(ˉs)[r],G′4(ˉs)[r],G′5(ˉs)[r],G′6(ˉs)[r]) |
defined by
{G′1(ˉs)[r]=˜nt−Δ˜n+ˉu⋅∇˜n+˜u∇ˉn+∇⋅(ˉn∇˜c)+∇(˜n∇ˉc)−γ˜n+2μ˜nˉn,inQ,G′2(ˉs)[r]=˜ct−Δ˜c+ˉu⋅∇˜c+˜u⋅∇ˉc+˜c−˜n−˜f,inQ,G′3(ˉs)[r]=˜ut−Δ˜u+ˉu⋅∇˜u+˜u⋅∇ˉu−˜n∇φ,inQ,∇⋅˜u=0,inQ,∂˜n∂ν=∂˜c∂ν=0,˜u=0,on(0,T)×∂Ω,˜n(0)=˜n0,˜c(0)=˜c0,˜u(0)=˜u0,inΩ. |
Lemma 5.3. Let
Proof. For any fixed
{˜nt−Δ˜n+ˉu⋅∇˜n+˜u∇ˉn+∇⋅(ˉn∇˜c)+∇(˜n∇ˉc)−γ˜n+2μ˜nˉn=gn,in Q,˜ct−Δ˜c+ˉu⋅∇˜c+˜u⋅∇ˉc+˜c−˜n=gc,in Q,˜ut−Δ˜u+ˉu⋅∇˜u+˜u⋅∇ˉu−˜n∇φ=gu,in Q,∇⋅˜u=0,in Q,∂˜n∂ν=∂˜c∂ν=0,˜u=0,on (0,T)×∂Ω,˜n(0)=˜n0,˜c(0)=˜c0,˜u(0)=˜u0,in Ω. | (5.5) |
Next, we use Leray-Schauder's fixed point method to prove the existence of solutions of the problem (5.5), the operator
{˜nt−Δ˜n+ˉu⋅∇˜n+˜u∇ˉn+∇⋅(ˉn∇˜c)+∇(˜n∇ˉc)−γ˜n+2μ˙nˉn=gn,in Q,˜ct−Δ˜c+ˉu⋅∇˜c+˜u⋅∇ˉc+˜c−˙n=gc,in Q,˜ut−Δ˜u+ˉu⋅∇˜u+˙u⋅∇ˉu−˙n∇φ=gu,in Q. | (5.6) |
The system (5.6) is complemented by the corresponding Neumann boundary and initial conditions. Similar to the proof of Lemmas 2.3, 2.4, 2.5 and 2.6, we conduct that operator
Similar to the proof of Theorem 3.1,
{˜nt−Δ˜n+˜n=−ˉu⋅∇˜n−˜u⋅∇ˉn−∇⋅(ˉn∇˜c)−∇(˜n∇ˉc)+α(γ+1)˜n−2μ˜nˉn+αgn,in Q,˜ct−Δ˜c+˜c=−ˉu⋅∇˜c−˜u⋅∇ˉc+α˜n+αgc,in Q,˜ut−Δ˜u=−ˉu⋅∇˜u−˜u⋅∇ˉu+α˜n∇φ+αgu,in Q, | (5.7) |
complemented by the corresponding Neumann boundary and initial conditions.
Taking the
12∫Ω˜u2dx+∫Ω|∇˜u|2dx=α∫Ω˜n∇φ˜udx+α∫Ω˜ugudx. |
By the Poincaré inequality and Young's inequality, we have
ddt‖˜u‖2L2+‖˜u‖2H1≤C(‖˜n‖2L2+‖gu‖2L2)+C‖˜u‖2L2. | (5.8) |
Taking the
12∫Ω˜c2dx+∫Ω|∇˜c|2dx+∫Ω˜c2dx=∫Ω˜u∇ˉc˜cdx+α∫Ω˜n˜cdx+α∫Ωgc˜cdx. |
With the Poincaré inequality and Young's inequality in hand, we see that
ddt‖˜c‖2L2+‖˜c‖2H1≤C(‖˜n‖2L2+‖gc‖2L2)+C‖˜c‖2L2. | (5.9) |
Taking the
12∫Ω|∇˜c|2dx+∫Ω|Δ˜c|2dx+∫Ω|∇˜c|2dx=∫Ω˜u∇ˉcΔ˜cdx+∫Ωˉu∇˜cΔ˜cdx−α∫Ω˜nΔ˜cdx−α∫ΩgcΔ˜cdx=J1+J2+J3. |
For the term
J1=∫Ω˜u∇ˉcΔ˜cdx≤‖Δ˜c‖L2‖∇ˉc‖L4‖˜u‖L4≤16‖Δ˜c‖2L2+C‖∇ˉc‖2H1‖˜u‖2H1. |
For the term
J2=∫Ωˉu∇˜cΔ˜cdx=−12∫Ω∇ˉu|∇˜c|2dx≤‖∇ˉu‖L2‖∇˜c‖2L4≤‖∇ˉu‖L2(‖∇˜c‖12L2‖Δ˜c‖12L2+‖∇˜c‖L2)≤16‖Δ˜c‖2L2+C‖∇˜c‖2L2. |
For the term
J3=−α∫Ω˜nΔ˜cdx−α∫ΩgcΔ˜cdx≤16‖Δ˜c‖2L2+C(‖˜n‖2L2+‖gc‖2L2). |
Therefore, combining
ddt‖∇˜c‖2L2+‖∇˜c‖2H1≤C‖∇˜c‖2L2+C(‖˜n‖2L2+‖gc‖2L2). | (5.10) |
Taking the
ddt∫Ω˜n2dx+∫Ω|∇˜n|2dx+∫Ω˜n2dx=−∫Ω˜u∇ˉn˜ndx+∫Ω∇˜nˉn∇˜cdx+∫Ω∇˜n˜n∇ˉcdx+α(γ+1)∫Ω˜n2dx+2μ∫Ωˉn˜n2dx+α∫Ω˜ngndx=J4+J5+J6+J7. |
For the term
J4=−∫Ω˜u∇ˉn˜ndx≤‖˜u‖L4‖∇ˉn‖L2‖˜n‖L4≤C(‖∇˜u‖12L2‖˜u‖12L2+‖˜u‖L2)‖∇ˉn‖L2‖˜n‖H1≤δ‖˜n‖2H1+C‖∇˜u‖L2‖˜u‖L2+C‖˜u‖2L2≤δ‖˜n‖2H1+δ‖∇˜u‖2L2+C‖˜u‖2L2. |
For the term
J5=∫Ω∇˜nˉn∇˜cdx≤‖∇˜n‖L2‖ˉn‖L4‖∇˜c‖L4≤‖∇˜n‖L2‖ˉn‖H1(‖∇˜c‖12L2‖Δ˜c‖12L2+‖∇˜c‖L2)≤δ‖∇˜n‖2L2+‖∇˜c‖L2‖Δ˜c‖L2+C‖∇˜c‖2L2≤δ‖∇˜n‖2L2+δ‖Δ˜c‖L2+C‖∇˜c‖2L2. |
For the term
J6=∫Ω∇˜n˜n∇ˉcdx≤‖˜n‖2L4‖Δˉc‖L2≤(‖˜n‖12L2‖∇˜n‖12L2+‖˜n‖L2)‖Δˉc‖L2≤δ‖∇˜n‖2L2+C‖˜n‖2L2+C. |
For the term
J7=α(γ+1)∫Ω˜n2dx+2μ∫Ωˉn˜n2dx+α∫Ω˜ngndx≤(γ+1)‖˜n‖2L2+‖gn‖L2‖˜n‖L2+‖ˉn‖L2‖˜n‖2L4≤(γ+1)‖˜n‖2L2+‖gn‖L2‖˜n‖L2+‖ˉn‖L2(‖˜n‖12L2‖∇˜n‖12L2+‖˜n‖L2)≤δ‖∇˜n‖L2+C‖˜n‖2L2+C‖gn‖2L2. |
Therefore, by choosing
ddt‖˜n‖2L2+‖˜n‖2H1≤C(‖˜n‖2L2+‖∇˜c‖2L2+‖˜u‖2L2)+δ‖Δ˜c‖L2+δ‖∇˜u‖2L2+C‖gn‖2L2. | (5.11) |
By choosing
ddt(‖˜n‖2L2+‖˜c‖2H1+‖˜u‖2L2)+‖˜n‖2H1+‖˜c‖2H2+‖˜u‖2H1≤C(‖gn‖2L2+‖gc‖2L2+‖gu‖2L2)+C(‖˜n‖2L2+‖˜c‖2H1+‖˜u‖2L2). |
Applying Gronwall's lemma to the resulting differential inequality, we obatin
‖˜n‖2L2+‖˜c‖2H1+‖˜u‖2L2+∫t0‖˜n‖2H1dτ+∫t0‖˜c‖2H2dτ+∫t0‖˜u‖2H1dτ≤C. | (5.12) |
Taking the
12ddt∫Ω|∇˜u|2dx+∫Ω|Δ˜u|2dx=∫Ωˉu⋅∇˜uΔ˜udx+∫Ω˜u⋅∇ˉuΔ˜udx−α∫Ω˜n∇φΔ˜udx−α∫ΩguΔ˜udx=J8+J9+J10. |
With the use of the Gagliardo-Nirenberg interpolation inequality, we derive
J8=∫Ωˉu⋅∇˜uΔ˜udx≤‖ˉu‖L4‖∇˜u‖L4‖Δ˜u‖L2≤‖ˉu‖H1(‖∇˜u‖12L2‖Δ˜u‖12L2+‖∇˜u‖L2)‖Δ˜u‖L2≤δ‖Δ˜u‖2L2+C‖∇˜u‖2L2 |
and
J9=∫Ω˜u⋅∇ˉuΔ˜udx≤‖Δ˜u‖L2‖∇ˉu‖L4‖˜u‖L4≤C‖Δ˜u‖L2‖∇ˉu‖H1(‖∇˜u‖12L2‖˜u‖12L2+‖˜u‖L2)≤δ‖Δ˜u‖2L2+C‖∇˜u‖2L2. |
For the term
J10=α∫Ω˜n∇φΔ˜udx−α∫ΩguΔ˜udx≤δ‖Δ˜u‖2L2+C(‖˜n‖2L2+‖gu‖2L2). |
By choosing
ddt‖∇˜u‖2L2+‖Δ˜u‖2L2≤C‖∇˜u‖2L2+C‖gu‖2L2. | (5.13) |
Applying
12ddt∫Ω|Δc|2dx+∫Ω|∇Δc|2dx+∫Ω|Δc|2dx=−∫Ω∇(ˉu∇˜c)∇Δ˜cdx−∫Ω∇(˜u∇ˉc)∇Δ˜cdx+α∫Ω∇˜n∇Δ˜cdx+α∫Ω∇gc∇Δ˜cdx=J11+J12+J13. |
For the first term
J11=−∫Ω∇(ˉu∇˜c)∇Δ˜cdx=−∫Ω∇ˉu∇˜c∇Δ˜cdx−∫ΩˉuΔ˜c∇Δ˜cdx≤‖∇Δ˜c‖L2‖∇ˉu‖L4‖∇˜c‖L4+‖∇Δ˜c‖L2‖ˉu‖L4‖Δ˜c‖L4≤‖∇Δ˜c‖L2(‖∇ˉu‖12L2‖Δˉu‖12L2+‖∇ˉu‖L2)(‖∇ˉc‖12L2‖Δˉc‖12L2+‖∇ˉc‖L2)+‖∇Δ˜c‖L2‖ˉu‖H1(‖∇Δ˜c‖12L2‖Δ˜c‖12L2+‖Δ˜c‖L2)≤δ‖∇Δ˜c‖2L2+C‖Δˉu‖2L2+C‖Δ˜c‖2L2. |
Similarly, for the term
J12=−∫Ω∇(˜u∇ˉc)∇Δ˜cdx=−∫Ω∇˜u∇ˉc∇Δ˜cdx−∫Ω˜uΔˉc∇Δ˜cdx≤‖∇Δ˜c‖L2‖∇˜u‖L4‖∇ˉc‖L4+‖˜u‖L4‖Δˉc‖L4‖∇Δ˜c‖L2≤C‖∇Δ˜c‖L2(‖∇˜u‖12L2‖Δ˜u‖12L2+‖∇˜u‖L2)‖∇ˉc‖H1+(‖˜u‖12L2‖∇˜u‖12L2+‖˜u‖L2)(‖Δˉc‖12L2‖∇Δˉc‖12L2+‖Δˉc‖L2)‖∇Δ˜c‖L2≤δ‖∇Δ˜c‖2L2+δ‖Δ˜u‖2L2+C‖∇Δˉc‖2L2+C‖∇˜u‖2L2. |
For the rest term
J13=α∫Ω∇˜n∇Δ˜cdx+α∫Ω∇gc∇Δ˜cdx≤δ‖∇Δ˜c‖2L2+C(‖∇˜n‖2L2+‖∇gc‖2L2). |
By choosing
ddt‖Δ˜c‖2L2+‖Δ˜c‖2H1≤C(‖∇˜n‖2L2+‖Δ˜c‖2L2+‖∇˜u‖2L2)+C‖Δˉu‖2L2+δ‖Δ˜u‖2L2+C‖∇Δˉc‖2L2+C‖∇gc‖2L2. | (5.14) |
From (5.13) and (5.14), along with
ddt(‖∇˜u‖2L2+‖Δ˜c‖2L2)+‖Δ˜u‖2L2+‖Δ˜c‖2H1≤C(‖∇˜u‖2L2+‖Δ˜c‖2L2)+(‖∇˜n‖2L2+‖Δˉu‖2L2+‖∇Δˉc‖2L2+‖∇gc‖2L2)+C‖gu‖2L2. |
Applying Gronwall's lemma to the resulting differential inequality, we know
‖∇˜u‖2L2+‖Δ˜c‖2L2+∫t0‖Δ˜u‖2L2dτ+∫t0‖Δ˜c‖2H1dτ≤C. |
Taking the
12ddt∫Ω|∇˜n|2dx+∫Ω|Δ˜n|2dx+∫Ω|∇˜n|2dx=−∫Ωˉu⋅∇˜nΔ˜ndx−∫Ω˜u⋅∇ˉnΔ˜ndx−∫Ω∇(˜n∇ˉc)Δ˜ndx−∫Ω∇(ˉn∇˜c)Δ˜ndx−α(1+γ)∫Ω˜nΔ˜ndx+2μ∫Ω˜nˉnΔ˜ndx−α∫ΩgnΔ˜ndx=J14+J15+J16+J17+J18. |
With the Gagliardo-Nirenberg interpolation inequality in hand, we can estimate
J14=−∫Ωˉu⋅∇˜nΔ˜ndx≤‖ˉu‖L4‖∇˜n‖L4‖Δ˜n‖L2≤C‖ˉu‖H1(‖∇˜n‖12L2‖Δ˜n‖12L2+‖∇˜n‖L2)‖Δ˜n‖L2≤δ‖Δ˜n‖2L2+C‖∇˜n‖2L2. |
Similar to above estimates, we see
J15=−∫Ω˜u⋅∇ˉnΔ˜ndx≤‖˜u‖L4‖∇ˉn‖L4‖Δ˜n‖L2≤C‖˜u‖H1‖∇ˉn‖H1‖Δ˜n‖L2≤δ‖Δ˜n‖L2+C‖∇ˉn‖2H1. |
Similarly, we derive
J16=−∫Ω∇(˜n∇ˉc)Δ˜ndx=−∫Ω∇˜n∇ˉcΔ˜ndx−∫Ω˜nΔˉcΔ˜ndx≤‖∇˜n‖L4‖∇ˉc‖L4‖Δ˜n‖L2+‖˜n‖L4‖Δˉc‖L4‖Δ˜n‖L2≤(‖∇˜n‖12L2‖Δ˜n‖12L2+‖∇˜n‖L2)‖∇ˉc‖H1‖Δ˜n‖L2+(‖˜n‖12L2‖∇˜n‖12L2+‖˜n‖L2)(‖Δˉc‖12L2‖∇Δˉc‖12L2+‖Δˉc‖L2)‖Δ˜n‖L2≤δ‖Δ˜n‖2L2+C‖∇˜n‖2L2+C‖∇Δˉc‖2L2+C |
and
J17=−∫Ω∇(ˉn∇˜c)Δ˜ndx=−∫Ω∇ˉn∇˜cΔ˜ndx−∫Ω∇ˉnΔ˜cΔ˜ndx≤‖∇ˉn‖L4‖∇˜c‖L4‖Δ˜n‖L2+‖ˉn‖L4‖Δ˜c‖L4‖Δ˜n‖L2≤(‖∇ˉn‖12L2‖Δˉn‖12L2+‖∇ˉn‖L2)‖∇˜c‖H1‖Δ˜n‖L2+‖ˉn‖H1(‖Δ˜c‖12L2‖∇Δ˜c‖12L2+‖Δ˜c‖L2)‖Δ˜n‖L2≤δ‖Δ˜n‖2L2+C‖∇Δ˜c‖2L2+C. |
For the rest terms, we know
J18=−α(1+γ)∫Ω˜nΔ˜ndx+2μ∫Ω˜nˉnΔ˜ndx−α∫ΩgnΔ˜ndx≤(1+γ)‖˜n‖L2‖Δ˜n‖L2+2μ‖˜n‖L4‖ˉn‖L4‖Δ˜n‖L2+‖gn‖L2‖Δ˜n‖L2≤(1+γ)‖˜n‖L2‖Δ˜n‖L2+C(‖˜n‖12L2‖∇˜n‖12L2+‖˜n‖L2)‖ˉn‖H1‖Δ˜n‖L2+‖gn‖L2‖Δ˜n‖L2≤δ‖Δ˜n‖2L2+C‖∇˜n‖2L2+C‖gn‖2L2. |
Therefore, Taking
ddt‖∇˜n‖2L2+‖∇˜n‖2H1≤C(‖∇˜n‖2L2+‖∇ˉn‖2H1+‖∇Δˉc‖2L2+‖∇Δ˜c‖2L2+‖gn‖2L2)+C. |
Applying Gronwall's lemma to the resulting differential inequality, we know
‖∇˜n‖2L2+∫t0‖∇˜n‖2H1dτ≤C. |
Therefore, from Leray-Schauder theorem, we derive the existence of solution for (5.5). Along with the regularity of
Theorem 5.1. Assume that
β1∫T0∫Ωd(ˉn−nd)˜ndxdt+β2∫T0∫Ωd(ˉc−cd)˜cdxdt+β3∫T0∫Ωd(ˉu−ud)˜udxdt+β4∫Ωd(ˉn(T)−nΩ)˜n(T)dx+β5∫Ωd(ˉc(T)−cΩ)˜c(T)dx−∫T0∫Ω(˜nt−Δ˜n+ˉu⋅∇˜n+˜u⋅∇ˉn+∇⋅(ˉn∇˜c)+∇(˜n∇ˉc)−γ˜n+2μ˜nˉn)λdxdt−∫T0∫Ω(˜ct−Δ˜c+ˉu⋅∇˜c+˜u⋅∇ˉc+˜c−˜n)ηdxdt+β7∫T0∫Ωd˜fˉfdxdt−∫T0∫Ω(˜ut−Δ˜u+ˉu⋅∇˜u+˜u⋅∇ˉu−˜n∇φ)ρdxdt+∫Ω˜n(0)ξdx+∫Ω˜c(0)φdx+∫Ω˜u(0)ωdx+β6∫Ωd(ˉu(T)−uΩ)˜u(T)dx+∫T0∫Ω˜fηdxdt≥0, | (5.15) |
where
Proof. With the Lemma 5.3 in hand, we get that
J′(ˉs)[r]−⟨G′1(ˉs)[r],λ⟩−⟨G′2(ˉs)[r],η⟩−⟨G′3(ˉs)[r],ρ⟩−⟨G′4(ˉs)[r],ξ⟩−⟨G′5(ˉs)[r],φ⟩−⟨G′6(ˉs)[r],ω⟩≥0, |
for all
Corollary 5.1. Assume that
∫T0∫Ω(˜nt−Δ˜n+ˉu⋅∇˜n+∇(˜n∇ˉc)−γ˜n+2μ˜nˉn)λdxdt−∫T0∫Ω˜nηdxdt−∫T0∫Ω˜n∇φρdxdt=β1∫T0∫Ωd(ˉn−nd)˜ndxdt, | (5.16) |
∫T0∫Ω(˜ct−Δ˜c+ˉu⋅∇˜c+˜c)ηdxdt+∫T0∫Ω∇⋅(ˉn∇˜c)λdxdt=β2∫T0∫Ωd(ˉc−cd)˜cdxdt, | (5.17) |
∫T0∫Ω(˜ut−Δ˜u+ˉu⋅∇˜u+˜u⋅∇ˉu)ρdxdt+∫T0∫Ω˜u∇ˉnλdxdt+∫T0∫Ω˜u⋅∇ˉcηdxdt=β3∫T0∫Ωd(ˉu−ud)˜udxdt, | (5.18) |
which corresponds to the linear system
{−λt−Δλ+ˉu⋅∇λ−∇λ∇ˉc−γλ+2μλˉn−η−∇φρ=β1(ˉn−nd),−ηt−Δη+ˉu⋅∇η+η+∇(ˉn∇λ)=β2(ˉc−cd),−ρt−Δρ+(ˉu⋅∇)ρ+(ρ⋅∇T)ˉu+λ∇ˉn+η∇ˉc=β3(ˉu−ud), | (5.19) |
subject to the following boundary and final conditions
{∇⋅ρ=0,inQ,∂λ∂ν=∂η∂ν,ρ=0,on(0,T)×∂Ω,λ(T)=β4(ˉn(T)−nΩ),η(T)=β5(ˉc(T)−cΩ),ρ(T)=β5(ˉc(T)−cΩ),inΩ, |
and the following identities hold
∫T0∫Ωd(β7ˉf+η)(f−ˉf)dxdt≥0,∀f∈U. | (5.20) |
Proof. By taking
β7∫T0˜fˉfdxdt+∫T0˜fηdxdt≥0,∀˜f∈C(ˉf). |
By choosing
Theorem 5.2. Under the assumptions of Theorem 5.1, system (5.19) has a unique weak solution such that
‖λ‖2H1+‖η‖2L2+‖ρ‖2L2+∫t0‖λ‖2H2dτ+∫t0‖η‖2H1dτ+∫t0‖ρ‖2H1dτ≤C. |
Proof. For convenience, we set
{λt−Δλ+ˉu⋅∇λ−∇λ∇ˉc−γλ+2μλˉn−η−∇φρ=β1(ˉn−nd), in Q,ηt−Δη+ˉu⋅∇η+η+∇(ˉn∇λ)=β2(ˉc−cd), in Q,ρt−Δρ+(ˉu⋅∇)ρ+(ρ⋅∇T)ˉu+λ∇ˉn+η∇ˉc=β3(ˉu−ud), in Q, | (5.21) |
subject to the following boundary and final conditions
{∇⋅ρ=0, in Q,∂λ∂ν=∂η∂ν,ρ=0, on (0,T)×∂Ω,λ(0)=β4(ˉn(T)−nΩ),η(0)=β5(ˉc(T)−cΩ),ρ(0)=β5(ˉc(T)−cΩ), in Ω. |
Following an analogous reasoning as in the proof of Lemma 5.3, we omit the process and just give a number of a priori estimates as follows.
Taking the
12ddt∫Ωλ2dx+∫Ω|∇λ|2dx+2μ∫Ωλ2ˉndx=∫Ω∇λ∇ˉcdx+γ∫Ωλ2dx+∫Ωληdx+∫Ωλ∇φρdx+β1∫Ω(ˉn−nd)λdx≤‖∇λ‖L2‖∇ˉc‖L2+γ‖λ‖2L2+‖λ‖L2(‖η‖L2+‖ρ‖L2)+β1‖ˉn−nd‖L2‖λ‖L2≤12‖∇λ‖2L2+C(‖λ‖2L2+‖η‖2L2+‖ρ‖2L2)+C‖ˉn−nd‖2L2. |
Then, we have
ddt‖λ‖2L2+‖λ‖2H1≤C(‖λ‖2L2+‖η‖2L2+‖ρ‖2L2)+C‖ˉn−nd‖2L2. | (5.22) |
Taking the
12ddt∫Ω|∇λ|2dx+∫Ω|Δλ|2dx=∫Ωˉu⋅∇λΔλdx−∫Ω∇λ∇ˉcΔλdx−γ∫ΩλΔλdx+2μ∫ΩλˉnΔλdx−∫ΩηΔλdx−∫Ω∇φρΔλdx+β1∫Ω(ˉn−nd)Δλdx≤‖ˉu‖L4‖∇λ‖L4‖Δλ‖L2+‖∇λ‖L4‖∇ˉc‖L4‖Δλ‖L2+γ‖∇λ‖2L2+‖λ‖L4‖ˉn‖L4‖Δλ‖L2+‖η‖L2‖Δλ‖L2+‖ρ‖L2‖Δλ‖L2+β1‖Δλ‖L2‖ˉn−nd‖2L2≤‖ˉu‖H1(‖∇λ‖12L2‖Δλ‖12L2+‖∇λ‖L2)‖Δλ‖L2+γ‖∇λ‖2L2+(‖∇λ‖12L2‖Δλ‖12L2+‖∇λ‖L2)‖∇ˉc‖H1‖Δλ‖L2+‖η‖L2‖Δλ‖L2+‖ρ‖L2‖Δλ‖L2+β1‖Δλ‖L2‖ˉn−nd‖2L2≤12‖Δλ‖2L2+C(‖∇λ‖2L2+‖η‖2L2+‖ρ‖2L2). |
Thus, we get
ddt‖∇λ‖2L2+‖∇λ‖2H1≤C(‖∇λ‖2L2+‖η‖2L2+‖ρ‖2L2)+C‖ˉn−nd‖2L2. | (5.23) |
Taking the
12ddt∫Ωη2dx+∫Ω|∇η|2dx+∫Ωη2dx=∫Ωˉn∇λ∇ηdx+β2∫Ωη(ˉc−cd)dx≤‖ˉn‖L4‖∇λ‖L4‖∇η‖L2+β2‖η‖L2‖ˉc−cd‖L2≤‖ˉn‖H1(‖∇λ‖12L2‖Δλ‖12L2+‖∇λ‖L2)‖∇η‖L2+β2‖η‖L2‖ˉc−cd‖L2≤12‖∇η‖2L2+δ‖Δλ‖2L2+C‖∇λ‖L2+C‖η‖2L2+C‖ˉc−cd‖2L2. |
As an immediate consequence, we obtain
ddt‖η‖2L2+‖η‖2H1≤δ‖Δλ‖2L2+C‖∇λ‖L2+C‖η‖2L2+C‖ˉc−cd‖2L2. | (5.24) |
Taking the
12ddt∫Ωρ2dx+∫Ω|∇ρ|2dx=−∫Ω(ρ⋅∇T)ˉuρdx−λ∫Ω∇ˉnρdx−∫Ωη∇ˉcρdx+β3∫Ω(ˉu−ud)ρdx≤‖ρ‖L2‖∇ˉu‖L4‖ρ‖L4+λ‖∇ˉn‖L2‖ρ‖L2+‖η‖L2‖∇ˉc‖L4‖ρ‖L4+β3‖ρ‖L2‖ˉu−ud‖L2≤‖ρ‖L2‖∇ˉu‖H1(‖ρ‖12L2‖∇ρ‖12L2+‖ρ‖L2)+λ‖∇ˉn‖L2‖ρ‖L2+‖η‖L2‖∇ˉc‖H1(‖ρ‖12L2‖∇ρ‖12L2+‖ρ‖L2)+β3‖ρ‖L2‖ˉu−ud‖L2≤12‖∇ρ‖2L2+C‖ρ‖2L2(‖∇ˉu‖2H1+1)+C‖η‖2L2+C‖ˉu−ud‖2L2. |
Therefore, we see that
ddt‖ρ‖2L2+‖ρ‖2H1≤C‖ρ‖2L2(‖∇ˉu‖2H1+1)+C‖η‖2L2+C‖ˉu−ud‖2L2. | (5.25) |
Combining (5.22)-(5.25) and taking
ddt(‖λ‖2H1+‖η‖2L2+‖ρ‖2L2)+‖λ‖2H2+‖η‖2H1+‖ρ‖2H1≤C(‖∇ˉu‖2H1+1)(‖λ‖2H1+‖η‖2L2+‖ρ‖2L2)+C‖ˉn−nd‖2L2+C‖ˉc−cd‖2L2+C‖ˉu−ud‖2L2. |
Applying Gronwall's lemma to the resulting differential inequality, we know
‖λ‖2H1+‖η‖2L2+‖ρ‖2L2+∫t0‖λ‖2H2dτ+∫t0‖η‖2H1dτ+∫t0‖ρ‖2H1dτ≤C. |
The proof is complete.
The authors would like to express their deep thanks to the referee's valuable suggestions for the revision and improvement of the manuscript.
[1] |
The Debye system: Existence and large time behavior of solutions. Nonlinear Anal. (1994) 23: 1189-1209. ![]() |
[2] |
B. Chen and C. Liu, Optimal distributed control of a Allen-Cahn/Cahn-Hilliard system with temperature, Applied Mathematics and Optimization, 2021. doi: 10.1007/s00245-021-09807-2
![]() |
[3] |
B. Chen, H. Li and C. Liu, Optimal distributed control for a coupled phase-field system, Discrete and Continuous Dynamical Systems Series B. doi: 10.3934/dcdsb.2021110
![]() |
[4] |
Optimal control for a conserved phase field system with a possibly singular potential. Evol. Equ. Control Theory (2018) 7: 95-116. ![]() |
[5] |
Optimal distributed control of a diffuse interface model of tumor growth. Nonlinearity (2017) 30: 2518-2546. ![]() |
[6] |
Reaction terms avoiding aggregation in slow fluids. Nonlinear Anal. Real World Appl. (2015) 21: 110-126. ![]() |
[7] | A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969. |
[8] |
Optimal distributed control of two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems with degenerate mobility and singular potential. Appl. Math. Optim. (2020) 81: 899-931. ![]() |
[9] |
F. Guillén-González, E. Mallea-Zepeda and M. Rodríguez-Bellido, Optimal bilinear control problem related to a chemo-repulsion system in 2D domains, ESAIM Control Optim. Calc. Var., 26 (2020), 21pp. doi: 10.1051/cocv/2019012
![]() |
[10] |
On Stokes operators with variable viscosity in bounded and unbounded domains. Math. Ann. (2009) 344: 381-429. ![]() |
[11] |
C. Jin, Large time periodic solutions to coupled chemotaxis-fluid models, Z. Angew. Math. Phys., 68 (2017), 24pp. doi: 10.1007/s00033-017-0882-9
![]() |
[12] |
Large time periodic solution to the coupled chemotaxis-Stokes model. Math. Nachr. (2017) 290: 1701-1715. ![]() |
[13] |
Optimal distributed control for a new mechanochemical model in biological patterns. J. Math. Anal. Appl. (2019) 478: 825-863. ![]() |
[14] |
Optimal control of a new mechanochemical model with state constraint. Math. Methods Appl. Sci. (2021) 44: 9237-9263. ![]() |
[15] |
Optimal control of Keller-Segel equations. J. Math. Anal. Appl. (2001) 256: 45-66. ![]() |
[16] |
Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. (1987) 146: 65-96. ![]() |
[17] |
Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z. Angew. Math. Phys. (2015) 66: 2555-2573. ![]() |
[18] |
Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system. Z. Angew. Math. Phys. (2016) 67: 1-23. ![]() |
[19] |
Optimal control problem for the Cahn-Hilliard/Allen-Cahn equation with state constraint. Appl. Math. Optim. (2020) 82: 721-754. ![]() |
[20] |
Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. (1979) 5: 49-62. ![]() |
1. | Hui Tang, Yunfei Yuan, Optimal control for a chemotaxis–haptotaxis model in two space dimensions, 2022, 2022, 1687-2770, 10.1186/s13661-022-01661-7 | |
2. | Yunfei Yuan, Changchun Liu, Optimal control for a fully parabolic singular chemotaxis model with indirect signal consumption in two space dimensions, 2022, 0003-6811, 1, 10.1080/00036811.2022.2139244 | |
3. | Sida Lin, Lixia Meng, Jinlong Yuan, Changzhi Wu, An Li, Chongyang Liu, Jun Xie, Sequential adaptive switching time optimization technique for maximum hands-off control problems, 2024, 32, 2688-1594, 2229, 10.3934/era.2024101 |