Congruences for sixth order mock theta functions $ \lambda(q) $ and $ \rho(q) $

  • Received: 01 June 2021 Revised: 01 September 2021 Published: 26 October 2021
  • Primary: 11P83, 05A17

  • Ramanujan introduced sixth order mock theta functions $ \lambda(q) $ and $ \rho(q) $ defined as:

    $ \begin{align*} \lambda(q) & = \sum\limits_{n = 0}^{\infty}\frac{(-1)^n q^n (q;q^2)_n}{(-q;q)_n},\\ \rho(q) & = \sum\limits_{n = 0}^{\infty}\frac{ q^{n(n+1)/2} (-q;q)_n}{(q;q^2)_{n+1}}, \end{align*} $

    listed in the Lost Notebook. In this paper, we present some Ramanujan-like congruences and also find their infinite families modulo 12 for the coefficients of mock theta functions mentioned above.

    Citation: Harman Kaur, Meenakshi Rana. Congruences for sixth order mock theta functions $ \lambda(q) $ and $ \rho(q) $[J]. Electronic Research Archive, 2021, 29(6): 4257-4268. doi: 10.3934/era.2021084

    Related Papers:

  • Ramanujan introduced sixth order mock theta functions $ \lambda(q) $ and $ \rho(q) $ defined as:

    $ \begin{align*} \lambda(q) & = \sum\limits_{n = 0}^{\infty}\frac{(-1)^n q^n (q;q^2)_n}{(-q;q)_n},\\ \rho(q) & = \sum\limits_{n = 0}^{\infty}\frac{ q^{n(n+1)/2} (-q;q)_n}{(q;q^2)_{n+1}}, \end{align*} $

    listed in the Lost Notebook. In this paper, we present some Ramanujan-like congruences and also find their infinite families modulo 12 for the coefficients of mock theta functions mentioned above.



    加载中


    [1] Congruences related to the Ramanujan/Watson mock theta functions $\omega(q)$ and $\nu(q)$. Ramanujan J. (2017) 43: 347-357.
    [2] Generating functions and congruences for some partition functions related to mock theta functions. Int. J. Number Theory (2020) 16: 423-446.
    [3] Congruences related to an eighth order mock theta function of Gordon and McIntosh. J. Math. Anal. Appl. (2019) 479: 62-89.
    [4] Some congruences for partition functions related to mock theta functions $\omega(q)$ and $\nu(q)$. New Zealand J. Math. (2017) 47: 161-168.
    [5] M. D. Hirschhorn, The Power of $q$, Developments in Mathematics, 49. Springer, Cham, 2017. doi: 10.1007/978-3-319-57762-3
    [6] Arithmetic relations for overpartitions. J. Combin. Math. Combin. Comput. (2005) 53: 65-73.
    [7] R. da Silva and J. A. Sellers, Congruences for the coefficients of the Gordon and McIntosh mock theta function $\xi(q)$, Ramanujan J., (2021), 1–20. doi: 10.1007/s11139-021-00479-8
    [8] Congruences for the coefficients of the mock theta function $\beta(q)$. Ramanujan J. (2019) 49: 257-267.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(406) PDF downloads(93) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog