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Abstract. Ramanujan introduced sixth order mock theta functions λ(q) and
ρ(q) defined as:

λ(q) =

∞∑
n=0

(−1)nqn(q; q2)n

(−q; q)n
,

ρ(q) =

∞∑
n=0

qn(n+1)/2(−q; q)n
(q; q2)n+1

,

listed in the Lost Notebook. In this paper, we present some Ramanujan-like

congruences and also find their infinite families modulo 12 for the coefficients
of mock theta functions mentioned above.

1. Introduction. In 1920, Ramanujan introduced 17 mock theta functions of odd
order in his last letter to Hardy. In addition Ramanujan also gave the mock theta
functions of order 6 that are listed in the Lost Notebook. In the study of the
arithmetic properties of mock theta functions, many authors have found some con-
gruence properties for their coefficients. For instance, Andrews et al. [1] found
several congruences for the partition functions pω(n) and pν(n) corresponding to
the mock theta functions ω(q) and ν(q) respectively, defined as:

ω(q) =

∞∑
n=0

q2(n
2+n)

(q; q2)2n+1

,

ν(q) =

∞∑
n=0

qn(n+1)

(−q; q2)n+1
,

where
(a; q)n = (1− a)(1− aq)(1− aq2) · · · (1− aqn−1), (1)

for some positive integer n and

(a; q)∞ =

∞∏
j=0

(1− aqj) (2)

with |q| < 1. They proved congruences for modulo 2 and some infinite families
of congruences for pω(n) and pν(n). In 2017, Fathima and Pore [4] obtained a
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number of congruences for pω(n) and pν(n) modulo 20 and some infinite families
of congruences modulo 2. In the sequel, Baruah and Begum [2] in 2019 established
many congruences for the same partition functions modulo powers of 5.

Zhang in 2018 proved some congruences for the sixth order mock theta function
β(q) shown below and also gave some conjectures in [8].

β(q) =

∞∑
n=0

q3n
2+3n+1

(q; q3)n+1(q2; q3)n+1
.

Brietzke, Silva, and Sellers [3] in 2019 found many arithmetic properties satisfied
by the coefficients of the eighth order mock theta function V0(q) given as:

V0(q) = −1 + 2

∞∑
n=0

(−q; q2)nq
n2

(q; q2)n
.

Silva and Sellers in [7] proved some congruence relations for the third order mock
theta function ξ(q) given by Gordon and McIntosh given below:

ξ(q) = 1 + 2

∞∑
n=1

q6n
2−6n+1

(q; q6)n(q5; q6)n
.

The main purpose of this paper is to study the arithmetic properties of the sixth
order mock theta functions λ(q) and ρ(q) given by Ramanujan where the two mock
theta functions are defined as:

λ(q) =

∞∑
n=0

(−1)nqn(q; q2)n
(−q; q)n

=

∞∑
n=0

pλ(n)qn, (3)

ρ(q) =

∞∑
n=0

qn(n+1)/2(−q; q)n
(q; q2)n+1

=

∞∑
n=0

pρ(n)qn. (4)

Ramanujan also listed linear relations connecting the sixth order mock theta func-
tions with each other as:

2q−1ψ6(q2) + λ(−q) = (−q; q2)2∞f(q, q5), (5)

q−1ψ6(q2) + ρ(q) = (−q; q2)2∞f(q, q5), (6)

where ψ6(q) is the sixth order mock theta function

ψ6(q) =

∞∑
n=0

(−1)nq(n+1)2(q; q2)n
(−q; q)2n+1

.

The proof technique of all the congruences for mock theta functions involves apply-
ing identities on the coefficients in arithmetic progressions, we use the same idea to
prove infinite family of congruences modulo certain numbers of the form 2α·3β for
pλ(n) and pρ(n). The main results are found in Theorem 3.2–3.7 given in Section
3. Before proceeding towards the main theorems, we need some preliminary results
given in Section 2 for proving the results in Section 3.

2. Preliminaries. To shorten the notations, we define

fl = (ql; ql)∞,

for some positive integer l.
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Now, we define Ramanujan’s general theta function

f(a, b) =

∞∑
n=−∞

an(n+1)/2bn(n−1)/2, for |ab| < 1, (7)

Jacobi’s triple product identity is defined as:

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

The special cases for f(a, b) are:

ϕ(q) = f(q, q) =

∞∑
n=−∞

qn
2

=
f52
f21 f

2
4

, (8)

ψ(q) = f(q, q3) =

∞∑
n=0

qn(n+1)/2 =
f22
f1
, (9)

ϕ(−q) =
f21
f2
, (10)

ψ(−q) =
f1f4
f2

. (11)

In some of the proofs, we make use of the following identities:

f31 =

∞∑
n=0

(−1)n(2n+ 1)qn(n+1)/2, (Jacobi’s identity)

f1 =

∞∑
n=−∞

(−1)nqn(3n−1)/2, (Euler’s Pentagonal number theorem).

The following lemma exhibits the 3-dissection of ψ(q) and 1/ϕ(−q).
Lemma 2.1. We have

ψ(q) =
f6f

2
9

f3f18
+ q

f218
f9
, (12)

1

ϕ(−q)
=

f46 f
6
9

f83 f
3
18

+ 2q
f36 f

3
9

f73
+ 4q2

f26 f
3
18

f63
. (13)

Proof. Identity (12) is equation (14.3.3) of [5]. Identity (13) comes from [6] shown
in equation (2).

Lemma 2.2. We have

f31
f3

=
f34
f12
− 3q

f22 f
3
12

f4f26
, (14)

f3
f31

=
f64 f

3
6

f92 f
2
12

+ 3q
f24 f6f

2
12

f72
. (15)

Proof. The above identity (14) is (22.1.13) in [5]. And (15) follows from (14) by
replacing q by −q and using

(−q;−q)∞ =
f32
f1f4

.

From the binomial theorem, for any positive integer l and prime p, we have

(q; q)p
l

∞ ≡ (qp; qp)p
l−1

∞ (mod pl).
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3. Congruence relations for λ(q) and ρ(q). We first prove the 2-dissection of
λ(q).

Theorem 3.1. We have
∞∑
n=0

pλ(2n)qn =
f32 f

2
3

f31 f6
, (16)

∞∑
n=0

pλ(2n+ 1)qn = −3
f36
f1f2

+ 2q−1ψ6(q). (17)

Proof. To prove the above dissections, consider (5) and replacing q by −q in (5),
we have

λ(q) = (q; q2)2∞f(−q,−q5) + 2q−1ψ6(q2),

=
f31 f

2
6

f32 f3
+ 2q−1ψ6(q2),

=
f26
f32

(
f34
f12
− 3q

f22 f
3
12

f4f26

)
+ 2q−1ψ6(q2),

where the last equality follows from (14). Extracting even and odd terms from
above equation, we get

∞∑
n=0

pλ(2n)q2n =
f26 f

3
4

f32 f12
, (18)

∞∑
n=0

pλ(2n+ 1)q2n+1 = −3q
f312
f2f4

+ 2q−1ψ6(q2). (19)

Replace q2 by q in (18) to arrive at (16). Divide (19) by q and replace q2 by q to
obtain (17).

Theorem 3.2. We have

pλ(2n) ≡

{
1 (mod 2) if n is triangular number,

0 (mod 2) otherwise.

Proof. According to (16), we have

pλ(2n) =
f23 f

3
2

f31 f6
≡ f6f

3
2

f1f2f6
=
f22
f1

= ψ(q) =

∞∑
n=0

qn(n+1)/2 (mod 2). (20)

Therefore, we complete the proof.

Theorem 3.3. We have

pλ(2n) ≡

{
(−1)k (mod 3) if n = 3k(3k−1)

2 ,

0 (mod 3) otherwise.

Proof. According to (16), we have

∞∑
n=0

pλ(2n)qn =
f23 f

3
2

f31 f6
≡ f23 f6
f3f6

= f3 =

∞∑
n=−∞

(−1)nq3n(3n−1)/2 (mod 3). (21)

Therefore, we complete the proof.
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Corollary 1. Let p > 3 be a prime and r an integer such that 8r+ 1 is a quadratic
non-residue modulo p. Then for all n ≥ 0,

pλ(2(pn+ r)) ≡ 0 (mod 6).

Proof. As

pn+ r =
k(k + 1)

2
⇒ r ≡ k(k + 1)

2
(mod p).

Thus, 2r ≡ k2 + k (mod p) or 8r + 1 ≡ (2k + 1)
2

(mod p) which contradicts the
fact that 8r+ 1 is a quadratic non-residue modulo p. Therefore, from Theorem 3.2,

pλ(2(pn+ r)) ≡ 0 (mod 2). (22)

Similarly,

pn+ r =
3k(3k − 1)

2
⇒ r ≡ 3k(3k − 1)

2
(mod p).

then 2r ≡ 9k2 − 3k (mod p) or 8r + 1 ≡ (6k − 1)
2

(mod p) which contradicts the
fact that 8r+ 1 is a quadratic non-residue modulo p. Therefore, from Theorem 3.3,

pλ(2(pn+ r)) ≡ 0 (mod 3). (23)

From (22) and (23), we readily arrive at the main result.

Since gcd(6, p)=1, among the p−1 residues modulo p, there are (p−1)/2 residues
r for which 8r + 1 is a quadratic non-residue modulo p. So the above result leads
us to a number of congruences for different primes p > 3 as shown below:

pλ(10n+ i) ≡ 0 (mod 6), i ∈ {4, 8},
pλ(14n+ i) ≡ 0 (mod 6), i ∈ {4, 8, 10}.

Theorem 3.4. We have

pλ(6n+ 2) ≡ 0 (mod 3), (24)

pλ(6n+ 4) ≡ 0 (mod 6), (25)

pλ(18n+ 8) ≡ 0 (mod 18), (26)

pλ(18n+ 14) ≡ 0 (mod 72). (27)

Proof. From (16), we get

∞∑
n=0

pλ(2n)qn =
f23
f6
·f

2
2

f1
· f2
f21
. (28)

Using (9) and (10), we have

∞∑
n=0

pλ(2n)qn =
ϕ(−q3)ψ(q)

ϕ(−q)
.

Using Lemma 2.1, we obtain

∞∑
n=0

pλ(2n)qn = ϕ(−q3)

(
f6f

2
9

f3f18
+ q

f218
f9

)(
f46 f

6
9

f83 f
3
18

+ 2q
f36 f

3
9

f73
+ 4q2

f26 f
3
18

f63

)
.
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Extracting the terms involving q3n, q3n+1, q3n+2 from above equation, we have

∞∑
n=0

pλ(6n)q3n = ϕ(−q3)

(
f56 f

8
9

f93 f
4
18

+ 4q3
f26 f

5
18

f63 f9

)
, (29)

∞∑
n=0

pλ(6n+ 2)q3n+1 = ϕ(−q3)

(
2q
f46 f

5
9

f83 f18
+ q

f46 f
5
9

f83 f18

)
, (30)

∞∑
n=0

pλ(6n+ 4)q3n+2 = ϕ(−q3)

(
4q2

f36 f
2
9 f

2
18

f73
+ 2q2

f36 f
2
9 f

2
18

f73

)
. (31)

To prove (25), dividing (31) by q2 and replacing q3 by q, we have

∞∑
n=0

pλ(6n+ 4)qn = 6ϕ(−q)f
3
2 f

2
3 f

2
6

f71

which can also be written as
∞∑
n=0

pλ(6n+ 4)qn = 6
f22 f

2
3 f

2
6

f51
.

The above equation readily implies (25). Consider (30), dividing by q and replacing
q3 by q, we have

∞∑
n=0

pλ(6n+ 2)qn = ϕ(−q)
(

2
f42 f

5
3

f81 f6
+
f42 f

5
3

f81 f6

)
,

= 3
f53
f6

(
f2
f21

)3

, (32)

which proves (24). Now using (13) in above equation,

∞∑
n=0

pλ(6n+ 2)qn = 3
f53
f6

(
f46 f

6
9

f83 f
3
18

+ 2q
f36 f

3
9

f73
+ 4q2

f26 f
3
18

f63

)3

. (33)

Extracting the terms involving q3n, q3n+1, q3n+2 from (33), we have

∞∑
n=0

pλ(18n+ 2)q3n = 3
f53
f6

(
f126 f189
f243 f918

+ 56q3
f96 f

9
9

f213
+ 64q6

f66 f
9
18

f183

)
, (34)

∞∑
n=0

pλ(18n+ 8)q3n+1 = 3
f53
f6

(
6q
f116 f159
f233 f618

+ 96q4
f86 f

6
9 f

3
18

f203

)
, (35)

∞∑
n=0

pλ(18n+ 14)q3n+2 = 3
f53
f6

(
24q2

f106 f129
f153 f318

+ 96q5
f76 f

3
9 f

6
18

f193

)
. (36)

Dividing (35) and (36) by q and q2 respectively, replacing q3 by q, we arrive at

∞∑
n=0

pλ(18n+ 8)qn = 3
f51
f2

(
6
f112 f153
f231 f66

+ 96q
f82 f

6
3 f

3
6

f201

)
,

∞∑
n=0

pλ(18n+ 14)qn = 3
f51
f2

(
24
f102 f123
f221 f36

+ 96q
f72 f

3
3 f

6
6

f191

)
.

From the above equations, we get (26) and (27).
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Corollary 2. We have
∞∑
n=0

pλ(18n+ 8)qn ≡ 18f21 f
3
3 (mod 72). (37)

Now we present the infinite families of congruences modulo 12.

Theorem 3.5. For prime p ≥ 5, we have

pλ

(
6p2n+ 6pi+

p2 − 1

4

)
≡ 0 (mod 12) (38)

where i = 1, 2, · · · , p− 1.

Proof. From (29), replacing q3 by q, we have

∞∑
n=0

pλ(6n)qn = ϕ(−q)
(
f52 f

8
3

f91 f
4
6

+ 4q
f22 f

5
6

f61 f3

)
Reducing modulo 4,

∞∑
n=0

pλ(6n)qn ≡ f21
f2

f52 f
8
3

f91 f
4
6

(mod 4)

≡ f42 f1
f81

(mod 4)

≡ f1 (mod 4). (39)

By (21), we have
∞∑
n=0

pλ(2n)qn ≡ f3 (mod 3).

Extracting the terms involving q3n and replacing q3 by q, we have
∞∑
n=0

pλ(6n)qn ≡ f1 (mod 3). (40)

From (39) and (40), we have

∞∑
n=0

pλ(6n)qn ≡ f1 =

∞∑
n=−∞

(−1)nqn(3n−1)/2 (mod 12).

This implies that pλ(6k) ≡ 0 (mod 12) unless k is a pentagonal number, or equiv-
alently, unless 24k + 1 is a square. Now letting k = p2n + pi + (p2 − 1)/24 where
i = 1, 2, · · · , (p − 1) and p is a prime, we have that 24k + 1 = 24p2n + 24pi + p2,
and this is evidently not a square since p2 divides the first and third terms but not
the middle term. Thus pλ(6k) = pλ(6p2n+ 6pi+ (p2 − 1)/4) ≡ 0 (mod 12).

Theorem 3.6. For m ≥ 1, we have

∞∑
n=0

pλ

34m−3·2n+ 2

2m−2∑
j=0

32j

 qn ≡ 3
f2f3f6
f21

(mod 12), (41)

∞∑
n=0

pλ

34m−1·2n+ 2

2m−1∑
j=0

32j

 qn ≡ 9
f2f3f6
f21

(mod 12), (42)
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∞∑
n=0

pλ

34m−2·2n+ 2

2m−2∑
j=0

32j

 qn ≡ 3
f32 f

2
3

f31 f6
(mod 12), (43)

∞∑
n=0

pλ

34m·2n+ 2

2m−1∑
j=0

32j

 qn ≡ 9
f32 f

2
3

f31 f6
(mod 12), (44)

∞∑
n=0

pλ

32m+1·2n+ 32m·22 + 2

m−1∑
j=0

32j

 qn ≡ 6
f36
f1

(mod 12), (45)

∞∑
n=0

pλ

32m·2n+ 32m−1·2 + 2

m−1∑
j=0

32j

 qn ≡ 6f2f
3
3 (mod 12), (46)

∞∑
n=0

pλ

34m−1·2n+ 2

2m−2∑
j=0

32j

 qn ≡ 3f1 (mod 12), (47)

∞∑
n=0

pλ

34m+1·2n+ 2

2m−1∑
j=0

32j

 qn ≡ 9f1 (mod 12). (48)

Theorem 3.7. For m ≥ 1, we have

pλ

32m·2n+ 32m−1·22 + 2

m−1∑
j=0

32j

 ≡ 0 (mod 12). (49)

Proof of Theorems 3.6 and 3.7. The proof for the above theorems follows by induc-
tion. Let us first prove the first step of induction, for m = 1.

From (32), we have
∞∑
n=0

pλ(6n+ 2)qn = 3
f32 f

5
3

f61 f6
.

Reducing modulo 12, we have
∞∑
n=0

pλ(6n+ 2)qn ≡ 3f3f6
f2
f21

(mod 12) (50)

which proves (41) for m = 1. Using (13), we get

∞∑
n=0

pλ(6n+ 2)qn ≡ 3f3f6

(
f46 f

6
9

f83 f
3
18

+ 2q
f36 f

3
9

f73
+ 4q2

f26 f
3
18

f63

)
(mod 12)

or
∞∑
n=0

pλ(6n+ 2)qn ≡ 3
f56 f

6
9

f73 f
3
18

+ 6q
f46 f

3
9

f63
(mod 12).

Extracting the terms involving q3n, q3n+1, q3n+2 from above, we have
∞∑
n=0

pλ(18n+ 2)q3n ≡ 3
f56 f

6
9

f73 f
3
18

(mod 12), (51)

∞∑
n=0

pλ(18n+ 8)q3n+1 ≡ 6q
f46 f

3
9

f63
(mod 12), (52)
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∞∑
n=0

pλ(18n+ 14)q3n+2 ≡ 0 (mod 12). (53)

Dividing (52) and (53) by q and q2 respectively then replacing q3 by q, we have
∞∑
n=0

pλ(18n+ 8)qn ≡ 6
f42 f

3
3

f61
≡ 6f2f

3
3 (mod 12), (54)

∞∑
n=0

pλ(18n+ 14)qn ≡ 0 (mod 12). (55)

Here (54) and (55) proves (46) and (49), respectively for m = 1. Replacing q3 by q
in (51), we have

∞∑
n=0

pλ(18n+ 2)qn ≡ 3
f52 f

6
3

f71 f
3
6

(mod 12)

≡ 3
f32 f

2
3

f31 f6
(mod 12)

= 3
f22
f1
· f2
f21
·f

2
3

f6
(mod 12).

The above equation proves (43) for m = 1 and it can also be written as:
∞∑
n=0

pλ(18n+ 2)qn ≡ 3
ϕ(−q3)ψ(q)

ϕ(−q)
(mod 12). (56)

Using Lemma 2.1, we have
∞∑
n=0

pλ(18n+ 2)qn ≡ 3ϕ(−q3)

(
f6f

2
9

f3f18
+ q

f218
f9

)
(
f46 f

6
9

f83 f
3
18

+ 2q
f36 f

3
9

f73
+ 4q2

f26 f
3
18

f63

)
(mod 12).

Extracting the terms involving q3n, q3n+1, q3n+2 from above, we get
∞∑
n=0

pλ(54n+ 2)q3n ≡ 3ϕ(−q3)
f56 f

8
9

f93 f
4
18

(mod 12), (57)

∞∑
n=0

pλ(54n+ 20)q3n+1 ≡ 9qϕ(−q3)
f46 f

5
9

f83 f18
(mod 12), (58)

∞∑
n=0

pλ(54n+ 38)q3n+2 ≡ 6q2ϕ(−q3)
f36 f

2
9 f

2
18

f73
(mod 12). (59)

Replacing q3 by q in (57), we have
∞∑
n=0

pλ(54n+ 2)qn ≡ 3
f42 f

8
3

f71 f
4
6

≡ 3f1 (mod 12)

which proves (47) for m = 1. Now, dividing (58) and (59) by q and q2 respectively
then replacing q3 by q,

∞∑
n=0

pλ(54n+ 20)qn ≡ 9
f32 f

5
3

f61 f6
≡ 9

f2f3f6
f21

(mod 12),
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∞∑
n=0

pλ(54n+ 38)qn ≡ 6
f22 f

2
3 f

2
6

f51
≡ 6

f36
f1

(mod 12).

The above congruences imply (42) and (45) for m = 1. Consider

∞∑
n=0

pλ(54n+ 20)qn ≡ 9f3f6

(
f46 f

6
9

f83 f
3
18

+ 2q
f36 f

3
9

f73
+ 4q2

f26 f
3
18

f63

)
(mod 12)

or
∞∑
n=0

pλ(54n+ 20)qn ≡ 9f3f6

(
f46 f

6
9

f83 f
3
18

+ 2q
f36 f

3
9

f73

)
(mod 12).

Extracting the terms involving q3n, q3n+1, q3n+2 from above, we arrive at

∞∑
n=0

pλ(162n+ 20)q3n ≡ 9
f56 f

6
9

f73 f
3
18

(mod 12), (60)

∞∑
n=0

pλ(162n+ 74)q3n+1 ≡ 6q
f46 f

3
9

f63
(mod 12), (61)

∞∑
n=0

pλ(162n+ 128)q3n+2 ≡ 0 (mod 12). (62)

Replacing q3 by q in (60), we obtain

∞∑
n=0

pλ(162n+ 20)qn ≡ 9
f52 f

6
3

f71 f
3
6

(mod 12)

≡ 9
f32 f

2
3

f31 f6
(mod 12)

which proves (44) for m = 1.

∞∑
n=0

pλ(162n+ 20)qn ≡ 9
ϕ(−q3)ψ(q)

ϕ(−q)
(mod 12)

Similar to (56), extracting the terms involving q3n, q3n+1, q3n+2, we ultimately get

∞∑
n=0

pλ(162·3n+ 20)qn ≡ 9f1 (mod 12), (63)

∞∑
n=0

pλ(162·(3n+ 1) + 20)qn ≡ 3
f2f3f6
f21

(mod 12), (64)

∞∑
n=0

pλ(162·(3n+ 2) + 20)qn ≡ 6
f36
f1

(mod 12). (65)

Here (63) is the case when m = 1 in (48). For the next step of induction, let us
suppose that (41)-(49) holds true for m = k. Then, for m = (k + 1), we prove the
relations in similar manner mentioned above starting from (50) (taking m = k) and
obtain (64) (m = k + 1). Same process follows for other parts.
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Corollary 3. For m ≥ 1, we have

pλ

34m−1·2n+ 2

2m−1∑
j=0

32j

 ≡ 3pλ

34m−3·2n+ 2

2m−2∑
j=0

32j

 (mod 12), (66)

pλ

34m·2n+ 2

2m−1∑
j=0

32j

 ≡ 3pλ

34m−2·2n+ 2

2m−2∑
j=0

32j

 (mod 12), (67)

pλ

34m+1·2n+ 2

2m−1∑
j=0

32j

 ≡ 3pλ

34m−1·2n+ 2

2m−2∑
j=0

32j

 (mod 12). (68)

Now, we prove the 2-dissection of ρ(q).

Theorem 3.8. We have
∞∑
n=0

pρ(2n)qn =
f32 f

2
3

f31 f6
, (69)

∞∑
n=0

pρ(2n+ 1)qn = 3
f36
f1f2

− q−1ψ6(q2). (70)

Proof. From (6), we have

ρ(q) =
f62 f12
f34 f6

.
f3
f31
− q−1ψ6(q2).

Substituting the value from (15), we have

ρ(q) =
f62 f12
f34 f6

(
f64 f

3
6

f92 f
2
12

+ 3q
f24 f6f

2
12

f72

)
− q−1ψ6(q2).

Extracting even and odd terms from above equation, we easily arrive at (69) and
(70).

Finally on comparing (16) and (69), we arrive at the following theorem.

Theorem 3.9. We have

pλ(2n) = pρ(2n). (71)

The above theorem yields that all the results shown above for λ(q) also hold for
ρ(q).

4. Conclusion and discussions. We have provided elementary proofs of numer-
ous infinite family of congruences satisfied by pλ(n) and pρ(n). We did not carry
out a computer search for congruences, and so we are unaware whether other con-
gruences hold beyond the ones we prove in this paper, but certainly there is a
possibility to explore more in this direction.
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