A central limit theorem for pulled fronts in a random medium

  • Received: 01 August 2010 Revised: 01 February 2011
  • Primary: 35R60; Secondary: 35K57, 60H99.

  • We consider solutions to a nonlinear reaction diffusion equation when the reaction term varies randomly with respect to the spatial coordinate. The nonlinearity is the KPP type nonlinearity. For a stationary and ergodic medium, and for certain initial condition, the solution develops a moving front that has a deterministic asymptotic speed in the large time limit. The main result of this article is a central limit theorem for the position of the front, in the supercritical regime, if the medium satisfies a mixing condition.

    Citation: James Nolen. A central limit theorem for pulled fronts in a random medium[J]. Networks and Heterogeneous Media, 2011, 6(2): 167-194. doi: 10.3934/nhm.2011.6.167

    Related Papers:

    [1] James Nolen . A central limit theorem for pulled fronts in a random medium. Networks and Heterogeneous Media, 2011, 6(2): 167-194. doi: 10.3934/nhm.2011.6.167
    [2] Matthieu Alfaro, Thomas Giletti . Varying the direction of propagation in reaction-diffusion equations in periodic media. Networks and Heterogeneous Media, 2016, 11(3): 369-393. doi: 10.3934/nhm.2016001
    [3] Henri Berestycki, Guillemette Chapuisat . Traveling fronts guided by the environment for reaction-diffusion equations. Networks and Heterogeneous Media, 2013, 8(1): 79-114. doi: 10.3934/nhm.2013.8.79
    [4] François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik . A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Networks and Heterogeneous Media, 2013, 8(1): 275-289. doi: 10.3934/nhm.2013.8.275
    [5] Tong Li . Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8(3): 773-781. doi: 10.3934/nhm.2013.8.773
    [6] Wei-Ming Ni, Masaharu Taniguchi . Traveling fronts of pyramidal shapes in competition-diffusion systems. Networks and Heterogeneous Media, 2013, 8(1): 379-395. doi: 10.3934/nhm.2013.8.379
    [7] Danielle Hilhorst, Hideki Murakawa . Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium. Networks and Heterogeneous Media, 2014, 9(4): 669-682. doi: 10.3934/nhm.2014.9.669
    [8] Benjamin Contri . Fisher-KPP equations and applications to a model in medical sciences. Networks and Heterogeneous Media, 2018, 13(1): 119-153. doi: 10.3934/nhm.2018006
    [9] John R. King . Wavespeed selection in the heterogeneous Fisher equation: Slowly varying inhomogeneity. Networks and Heterogeneous Media, 2013, 8(1): 343-378. doi: 10.3934/nhm.2013.8.343
    [10] Cory D. Hauck, Michael Herty, Giuseppe Visconti . Qualitative properties of mathematical model for data flow. Networks and Heterogeneous Media, 2021, 16(4): 513-533. doi: 10.3934/nhm.2021015
  • We consider solutions to a nonlinear reaction diffusion equation when the reaction term varies randomly with respect to the spatial coordinate. The nonlinearity is the KPP type nonlinearity. For a stationary and ergodic medium, and for certain initial condition, the solution develops a moving front that has a deterministic asymptotic speed in the large time limit. The main result of this article is a central limit theorem for the position of the front, in the supercritical regime, if the medium satisfies a mixing condition.


    [1] M. Bages, P. Martinez and J.-M. Roquejoffre, How traveling waves attract the solutions of KPP-type equations, preprint 2010.
    [2] H. Berestycki and F. Hamel, Front propagation in periodic excitable media, Comm. Pure Appl. Math., 55 (2002), 949-1032. doi: 10.1002/cpa.3022
    [3] H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations, In: "Perspectives in Nonlinear Partial Differential Equations," Contemp. Math. 446, Amer. Math. Soc., (2007), 101-123.
    [4] P. Billingsley, "Convergence of Probability Measures," John Wiley and Sons, New York, 1968.
    [5] E. Brunet, B. Derrida, A. H. Mueller and S. Munier, Phenomenological theory giving the full statistics of the position of fluctuating pulled fronts, Phys. Rev. E, 73 (2006), 05126. doi: 10.1103/PhysRevE.73.056126
    [6] S. Chatterjee, A new method of normal approximation, Ann. Probab., 36 (2008), 1584-1610. doi: 10.1214/07-AOP370
    [7] R. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 355-369. doi: 10.1111/j.1469-1809.1937.tb02153.x
    [8] M. Freidlin, "Functional Integration and Partial Differential Equations," Ann. Math. Stud. 109, Princeton University Press, Princeton, NJ, 1985.
    [9] J. Gärtner and M. I. Freidlin, The propagation of concentration waves in periodic and random media, Dokl. Acad. Nauk SSSR, 249 (1979), 521-525.
    [10] P. Hall and C. C. Heyde, "Martingale Limit Theory and its Application," Academic Press, New York, 1980.
    [11] F. Hamel and L. Roques, Uniqueness and stability properties of monostable pulsating fronts, J. European Math. Soc., 13 (2011), 345-390. doi: 10.4171/JEMS/256
    [12] A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, Étude de l'équation de la chaleurde matiére et son application à un problème biologique, Bull. Moskov. Gos. Univ. Mat. Mekh., 1 (1937), 1-25.
    [13] P.-L. Lions and P. E. Souganidis, Homogenization of viscous Hamilton-Jacobi equations in stationary ergodic media, Comm. Partial Diff. Eqn., 30 (2005), 335-375. doi: 10.1081/PDE-200050077
    [14] A. Majda and P. E. Souganidis, Flame fronts in a turbulent combustion model with fractal velocity fields, Comm. Pure Appl. Math., 51 (1998), 1337-1348. doi: 10.1002/(SICI)1097-0312(199811/12)51:11/12<1337::AID-CPA4>3.0.CO;2-B
    [15] P. Martinez and J.-M. Roquejoffre, Convergence to critical waves in KPP-type equations, Preprint 2010.
    [16] A. Mellet, J. Nolen, J.-M. Roquejoffre and L. Ryzhik, Stability of generalized transition fronts, Communications in PDE, 34 (2009), 521-552. doi: 10.1080/03605300902768677
    [17] C. Mueller and R. Sowers, Random travelling waves for the KPP equation with noise, J. Funct. Anal., 128 (1995), 439-498. doi: 10.1006/jfan.1995.1038
    [18] J. Nolen, An invariance principle for random traveling waves in one dimension, SIAM J. Math. Anal., 43 (2011), 153-188. doi: 10.1137/090746513
    [19] J. Nolen and L. Ryzhik, Traveling waves in a one-dimensional heterogeneous medium, AIHP - Analyse Non Linéaire, 26 (2009), 1021-1047.
    [20] J. Nolen and J. Xin, Asymptotic spreading of KPP reactive fronts in incompressible space-time random flows, AIHP - Analyse Non Linéaire, 26 (2008), 815-839.
    [21] J. Nolen and J. Xin, KPP fronts in 1D random drift, Discrete and Continuous Dynamical Systems B, 11 (2009), 421-442. doi: 10.3934/dcdsb.2009.11.421
    [22] A. Rocco, U. Ebert and W. van Saarloos, Subdiffusive fluctuations of "pulled" fronts with multiplicative noise, Phys. Rev. E, 62 (2000), R13-R16. doi: 10.1103/PhysRevE.62.R13
    [23] W. Shen, Traveling waves in diffusive random media, J. Dynamics and Diff. Eqns., 16 (2004), 1011-1060. doi: 10.1007/s10884-004-7832-x
    [24] R. Tribe, A travelling wave solution to the Kolmogorov equation with noise, Stochastics Stochastics Rep., 56 (1996), 317-340.
    [25] W. van Saarloos, Front propagation into unstable states, Physics Reports, 386 (2003), 29-222. doi: 10.1016/j.physrep.2003.08.001
    [26] J. Xin, "An Introduction to Fronts in Random Media," Springer, New York, 2009. doi: 10.1007/978-0-387-87683-2
  • This article has been cited by:

    1. Francis Comets, Jeremy Quastel, Alejandro F. Ramírez, Last Passage Percolation and Traveling Fronts, 2013, 152, 0022-4715, 419, 10.1007/s10955-013-0779-8
    2. Gregoire Nadin, How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?, 2015, 20, 1553-524X, 1785, 10.3934/dcdsb.2015.20.1785
    3. Jiří Černý, Alexander Drewitz, Quenched invariance principles for the maximal particle in branching random walk in random environment and the parabolic Anderson model, 2020, 48, 0091-1798, 10.1214/19-AOP1347
    4. Grégoire Nadin, Luca Rossi, Generalized Transition Fronts for One-Dimensional Almost Periodic Fisher-KPP Equations, 2017, 223, 0003-9527, 1239, 10.1007/s00205-016-1056-1
    5. Alexander Drewitz, Lars Schmitz, Invariance Principles and Log-Distance of F-KPP Fronts in a Random Medium, 2022, 246, 0003-9527, 877, 10.1007/s00205-022-01824-x
    6. Xing Liang, Tao Zhou, Spreading speeds of KPP-type lattice systems in heterogeneous media, 2020, 22, 0219-1997, 1850083, 10.1142/S0219199718500839
    7. Henri Berestycki, Grégoire Nadin, Spreading speeds for one-dimensional monostable reaction-diffusion equations, 2012, 53, 0022-2488, 115619, 10.1063/1.4764932
    8. Andrej Zlatoš, Transition fronts in inhomogeneous Fisher–KPP reaction–diffusion equations, 2012, 98, 00217824, 89, 10.1016/j.matpur.2011.11.007
    9. Jiří Černý, Alexander Drewitz, Lars Schmitz, (Un-)bounded transition fronts for the parabolic Anderson model and the randomized F-KPP equation, 2023, 33, 1050-5164, 10.1214/22-AAP1869
    10. Haojie Hou, Yan-Xia Ren, Renming Song, Invariance principle for the maximal position process of branching Brownian motion in random environment, 2023, 28, 1083-6489, 10.1214/23-EJP956
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4139) PDF downloads(71) Cited by(9)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog