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ABSTRACT. Ramanujan introduced sixth order mock theta functions A(q) and
p(q) defined as:

o] 2)77.
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listed in the Lost Notebook. In this paper, we present some Ramanujan-like
congruences and also find their infinite families modulo 12 for the coefficients
of mock theta functions mentioned above.

1. Introduction. In 1920, Ramanujan introduced 17 mock theta functions of odd
order in his last letter to Hardy. In addition Ramanujan also gave the mock theta
functions of order 6 that are listed in the Lost Notebook. In the study of the
arithmetic properties of mock theta functions, many authors have found some con-
gruence properties for their coefficients. For instance, Andrews et al. [1] found
several congruences for the partition functions p,(n) and p,(n) corresponding to
the mock theta functions w(q) and v(q) respectively, defined as:

0 2(n +n)

=Y

n:O n+1
e n(n+1
where
(@;9)n = (1 —a)(1 —aq)(1 —ag?) -~ (1 —ag" ™), (1)
for some positive integer n and
oo

H 1—aq (2)

with |¢] < 1. They proved congruences for modulo 2 and some infinite families
of congruences for p,(n) and p,(n). In 2017, Fathima and Pore [4] obtained a
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number of congruences for p,(n) and p,(n) modulo 20 and some infinite families
of congruences modulo 2. In the sequel, Baruah and Begum [2] in 2019 established
many congruences for the same partition functions modulo powers of 5.

Zhang in 2018 proved some congruences for the sixth order mock theta function
B(q) shown below and also gave some conjectures in [8].

o0 q3n2+3n+1

Ala) = n;) (a:¢%)

Brietzke, Silva, and Sellers [3] in 2019 found many arithmetic properties satisfied
by the coefficients of the eighth order mock theta function V;(q) given as:

Volg f—1+22 q’ "q

n+1(0% @) g1

Silva and Sellers in [7] proved some congruence relations for the third order mock
theta function £(q) given by Gordon and Mclntosh given below:

_1+22

The main purpose of this paper is to study the arithmetic properties of the sixth
order mock theta functions A(¢q) and p(q) given by Ramanujan where the two mock
theta functions are defined as:

A(Q)—Z%(lzqq pr , (3)
nn+1)/2

Z" =S ol (4)
n=0

q;9 n+1 n—0

6n2 —6n+1

n(@®545)n

Ramanujan also listed linear relations connecting the sixth order mock theta func-
tions with each other as:

2¢" " 6(q%) + A(—0) = (-¢:4*)% (4. 4"), (5)
¢ e(q®) + pla) = (—:¢*)% f(a,4°), (6)
where 1¥g(g) is the sixth order mock theta function

© 1\, (n+1)2(,. 2
wﬁ(q):Z( 1) q + (an)n

n=0 (=@ @)2nt1

The proof technique of all the congruences for mock theta functions involves apply-
ing identities on the coefficients in arithmetic progressions, we use the same idea to
prove infinite family of congruences modulo certain numbers of the form 2.3 for
pa(n) and p,(n). The main results are found in Theorem 3.2-3.7 given in Section
3. Before proceeding towards the main theorems, we need some preliminary results
given in Section 2 for proving the results in Section 3.

2. Preliminaries. To shorten the notations, we define

fi=(dd")

for some positive integer [.
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Now, we define Ramanujan’s general theta function

f(a,b) Z @D /2pn(n=1/2 - for Jab| < 1,

Jacobi’s triple product identity is defined as:
fla,b) = (—a;ab) oo (—b; ab) oo (ab; ab) oo
The special cases for f(a,b) are:

pq) = Z " f
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In some of the proofs, we make use of the following identities:

= Z(—l)"(Qn + 1)g""+1/2 (Jacobi’s identity)
n=0
[ee]

fi= Z (=1)"¢g"G"=Y/2 (Buler’s Pentagonal number theorem).

The following lemma exhibits the 3-dissection of 1(¢) and 1/¢(—q).

Lemma 2.1. We have

_Sfi I

7/’(Q) - f3f18 + f9
I fé‘fg f6f9 2 fofis
o(—q) B f:? 18 2 3 i f3 .

4259

(10)

(11)

(12)

(13)

Proof. Tdentity (12) is equation (14.3.3) of [5]. Identity (13) comes from [6] shown

in equation (2).

Lemma 2.2. We have
R_B g B
fz fi2 fafé
fo _ R ST

i3 3

O

(14)

(15)

Proof. The above identity (14) is (22.1.13) in [5]. And (15) follows from (14) by

replacing g by —¢g and using
3

(*(E *Q)oo = m~

From the binomial theorem, for any positive integer I and prime p, we have

1 1—1
(¢:0)% = (¢";¢")%  (mod p).
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3. Congruence relations for A\(¢) and p(q). We first prove the 2-dissection of

Ag).
Theorem 3.1. We have
= 3 02
S m@n)g = J;J; (16)
n=0
> @+ gt = fff} ) (a7)

Proof. To prove the above dissections, consider (5) and replacing ¢ by —¢ in (5),
we have

Na) = (4:6*) 2% f(—=a,—¢°) + 2¢ " vs(d?),
_ f%f62 _|_2 71,(1) ( 2)
- fg,f q 6\q ),
_ LGQ <f4 f2f12) -1
=73\ Mg ) 2 @),

where the last equality follows from (14). Extracting even and odd terms from
above equation, we get

- fa 13
pa(2n)g?" = = , 18
2 M@0 = e a8
> o pn+ 1) = 3qff1; +247 " (4°)- (19)
Replace ¢2 by ¢ in (18) to arrive at (16). Divide (19) by ¢ and replace ¢ by ¢ to
obtain (17). O

Theorem 3.2. We have

(2n) 1 (mod 2) if n is triangular number,
n) =
0 (mod 2) otherwise.

Proof. According to (16), we have

BB fefS 5 N a(nt1))2
P2 = = g = G =) = Zq (mod 2).  (20)

Therefore, we complete the proof. O
Theorem 3.3. We have

(—1)% (mod 3) if p = 2ECE=L)
pa(2n) = )
0 (mod 3) otherwise.

Proof. According to (16), we have

3 n— f32f23 = & — — - _1\n,3n(3n—1)/2
ZP,\@n)q ls = Iofo E! Z (-1)"q (mod 3).  (21)
n=0

Therefore, we complete the proof. O

n=—oo
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Corollary 1. Let p > 3 be a prime and r an integer such that 8r + 1 is a quadratic
non-residue modulo p. Then for all n > 0,

pa(2(pn+7)) =0 (mod 6).

Proof. As
k(k+1) k(k+1)

pn+7‘=T:>rET (mod p).

Thus, 2r = k2 + k (mod p) or 87 + 1 = (2k + 1)® (mod p) which contradicts the
fact that 8 + 1 is a quadratic non-residue modulo p. Therefore, from Theorem 3.2,

pa(2(pn+7)) =0 (mod 2). (22)
Similarly,
pn+r = 73]6(3]; ) == 73]6(3@ i) (mod p).

then 2r = 9% — 3k (mod p) or 8 + 1 = (6k — 1)* (mod p) which contradicts the
fact that 8 + 1 is a quadratic non-residue modulo p. Therefore, from Theorem 3.3,

pa(2(pn+7)) =0 (mod 3). (23)

From (22) and (23), we readily arrive at the main result. O

Since ged(6, p)=1, among the p—1 residues modulo p, there are (p—1)/2 residues
r for which 8r + 1 is a quadratic non-residue modulo p. So the above result leads
us to a number of congruences for different primes p > 3 as shown below:

pA(10n+14i) =0 (mod 6), i€ {4,8},
pa(ldn+4) =0 (mod 6), i€ {4,8,10}.

Theorem 3.4. We have

pa(bn+2)=0 (mod 3), (24)
pA(6n+4) =0 (mod 6), (25)
pA(18n4+8) =0 (mod 18), (26)
pA(18n+14) =0 (mod 72). (27)
Proof. From (16), we get
3 no BT
;px(%)q BN (28)

Using (9) and (10), we have
o0 3
> m2n)g" = i i (_) )( )
n=0 LA
Using Lemma 2.1, we obtain

<fef92 . f&) (f§f§ yog BB, 4q2f62];fs)_
fB 18 3 fB

fafis 1 fo

> pa2n)q" = p(—¢%)

n=0
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Extracting the terms involving ¢3", ¢3* 1, ¢3"+2 from above equation, we have
Zp,\(ﬁn)qg (f6f9 3f6f18> (29)
n=0 f3 fg

> fe 15 f o /5
pa(6n 4+ 2)g*" ! = (2 30
2 (o Ti5hs " UrShs (30)
ip/\(6n_~_4)q3n+2 ( )(4 2f6f9f18+2 2f6f9f18>. (31)
n=0 1 13
To prove (25), dividing (31) by ¢? and replacing ¢* by ¢, we have
Zp,\ (6n+4)g" = 6p(— )f2j23f6
1

which can also be written as

- f2f3f6
;)p,\(Gn—Hl)q o

The above equation readily implies (25). Counsider (30), dividing by ¢ and replacing
¢> by g, we have

ZPA671+2 ( )(f2f3+f§f??>7

Bfs  fifs
f3 f2
fﬁ 7) (32)
which proves (24). Now using (13) in above equation,
- f fo 1§ 1315 R
pr(ﬁn + 2)q f3 fﬁ g +2¢ 6 79 + 4 2 6f 18 (33)
n=0 6 3 3 3
Extracting the terms involving ¢37, ¢®*+1, qgn+2 from (33), we have
o0 5 /12
ZPA(1871+2)QS f3 < 6 +56 3f6f1lQ +64 6f6f18), (34)
n=0 6 fS 3
S 3n 75 I8 &8 13
> pa(18n+8)g"" ! = 3f3 Jggf +96q" 5518 ) (35)
n=0 6 3 J1s 3
o0 5 10 7 £3 £6
> pa(18n + 14)¢* 2 = 3?7 ( 4 2;;} + 960718 f?gf”) : (36)
n=0 6 3 J18 3

Dividing (35) and (36) by ¢ and ¢? respectively, replacing ¢ by ¢, we arrive at

ZPA (18n + 8)q¢" f (6 2123 36 +96¢ fzfsfe))
n=0 f 1 J6

N )" f313 18
pr 18n + 14)¢" fl 24 2122 33 +96g-25255 )
n=0

From the above equations, we get (26) and (27). O

,-.
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Corollary 2. We have

i pa(18n 4 8)¢™ = 18f2f3  (mod 72). (37)

n=0
Now we present the infinite families of congruences modulo 12.

Theorem 3.5. For prime p > 5, we have
2

P (6p2n T > =0 (mod 12) (38)
where i =1,2,--- ,p— 1.
Proof. From (29), replacing ¢ by ¢, we have

& N f%fé‘)
> it = o q>( 1 agltle

Reducing modulo 4,

< BRE

nz:%p)\((in)q = f2 f?fél ( od 4)
_fzh
R
= f; (mod 4). (39)

(mod 4)

By (21), we have
Zp,\(Qn)q" = f3 (mod 3).
n=0

Extracting the terms involving ¢>" and replacing ¢ by ¢, we have

> pa6n)g" = fi (mod 3). (40)
n=0
From (39) and (40), we have
ZPA(GH)(J” =fi= Z (=1)"q"Bn=D/2 (mod 12).
n=0 n=-—oo

This implies that py(6k) = 0 (mod 12) unless k is a pentagonal number, or equiv-
alently, unless 24k + 1 is a square. Now letting k = p?n + pi + (p? — 1)/24 where
i=1,2,---,(p—1) and p is a prime, we have that 24k + 1 = 24p>*n + 24pi + p?,
and this is evidently not a square since p? divides the first and third terms but not
the middle term. Thus py(6k) = px(6p?n + 6pi + (p? —1)/4) =0 (mod 12). O

Theorem 3.6. For m > 1, we have

o 2m—2 f f f
dopa 3242 > 3% | " =325 (mod 12), (41)
2 e i

2m—1

S (32042 30 5 | g ngQJ{ng (mod 12), (42)
n=0 J=0 !
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2m—2

51
px | 32220 + 2 R mod 12), 43
Z ) 2 S (med12). (1)
) 2m—1 ) f3f2
dopa 3o +2 ) 3Y | " =922 (mod 12),  (44)
n=0 =0 fife
m—1 f3
Z pa (32T 2n 43222 423 " 3Y | ¢" =62 (mod 12), (45)
n=0 j=0 fl
m—1
ZpA 32720 4+ 3271242 ) 3% | " =6ff] (mod 12), (46)
n=0 j=0
2m—2
ZpA 34—l 42 Z 3% | ¢"=3f1 (mod 12), (47)
2m—1
ZpA 34mtlon 42 Z 3% | ¢"=9f1 (mod 12). (48)

Theorem 3.7. For m > 1, we have
m—1
pa (3720 + 377122 423 " 3% | =0 (mod 12). (49)
j=0
Proof of Theorems 3.6 and 3.7. The proof for the above theorems follows by induc-

tion. Let us first prove the first step of induction, for m = 1.
From (32), we have

Zp,\ (6n + 2)q J}z]}z

Reducing modulo 12, we have

fo
b

which proves (41) for m = 1. Using (13), we get

N
i T T

> pa(6n+2)q" =3f3fs75  (mod 12) (50)
n=0

ZP,\(&H' 2)q" =3f3fs ( ) (mod 12)
n=0

or
I fg fi g
i T

Zp,\(ﬁn +2)¢" =3 (mod 12).

Extracting the terms involving ¢37, ¢®*+1, q3"“‘2 from above, we have
> pa(18n+2)¢°" = f6 /3 (mod 12), (51)
= f3 fis
> pa(18n+8)g* ! = fﬁ /3 (mod 12), (52)

n=0 f3



CONGRUENCES FOR SIXTH ORDER MOCK THETA FUNCTIONS 4265

> pa(18n+14)¢* 2 =0 (mod 12). (53)

n=0

Dividing (52) and (53) by ¢ and ¢? respectively then replacing ¢® by ¢, we have

im(wn +8)¢" = 6% =6fof; (mod 12), (54)
n=0 1
> pa(18n+14)¢" =0 (mod 12). (55)
n=0

Here (54) and (55) proves (46) and (49), respectively for m = 1. Replacing ¢® by ¢
in (51), we have

Zp,\(18n +2)¢" = 1313 (mod 12)

= TS
313
=3 mod 12
fife Mot
2 2 f3
=3 -25-== (mod 12).
fi 2 fe ( )
The above equation proves (43) for m = 1 and it can also be written as:
s 3
> pa(18n + 2)¢" = 32D g 19, (56)

vt e(—q)

Using Lemma 2.1, we have

Y m(18n+2)q" = 3@(-(13)(

fofs ffs)

= Fshs o
4 £6 3 3 2 3
(fgfg +2qf6{‘9 +4q2f6~f618) (mOd 12)
f3fis f3 13
Extracting the terms involving ¢37, ¢®"+1, ¢3"+2 from above, we get
= fo fS
D pa(54n +2)¢*" = 30(—¢°) 555 (mod 12), (57)
oy I3 fis
~ 3n+l 3 félfg
D pa(Bdn +20)g" ! = 9gp(~¢") 4 (mod 12), (58)
n—0 3.J18
- 3n+2 2 s\ fo £3 fs
> pa(54n + 38)¢* 2 = 64°p(—q?) £ (mod 12). (59)
n=0 3

Replacing ¢* by ¢ in (57), we have

= n_ o J2 13
54 2 =3
ngopk( n -+ )q f17f6

which proves (47) for m = 1. Now, dividing (58) and (59) by ¢ and ¢? respectively
then replacing ¢* by g,

=3f1 (mod 12)

1313 _ 9f2f3f6

> pa(54n +20)¢" =9 i 72

n=0

(mod 12),
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RIS _ o fi

54n + 38)¢" =6
Zpk( )q f15 fl

n=0

(mod 12).

The above congruences imply (42) and (45) for m = 1. Consider

oo 4 26 3 3 23
> pa(54n +20)g" = 9fs fo ( fg fg t 278 {9 g2l J;w) (mod 12)
n=0 f3fi 3 I3
or
o0 446 3 3
> pa(54n +20)q" = 9fs fo ( f§f§ + 2qf6{9 ) (mod 12).
— I3 fis f3
Extracting the terms involving ¢>*, ¢>**1, ¢®**2 from above, we arrive at
> pa(162n 4 20)¢°" = 9 7P (mod 12), (60)
n=0 3J18
- 3n+1 félfg
> pa(162n + 74)¢*" ! = 6g i (mod 12), (61)
n=0 3
> pa(162n 4 128)¢°" " =0 (mod 12). (62)
n=0
Replacing ¢* by ¢ in (60), we obtain
- 313
> pa(162n+20)¢" = 92275 (mod 12)
n=0 fl f6
313
=9 mod 12
fife et
which proves (44) for m = 1.
o0 _.3
3" pa(162n +20)g" = gPa)V@)  (oa 19)
o e(—q)

Similar to (56), extracting the terms involving ¢3", ¢>" 1, ¢3" 2 we ultimately get

> pa(162:3n +20)¢" = 9f1  (mod 12), (63)
n=0
> pa(162:(3n + 1) +20)q" = 3f2£’;f6 (mod 12), (64)
n=0
ipx(162-(3n +2)+20)¢" = 6J}6j (mod 12). (65)

n=0

Here (63) is the case when m = 1 in (48). For the next step of induction, let us
suppose that (41)-(49) holds true for m = k. Then, for m = (k + 1), we prove the
relations in similar manner mentioned above starting from (50) (taking m = k) and
obtain (64) (m =k + 1). Same process follows for other parts. O
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Corollary 3. Form > 1, we have

2m—1 2m—2

P 34m—1'2n + 2 Z 32j = 3p>\ 34m—3.2n 4 2 Z 32] (mod 12)7 (66)
=0 =0
2m—1 2m—2

p)\ 34777,2” + 2 Z 32] = 3p)\ 347?’7,—2.2” + 2 Z 32] (mod 12)7 (67)
§=0 I=0
2m—1 2m—2

pa | 34T 20 42 Z 3% | =3py [ 3 h2n +2 Z 3% (mod 12).  (68)
§=0 7=0

Now, we prove the 2-dissection of p(gq).

Theorem 3.8. We have

oo 342
> pp(2n)g" = %ﬁ (69)
n=0
oo 3
> ppl2n+1)q" =345 — ¢ ule?). (70)
n=0
Proof. From (6), we have
6 -
) = 02 B ).

Substituting the value from (15), we have

f3 fa (fffg’ fff@'ffz) 1 2
plq) = + 3q —q Yelq”)-
W=\ T )
Extracting even and odd terms from above equation, we easily arrive at (69) and
(70). O

Finally on comparing (16) and (69), we arrive at the following theorem.

Theorem 3.9. We have
pa(2n) = p,(2n). (71)
The above theorem yields that all the results shown above for A(g) also hold for
p(q)-

4. Conclusion and discussions. We have provided elementary proofs of numer-
ous infinite family of congruences satisfied by px(n) and p,(n). We did not carry
out a computer search for congruences, and so we are unaware whether other con-
gruences hold beyond the ones we prove in this paper, but certainly there is a
possibility to explore more in this direction.
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