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ABSTRACT. This paper deals with a distributed optimal control problem to the
coupled chemotaxis-fluid models. We first explore the global-in-time existence
and uniqueness of a strong solution. Then, we define the cost functional and
establish the existence of Lagrange multipliers. Finally, we derive some extra
regularity for the Lagrange multiplier.

1. Introduction. In this paper, we study the coupled chemotaxis-fluid models
with the initial-bounary conditions

ng+u-Vn=An—V - (nVe) +yn — un?, in@=(0,T) xQ,
c+u-Ve=Ac—c+n+ f, in Q,

U +u-Vu=Au—Vr+nVp, in Q,

V-u=0, in Q, (1.1)
%:%:O, u=0, on (0,7) x 09,

n(x,0) = ng(z), c(x,0) = co(x), u(x,0) = ug(z), in Q,

where Q C R? is a bounded domain with smooth boundary 0. v is the outward
normal vector to 0f), and -, pu are positive constants. n, ¢ denote the bacterial
density, the oxygen concentration, respectively. u, 7w are the fluid velocity and the
associated pressure. Here, the function f denotes a control that acts on chemical
concentration, which lies in a closed convex set /. We observe that in the sub-
domains where f > 0 we inject oxygen, and conversely where f < 0 we extract
oxygen.

In order to understand the development of system (1.1), let us mention some
previous contributions in this direction. Jin [11] dealed with the time periodic
problem of (1.1) in spatial dimension n = 2,3. Jin [12] also obtained the existence
of large time periodic solution in Q C R?® without the term u - Vu.
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Espejo and Suzuki [6] discussed the chemotaxis-fluid model

ng+u-Vn=An—V-(nVe)+n(y — pun), (1.2)

¢t +u-Ve=Ac—c+mn, (1.3)
= Au— V7 +nVp, (1.4)

V-u=0, (1.5)

on Oc

5 =3, =0 u=0 (1.6)

They proved the global existence of weak solution. Tao and Winkler [17] proved
the existence of global classical solution and the uniform boundedness. Tao and
Winkler [18] also obtained the global classical solution and uniform boundedness
under the condition of y > 23.

The optimal control problems governed by the coupled partial differential equa-
tions is important. Colli et al. [4] studied the distributed control problem for a
phase-field system of conserved type with a possibly singular potential. Liu and
Zhang [14] considered the optimal control of a new mechanochemical model with
state constraint. Chen et al. [3] studied the distributed optimal control problem
for the coupled Allen-Cahn/Cahn-Hilliard equations. Recently, Guillén-Gonzélez
et al. [9] studied a bilinear optimal control problem for the chemo-repulsion model
with the linear production term. The existence, uniqueness and regularity of strong
solutions of this model are deduced. They also derived the first-order optimality
conditions by using a Lagrange multipliers theorem. Frigeri et al. [8] studied an
optimal control problem for two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes
systems with degenerate mobility and singular potential. Some other results can be
found in [2, 5, 13, 15, 19].

In this paper, we discuss the optimal control problem for (1.1). We adjust the
external source f, so that the bacterial density n, oxygen concentration ¢ and fluid
velocity u are as close as possible to a desired state ng, c¢q and ug, and at the
final moment T is as close as possible to a desired state ng, cq and ugn. The
main difficulties for treating the problem are caused by the nonlinearity of u - Vu.
Our method is based on fixed point method and Simon’s compactness results. We
overcome the above difficulties and derive first-order optimality conditions by using
a Lagrange multipliers theorem.

2. Basic estimates of linearized problem. In this section, we will construct the
existence and some priori estimates of the linearized problem for the chemotaxis-
Navier-Stokes system in a bounded domain €2 C R2. The proofs in this section will
be established for a detailed framework.
In the following lemmas we will state the Gagliardo-Nirenberg interpolation in-

equality [7].
Lemma 2.1. Let [ and k be two integers satisfying 0 <1 < k. Suppose that 1 < q
réoo,p>0and%§a§15uchthat

1 l 1 k 1

e N 1—a)-. 2.1

L (i) e
Then, for any u € Wk4(Q) N L" (), there exist two positive constants C1 and Cy
depending only on 2, q, k, r and N such that the following inequality holds

D", < e1 || DMul]y, llull=" + callull -
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with the following exception: If 1 < q < oo and k—1— % 18 a non-negative integer,
the (2.1) holds only for a satisfying % <a<l.

The following log-interpolation inequality has been proved by [1].

Lemma 2.2. Let Q C R? be a bounded domain with smooth boundary. Then for
all non-negative u € H' (), there holds

[ullFs )y < OllullF ol (w + 1) log(u + D)l L) +p (671) llull @),
where § is any positive number, and p(+) is an increasing function.

We first consider the existence of solutions to the linear problem of system (1.1).
Assume functions ug € H*(Q), @ € L*(0,T;L*(Q)),n € L*(0,T;L*(Q)), and
consider

ur — Au+0-Vu=—-Vr+nVy, in Q,

V-u=0, in Q,
u = Oa on 69, (22)
u(z,0) = up(x), in Q.

By using fixed point method, the existence of solutions can be easily obtained.
Therefore, we ignore the process of proof and just give the regularity estimate.

Lemma 2.3. Let up € H*(Q2), @ € L* (0,T;L*(Q)), 7 € L? (0,T; H'(Q)) ,Vy €
L>(Q), and u be the solution of the problem (2.2), then u € L* (0,T; H'(Q)) N
L?(0,T; H*(2)) and u; € L*(0,T; L*(9)).

Proof. Multiplying the first equation of (2.2) by u, and integrating it over 2, we
get

1d
Sq Qu2dac+/Q|Vu|2dx+/Qu2d:c

:/ﬁVgo-uder/zfdx
Q Q

<lallallull 2 + [lullZ
<C(Iallz: + lullZ2)-

By Gronwall’s inequality, we have

T T
ul22 + / |u||%pd7<c< / mn%zdwnuon%z).

Operating the Helmholtz projection operator P to the first equation of (2.2), we
know

uy + Au + P(4 - Vu) = P(nV),

where A := —PA is called Stokes operator, which is an unbounded self-adjoint
positive operator in L? with compact inverse, for more properties of Stokes operator,
we refer to [10]. Note that V - u = 0, that is Pu = u, PAu = Au, Pu; = u;. So,
in following calculations, we ignore the projection operator P. Multiplying this
equation by Awu, and integrating it over 2, we get

1
,i/ |Vu\2dm+/ \Au|2daj+/ |Vu|*dz
2dt Jq ) )
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= / P(aVu)Audx — / P(aV)Audz + / |Vu|?dz.
Q Q Q
For the terms on the right, we have
/ P(aVu)Audx — / P(aV)Audz + / |Vu|?dz
Q Q Q
<l pe | Vullpal|Aul 2 + |7 2 | Aull g2 + [ Vul|7
1/2 3/2
<[lall o IVull 571 Aull3” + ([l pal Vull 2 | Aull 2 + Al 2 | Aul 2 + [ Vull32
S§IIAUII2L2 +C (lallzs + lall7s +1) [VullZ + 7]l
Therefore, we get
d R . .
IVullze +1Vulf: < C (lalze + a7 +1) [Vulzz + Cllal: + C.
By Gronwall’s inequality, we derive
T
[Vl +/ IVul3dr < C.
0

Multiplying the first equation of (2.2) by u;, and combining with above inequality,

we have .
/ / |ug|?dzdt < C.
o Ja

Summing up, we complete the proof. O

For the above solution u, we consider the following linear problem
—Ac+u-Ve+ce=ng+f, inQ,

oc

= 2.3
5 0, on (0,T) x 99, (2.3)
c(z,0) = co(x), in Q.

Along with fixed point method, the existence of solutions can be easily obtained.
Thus we omit the proof and only give the regularity estimate.

Lemma 2.4. Let ¢ € H*(Q), n € L*(0,T;H'(Q)), f € L*(0,T; H(Q)), u
be the solution of the problem (2.2), and c be the solution of (2.3). Then ¢ €
L*> ((0,T), H*()) N L* ((0,T), H3(Y)) and ¢; € L*(0,T; L*()).

Proof. Multiplying the ﬁrst equation of (2.3) by ¢, and integrating it over €, we
infer from [, c(u-Ve) = =1 [, *V - udx = 0 that

14
2 dt
Therefore, we have

t
lelZz + llel < C(leoll7 +/ (Iall72 + 1 £1Z2)dr).

Multiplying the first equation of (2.3) by —Ac, and integrating it over €2, we get
2dt/ |Vc|2dfr+/ |Ac| dx+/ |Ve|?dx

:/ chAcdx—/ Acﬁdx—/ Acfdzx.
Q Q Q

*dz + IVC|2d33+/ *dr < ||l r2llellre + 1 fllz2llell .
2 Q Q
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Using the Young inequality and the Holder inequality, we obtain

/ uVcAedr — | Acndx — | Acfdx
Q Q Q
<llullpal[Vellpal|Acl 2 + 2]l 2| Acl L2 + ([ £ 2 ]| Ac]| 2
1 1
<Clullm (IVellz2lAcllf2 + Vel ) |Acl L2 + (|2l L2 | Acl 2 + || fll L2 ]| Acl| L2
1 3 .
=Cllullm Vel z2Acllf2 + ClIVell2]|Acl 2 + [[all L2 | Acl L2 + ([ f] 2| Ac]| 2
1 .
S§||A0||2L2 + COllullzn IVell7z + CI1All72 + 1 F172)-
Combining this and above inequalities, we conclude
d .
%IIVCH%? +[[VelF < CllulliVellZz + C(1allZz + 1 £172)-

We therefore verify that

t t t
V|22 + / IVellz < C( / [A2adr + / 1 ]122dr).

Applying V to the first equation of (2.3), multiplying it by VAe, and integrating
over () give

1i/ \Ac|2d:17+/ \VAC|2dx+/ |Ac|?dx

:/ V(uVe)VAcdz — / ViniVAcdx — / VfVAcdx.
Q Q Q
For the terms on the right, we obtain

/V(ch)VAcdw—/Vﬁ+VAcdx—/VfVAcda:
Q Q Q

<|IVAcllpz (Jull LallAcl 2 + [Vul 4| Vel L) + [[VAl L2 [ VAc| L2
+IV £z IVACc] L2

1 1
<IVAd|p2([[ull s [Acl £V Acl 22 + [Jull L [[Ac] 2
1 1 1 1 1 1
+ IVull L[ Aul L[ Vel Lol Acl 2> + [Vl 2 [[Vel Lol Acl|

1 1
+ HVUHEZHAUszHVCHH + [|Vul| 2| VellL2) + Va2 |V Ac| L2
+ V£l IVAc] L2

1 .
<SIVAC)z: + O+ [AclZz + [[Aullz: + VAT + [V F]72).
Straightforward calculations yield
t t t
lAc]2 +/ lAc|2udr < C (1 +/ 12 dr +/ ||f||ipdr> .
0 0 0

Multiplying the first equation of (2.3) by ¢, and combining with above inequality,

we have
T
/ / e |2dadt < C,
o Ja

and thereby precisely arrive at the conclusion. O
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With above solutions v and ¢ in hand, we deal with the following linear problem.

—An+u-Vn+n=-V-(nVe)+ (1 +v)hy — piygn, in Q,

o)y, (2.4)
o | 5q
n(x70) = Tlo(l'), in Q.

By a similar argument as the above two problems, the existence of solutions can be
easily obtained. Therefore, we only give the regularity estimate.

Lemma 2.5. Suppose 0 < ng € H'(Q), 7 € L? (O,T;HI(Q)) nL* (O,T; L4(Q)),
and u, ¢, n are the solutions of the problem (2.2), (2.3) and (2.4), respectively.
Thenn >0, n € L*(0,T; HY(Q)) N L*(0,T; H?(Y)) and n; € L?(0,T; L*(Q)).

Proof. Firstly, we verify the nonnegativity of n. We examine the set A(t) = {z :
n(z,t) < 0}. Along with (2.4), we get

d
— ndx — / a—nds —|—/ ndz = (14 ’y)/ nydr — u/ Ny ndx.
dt Ja aA(t) OV A(t) A(t) A(t)

Since g—’; > 0 on d{n < 0}, from this we deduce that the right hand side is nonneg-
ative. Integrating this equality on [0, ] gives

t
/ ndxdr + / / ndzxdr = 0.
A(t) o Jaw
Then, we get n > 0.

Next, multiplying the first equation of (2.4) by n, and integrating it over Q, we
get

%% and:v +/Q (n® +|Vn[?) der,u/szJrnzdz
:/QnVcVndach (1+’y)/gnﬁ+d:v

<lInllLalIVell s [IVnllL2 + (1 + ) |2 2 ([0l L2
<O(lInllFVnll 22 + lInllz2) el a1Vl 22 + (1 +7) il zzllnl 2
<C(lInlZallellz= + InliZallellZ + lIallc2) + %Hnll?p-

So, we derive that

T T
InllZ- +/ InlFdt < C <1 +/ ||ﬁ||%2dt> :
0 0

Multiplying the first equation of (2.4) by —An, and integrating it over {2, we get

A
2dt/\Vn| d:c+/| n| d:v+/|Vn| dx

:/ uVnAndz + / (V- (nVc)An — (1 +v)as An + phynln) dz
Q Q

<|lullLallVallLallAnl[Lz + (Il La|Acl La | An] L2 + [Vall L4 [Ve] L[| An] 2
+ (L MlAllczlAnllzz + plinlpa 2] s ]| An] 22

1 1
<Cllullar(IVrl 21 An[ L2 + Vol L) An] L2
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1 1
tlnllzs (el 2 VA + [ Ac]z ) [ Anl 22 + plln] sl [ Anj e
1 1 .
+ (IVallg:1An] E: + Vol ) Vel ar|Anll L2 + (1 + )7 2 (| An] 2
1 . "
<gllanliz +C (IVali: + lInllze + [Acllz: + [VAelZz + [2]72 + [7l]14)
1
<slAn|iz + C+ Vol + Inllz: + [nlZ:1VnlZ: + [IVAC]
+IAlIEs + [1Al7s).
Straightforward calculations yield
T
[Vn||7- +/ / (JAn|* + |Vn|* + 7y |Vn|?) dadt < C.
0 Jo

Multiplying the first equation of (2.4) by n:, and combining with above inequality,

we have
T
/ / In¢|?dzdt < C.
0 Q

The proof is complete. O

Introduce the spaces
X, =L*(0,T;L*Q), X, =L*(0,T;L*))NL*(0,T; H (),
Y, =L (0,T;H(Q)) N L? (0,T; H*(Q)) ,
Y, = L>(0,T; H(Q)) N L*(0,T; H*(Q)).
Define a map
F: X, x X, = X, xX,,
F(t,n) = (u,n),

where the (u,n) is the solution of the decoupled linear problem

ne—An4+u-Vn+n=-V-(nVe)+ (1 +v)ag —pasn, in (0,7)xQ=Q,
¢t —Ac+u-Ve+cec=nyg + f, in (0,7) x Q=0Q,
ug — Au+4-Vu=-Vr +nVp, in (0,7) x Q=Q,
V-u=0, in (0,7)x Q=Q,
%:%20, u =0, on (0,T) x 09,
n(z,0) = ng(z), c(z,0) = co(x), u(x,0) = ugp(x), in Q.

Next, we use fixed point method to prove the local existence of solutions of the
problem (1.1).

Lemma 2.6. The map F : X, x X,, = Xy x X, is well defined and compact.

Proof. Let (f,4) € X, X X,, by Lemmas 2.3, 2.4, 2.5 we deduce that (n,u) =
F(n, ) is bounded in Y, X Y,. Note that the embeddings H?(Q) — H(Q) is
compact and interpolating between L>°(0, T; H!(Q)) and L?(0, T; H?(12)). It is easy
to get that u is bounded in L* (0,T; L*(2)) and n is bounded in L* (0, T; L*(2)) N
L? (07T; HI(Q)) Therefore, the operator F : X, x X,, — X, x X,, is a compact
operator. O
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3. Existence and uniqueness of strong solution of system. From Lemma
2.6, (n,u) € Y, x Y, satisfies pointwisely a.e. in @Q the following problem

ng—An+u-Vn+n=-V-(nVc)

+ a(l 4 y)n — un?, in Q,

¢t —Ac+u-Ve+ec=n+af, in Q,

uy — Au+u-Vu=-Vr 4+ anV, in Q, (3.1)
V-u=0, in Q,

%:%:0, u=0, on (0,T) x 909,

n(x,0) = ng(z), c(x,0) = co(z), u(x,0) = up(z), in Q.

In order to prove the existence of solution, we first give some a priori estimates.

Lemma 3.1. Let (n,c,u) be a local solution to (3.1). Then, it holds that

t
Hﬂu+Awﬂu+WhﬂhSQ (3.2)
t
WW%+AMM%MSQ (3.3)
t
nw%ﬁ/nwmmsa (3.4)
0

Proof. With Lemma 2.5 in hand, we get n > 0. Integrating the first equation of
(3.1) over Q, we see that

d
—/ndm+/ndx+u/n2dx:a(l+'y)/ndx§B/ndeJrC.
dt Jo Q 0 Q 2 Ja

Solving this differential inequality, we obtain that

t
HWU+/W%U+MMmh§G
0

Multiplying the third equation of (3.1) by w, and integrating it over €, we get
1d

—— u2dx+/ |Vu|2dx+/u2da: :a/ano-udx—&—/qux
2dt Jq ) ) Q )

<lInllzzullz2 + lullzs < CInlZ: + [lulli2)-

Therefore, we see that

t
|M%+Anwmmsa

By the Gagliardo-Nirenberg interpolation inequality, we deduce that

t t
[;mm;dfsc[kmm;nvm@m+wm@a7
t t
ﬂﬂéénvw@m+lnw;m
<C.

Multiplying the third equation of (3.1) by Au, and integrating it over ), we get

d
IVullze +1Vuli: < C (lullze + lulZe +1) [Vulzz + Clln|z: + C.
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Thus, we know
t
IVults + [ [Fulledr <c.
0

Multiplying the second equation of (3.1) by ¢, and integrating it over ), we have
1d
2dt Jg

Then, we have

o+ [ (VePde+ [ o < [nlsalelze +all flzz el
Q Q

t
lellz + [ lellmdr <c.
0

Multiplying the second equation of (3.1) by —Ac, and integrating it over 2, we get

d
ZIVeliz +1Velin < Cllulg [Velzz + CnlIZ: + 1 £172)-

Further, we have
t
Vel + [ IVelfudr <
0

The proof is complete. O

Lemma 3.2. Let (n,c,u) be a local solution to (5.1). Then, it holds that
[(n+ 1) In(n+ 1) + [IVel|72 + [Vel[7n < C. (3.5)

Proof. We rewrite the first equation of (3.1) as

%(n—&—l)—ku-V(n-ﬁ-l)—A(n—i—l)
=—V-((n+1)-Ve)+ Ac+ a(l +v)n — un?.

Multiplying the above equation by In(n + 1) and integrating the equation, we have

% (n+1)ln(n+1)dz+4/ |Vvn +12dx
Q Q

§/ V(n+1)-Vedr + / Acln(n+ 1)dz + o(1 + 'y)/ nln(n + 1)dx
:Ingr Iy + Is. ! ’
For I, integrating by parts and using Young’s inequality with small §, we get
h == [ niads < ez Aclzs < F|Acl + Clnl
For the term I, we have

I, :/ Acln(n + 1)dz < §||Ac||32 + C| In(n + 1) |32
Q

<S|| Al + C/ (n+1)In(n + 1)dz.
Q
For the rest term I3, straightforward calculations yield

I3=a(1+7)/

nln(n + 1)dz < (1+7) / (n+1)In(n + 1)dx.
Q

Q
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Combining I, Iy with I3, we conduct that

C‘Zt (n+1)In(n+1) dx+4/|V\/n+ |*da
<5||Ac|?. +C/(n+1)1n(n+1)dx+c||n|\L2. (3.6)

Multiplying the second equation of (3.1) by Ac, and integrating it over €2, we get

2 2
2dt/ |Vl dm+/ |Ac| dx+/ |Ve|“dx
:/chAcdx—/ Acndx—a/ Acfdz.

Q Q Q

Straightforward calculations yield
d
ZIVellze + IVellz: < ClIVellzz + C(lInllzz + 1 £II72). (3.7)

Combing (3.6) and (3.7), it follows that

d
dt

SC/Q(TL+1)1n(n+1)dm+C(|\f||Lz i),

/(n+1)1n(n+1)dx+ [Vellg. + (1 — )||Vc||H1+4/ IVvn +1dx

Taking § small enough, and solving this differential inequality, we obtain that
I(n+ 1) In(n + 1) z2 + Ve[| 22 + | VelFn < C.
The proof is complete. O

Lemma 3.3. Assume f € L*(0,T; H'(Q2)), let (n,c,u) be a local solution to (3.1).
Then, it holds that

t t
125 + A2 + / il s + / |Ad] rdr < C. (3.8)

Proof. Taking the L2-inner product with n for the first equation of (3.1) implies

1d
—— n2dm+/ (n* +|Vn|?) dac—i—u/n?’dx

z/nVcVndx—i—a(l—i—v)/ngd:E
Q Q

1
:—f/nQAcd:C—l—oz(l—l—fy)/nZdaz.
2 Ja Q

Here, we note that

‘ / n?Acdz
Q

<[nlZs ]l Ac]| o

2 1
<CllnlZs(IVAc| ;2 Vel f2 + IVell =)
2
<ClnllZs (IVAe| 2 +1)
From Lemma 2.2 and (3.2), it follows that

—K/n2Acdac
2 Jo
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2
3

<C (8llnllF |(n+ Dlog(n + Drr +p (671) [Inllz1)* (IVACll72 +1)
<C (@lnllzs +p(671))° (IVACllz> +1)
<C(G|nl 3 [V Al Zs + 8lnll g +p5 (57) IVAClZ, +p5 (571))

<O||VAC|2z + C8* |2 + C;Pp (571 .

As an immediate consequence
d 1
@Ilnl\%z + nllE: < 8IVAC|Z: + Coz|n|F: + Clln| 2. (3.9)

Applying V to the first equation of (3.1), multiplying it by VAc, and integrating
over ) give

1d
f—/ |Ac\2da:+/ \VAC|2dx—|—/ |Ac|*dx

:/QV(UVC)VAcdm —/QVnVAcdx —/QVfVAcdx =1+ Is.
For I, by using the Gagliardo-Nirenberg interpolation inequality, we get
I, = /Q V(uVe)VAcdz
<[IVAd]| L2 (Jull s | Acl[ s + [[Vul| 4[| Ve 4)
<AV Al (lul | Al 22 [V el £ + ]+ Ac 12
+19ulfa 18wl F 9l £ 1Acl £ + IVullz2 IVell 1 Acl
+ 1Vl 1 Aul 22 Vel 22 + [ Vull ]| Vel £2)
SEHVACH%Q +C(1+ || Ac|Zz + || AulfZ).
For the term I5, we have

I5:—/ VnVAcdx—/ VfVAcdx
Q Q

1
<C(IVnlz: + IVfI72) + ;1VAC| .
Along with I, and I5, we conclude
d
el + VAl + [ Ac] 7
<C(L+ || AcllZe + | AulZ + [VallZe + IV FIZ2)- (3.10)
Combining (3.9) and (3.10), it follows that
d 1
7 (InlZz +l1AclZe) + [Aclzz + (1= Co2)[InllF + (1= 9)[[VAC| 72
<SC(1+ [[AclZe + [|Aullze + [IVnll7e + IV FII72)-
By choosing ¢ small enough and using (3.3) and (3.5), we have

t t
Inlf + 18l + [l + [ aclmar < c:
0 0

The proof is complete. O
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Lemma 3.4. Assume f € L?(0,T; HY(Q)), let (n,c,u) be a local solution to (3.1).
Then, it holds that

t
V2 +/0 nl|2dr < C. (3.11)

Proof. Taking the L2-inner product with —An for the first equation of (3.1) implies

1
,i/ |Vn|2dac+/ |An|2dm+/ |Vn|2da

:/ uVnAndz —|—/ V- (nVe)Andz + (1 + 'y)/ |Vn|2dz + ,u/ n? Andz
Q Q Q Q
=Is+ I7 + Is.

For the term Ig, with the estimate (3.3), we have
1
Is :/ uVnAndz = 75/ Vu(Vn)?de < ||Vul|2]|Vn|74
Q Q
1 1
<Vullzz (IVnlzllAnll 72 + ([ Val z2)®
<S|Anll7: + C||Vn|i-.

For the term I7, taking (3.8) into considering, we conduct that

I7 :/ V - (nVe)Andz
Q

:/Q(VnVCwLnAc)Andx

<[An]Lz2 (Vo sl Vells + [InllelAclz2)
<Clan] gz (I9nll, 5 I¥ells + inly A2
<Clnllslnll 4 el < Clial Il Lalell e
<dllnlz + C@)nlL:lelfe < dlinllz: + C.

For the term Ig, thanks to the nonnegativity of n, we see that
Ig =(1 +7)/ \Vn|*dx + u/ n? Anda
Q Q

:(1+'y)/ \Vn\de—2pL/ |Vn|*ndx
Q Q
<(L+NValL..

Combine the estimates about Ig, Iy and Ig, it follows that
LInl3: + (1~ 48) Il < O Vnl3 +C.
By taking § small enough, we get
IVl + [l <
Therefore, this proof is complete. O

Lemma 3.5. The operator F : X, x X,, = Xy X X5, @5 continuous.
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Proof. Let {(fuy, tim)}men be a sequence of X,, x X,,, Then, with Lemmas 2.3,
2.4 and 2.5 in hand, we conduct that {(nm,um) = F(fim, Um) }men is bounded in
Y., xY,. Taking the compactness of Y,, xY,, in X,, X X, into consider, we see that F
is a compact operator, which means there exists a subsequence of {F (7, tim ) }rmen,
for convenience, still denoted as {F (7im, tm)}men, and exists an element (7, @) in
Y, x Y, such that

F(Pomm, U) — (R, 4) weakly in Y, x Y, and strongly in X,, x X,,.

Let m — oo and take the limit, it is clear that (n,uw) = F(fip, ) and (i, ) =
(7, ), this means that F(fiy,, Um) = (fum, Um ). Since uniqueness of limit, the map
F is continuous. O

Theorem 3.1. Let ug € HY(Q), ng € HY(Q), co € H*(Q) with ng > 0 in Q, and
f € L?(0,T; HY(R)), then (1.1) exists unique strong solution (n,c,u). Moreover,
there exists a positive C' constant such that
[l Lo 0,711 () + Il 220, 120)) + [Inell 220,722 () + llell Lo (0,712 (0))

+ llellzmms @) + lledll L2z @) + lull e o @)

+ lull 20,752 92)) + el 20,7 220)) < C- (3.12)
Proof. From Lemmas 3.1, 3.3 and 3.4, it is easy to verify the existence of solution
and (3.11). Therefore, we will prove the uniqueness of the solution in the following
part. For convenience, we set n = n; — ng, ¢ = ¢; — ¢ and 4 = u; — uo, where

(ni, c;,u;) is the strong solution of the system, where ¢ = 1,2. Thus, we obtain the
following system

ne —An+uy - Vn+uVng = =V - (n1Ve)

—V(nVey) +yn — pn(ng + na), in (0,7) xQ=0Q, (3.13)
¢t —Ac+uy - Ve+uVeg +c=n, in (0,7)x Q=0Q, (3.14)
up — Au+uy - Vu+u - Vug =nVe, in (0,7)xQ=0Q, (3.15)
V-u=0, in (0,7) x Q=0Q, (3.16)
% = % =0, u=0, on (0,T) x 09, (3.17)
no(z) = co(x) = ug(z) =0, in Q. (3.18)

Taking the L2-inner product with n for the (3.13) implies

l1d 2 / 2 / 2
—— | n°dr + Vnl“dz + | n“dx
2dt Jg Q [Vnl Q

S—/angndx—l—/ n1VcVndac—|—/ nVCQVndx—F(l—I—v)/ n2dr
Q Q Q Q

=Io + Lo + I11 + L12.
For the term Ig, due to the estimates (3.3) and (3.8), we have

I =— / wVnyndz < [ Vnallza ul pa ] 4
Q
1 1
<C|Vnallze Jull s (Il 2 190 2 + Il )

0
Sgllv?llliz +ClnlZ..
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For the term Io, with the estimate (3.8) and (3.11), we get
Io :/QchVndx < Va2 Il s | Vel s
<CVnl 2|l Vel g
<Nl +C.
For the term I,
I :/QnV02Vndx < Va2 Vea s [n] s
<[IVnllL=([Veal g [n]
§§|Wn\|%2 +C.
With the use of estimates I;(i = 9,10, 11, 12), we have
L iz + Il < 819 nl3a + Clnla +C.

Taking the L2-inner product with ¢ for the (3.14) implies

1d 2 2 2
5 3 Qc dx—|—/Q|Vc| dx—|—/ﬂc dz

:—/u1Vccdx—/uVCQCdz+/ nedx
Q Q Q

<llelZsIVurllze + llull 2 [ Veal zsllells + [l zzllell 2

(3.19)

1 1 1 1
<C(lleliz=lIVel 22 + llell ) Vur ]z + (lellz2 Vel 22 + llel o) lull 2 | Vez | e

+ lInllz2llel 22
<6||VellZ2 + Clle||Z--
Then, we get
d
Zlellzz + llellzn < 31Velzz + Cllel7a-

Taking the L2-inner product with ¢ for the (3.15) implies

1
f/UQda:—i-/ \Vu|2dx:/an0udx.
2 Ja Q Q

Straightforward calculations yield
d
ZlullZe + el < Cllulzz + In72).

Then, a combination of (3.19), (3.20) and (3.21) yields
4
dt

<6(IVnliZe + IVelZs + [Vullzz) + (Inlge + llelZ + lullz2) + C.

By choosing § small enough, we get

d
2 (InlZ2 + llellZz + llullzz) < CllInliZa + lellze + llull72) + C.

(Inll7z + lelize + lullZ2) + (Inllzs + el + lullz)

(3.20)

(3.21)

Applying Gronwall’s lemma to the resulting differential inequality, we finally obtain

the uniqueness of the solution.

O
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4. Existence of an optimal control. In this section, we will prove the existence
of the optimal solution of control problem. The method we use for treating this
problem was inspired by some ideas of Guillén-Gonzalez et al [9]. Assume U C
L?(0,T; H*(9,)) is a nonempty, closed and convex set, where control domain . C
Q, and Qg4 C Q is the observability domain. We adjust the external source f, so
that the bacterial density n, oxygen concentration ¢ and fluid velocity u are as close
as possible to a desired state ng, ¢q and ug, and at the final moment T is as close as
possible to a desired state ng, cq and ug. We consider the optimal control problem
as follows
Minimize the cost functional

b1 B2 B3
J(n,c,u, f) :?H” - ndHQL?(Qd) + ?HC - cd||2L2(Qd) + ?HU - udH%Q(Qd)

B Bs
+ EHH(T) —nall72q,) + ?HC(T) = callF2au
Bs Br
+ 5 1uUT) = uallZeo, + S @ Bl q.), (4.1)
subject to the system (1.1). Moreover, the nonnegative constants 3;,¢1 = 1,2,--- |7

are given but not all zero, the functions ng, ¢4, ug represents the desired states
satisfying

ng € L*(Qq), ca € L*(Qa), ua € L*(Qu),
ng € L*(Q.),cq € L*(Q),uq € L*(Q.), f €U.
The set of admissible solutions of optimal control problem (4.1) is defined by
Saa ={s = (n,c,u, f) € H : s is a strong solution of (1.1)}.
The function space H is given by
H=Y,xY.xY, xU,
where Y, = L (0,7 H*()) N L? (0, T; H*()).
Now, we prove the existence of a global optimal control for problem (1.1).

Theorem 4.1. Suppose f € U is satisfied, and no > 0, then the optimal control
problem (4.1) admits a solution (7, ¢, a, f) € Sad-

Proof. Along with Theorem 3.1, we conduct that S,q # ), then there exists the
minimizing sequence {(Nm, Cm, Um, fin) }men € Saa such that

Hm  J(nm, Cmy U, ) inf J(n,c,u, f). (4.2)

m—+o0 (n,c,u,f)€Saa

According to the definition of S,q, for each m € N there exists (T, Cm, Um, fin)
satisfying

Nt + U - Vi = Ay — V- (N - Vem) + Y0 — pn2,,  in Q,

Cmt + Um - Ve = Acym — ¢ + N + [, in Q,

Umt + U » Vg = Aty — VT + 1, Vo, in Q,

V-, =0, in Q, (4.3)
ong, _ Oem

%m0 wnlon =0
ov laa  Ov laa U] ’

1m(0) = ng, ¢ (0) = co, um (0) = ug, in Q.
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Observing that U is a closed convex subset of L2(0,7;H'(.)). According to
the definition of S,q, we deduce that there exists (7, ¢, 1, f) bounded in H such
that, for subsequence of (N, Cm,Um, fm)men, for convenience, still denoted by
(N, Cimy Uiy frm)s @S M — 400

N — 71, weakly in L* (0,T; H*(2)) and weakly* in L (0,T; H' (),
¢m — €, weakly in L* (0,T; H*(2)) and weakly* in L™ (0,73 H*(9)),
U, — U, weakly in L? (O,T; H?(Q ) and weakly* in L™ (O,T;Hl(Q)) ,
fm — f, weakly in L*(0,T; H*(Q,.)), and f € U.

According to the Aubin-Lions lemma [16] and the compact embedding theorems,
we obtain

nm — @,  strongly in C ([0,T]; L*(Q)) N L? (0,T; H'()),

C¢m — ¢, strongly in C ([0, T); Hl(Q)) NnL? (O,T; H2(Q))

um — @, strongly in C ([0,T]; L*(Q)) N L* (0, T; H'(Q))

Since V- (nmVem) = Vg, - Ven + npAcy, is bounded in L2(0, T; L2(Q2)), then
V- (nmVem) = X, weakly in L2(0,T; L*(Q)).

)

Recalling that
NmVem — AVE, weakly in L°°(0,T; L(Q)).

Therefore, we get that x = V(aVeé). Owing to (7, ¢, 4, f) € H, we see that (7, €, u, f)
is solution of the system (1.1), along with (4.2) implies that
lim  J(nm, Comy Uy frn) = inf J(u,c,u, f) < J(7, ¢ a, f).
i f) =, 0t e f) < T, )
On the other hand, we deduce from the weak lower semicontinuity of the cost
functional
— EE— R < . . .
J(’I’L, C,u, f) = }}Lg-li-r(l)g J(nm7 Cm s Um, fm)

Therefore, this implies that (7, ¢, @, f) is an optimal pair for problem (1.1). O

5. The first-order necessary optimality condition. In order to derive the first-
order necessary optimality conditions for a local optimal solution of problem (4.1).
To this end, we will use a result on existence of Lagrange multipliers in Banach
spaces ([20]). First, we discuss the following problem

min J(s) subject to s € S={s € H: G(s) € N}, (5.1)

where J : X — R is a functional, G : X — Y is an operator, X and Y are Banach
spaces, and nonempty closed convex set H is subset of X and nonempty closed
convex cone N with vertex at the origin in Y.

AT denotes its polar cone

At ={pe X': {p,a)x >0,Va € A}.
We consider the following Banach spaces
X =V, x Vo x Vi x L2(0,T; H'(2,)),
Y = L*(Q) x L*(0,T; H(Q)) x L*(Q) x H*(Q) x H*(Q) x H'(Q),
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where
Vo= fneYy: 2% on (0,7) x 00}
n_n n'ayo ) )
Oc
VCZ{nEYc:%on(O,T)x@Q}7

Vi={neY,:u=0o0n (0,T) x 90 and V-u=01n (0,7) x Q}
and the operator G = (G1,G2,G3,G4,G5,Gg) : X — Y, where
Gi1: X = L*Q), Gy:X — L*0,T;H (Q)), Gs: X — L*(Q),
Gy: X = HY(Q), Gs5:X— H*Q), Go: X — HQ),
which are defined at each point s = (n,c,u, f) € X by
Gi=ni+u-Vn—An+V-(n-Ve) —yn+ un?,

Go=c+u-Ve—Ac+c—n—f,
Gs=u+u-Vu—Au+ Vr —nV,

G4 = n(0) — no, (5.2)
Gs = ¢(0) — co,
G6 = U(O) — Ug.

The function spaces are given as follows
H=V,xV.xV, xU.

We see that H is a closed convex subset of X and A" = {0}, and rewrite the optimal
control problem

min J(s) subject to s € Spq = {s € H : G(s) = 0}. (5.3)
Taking the differentiability of J and G into consider, it follows that

Lemma 5.1. The functional J : X — R is Fréchet differentiable and the Fréchet
derivative of J in 3= (n,¢, 4, f) € X in the direction r = (0, ¢, @, f) s given by

T3] =B /0 ! /Q ()it + /O : /Qd(c—cd)édasdt

T
+ ﬂ3/0 /Qd(u — uq)u(T)dzdt + 54/ (#(T) = na)#(T)dx

Qq

s / (e(1) ~ coeda + s [ (a(T) ~ ua)a(T)dz

Qq
T
+ B7 /O i ffdadt. (5.4)

Lemma 5.2. The operator G : X —'Y is conlinuous-Fréchet differentiable and the
Fréchet derivative of J in § = (7, ¢, , f) € X in the direction r = (i, ¢, 4, f), is the
linear operator

G'(3)lr] = (GL(3)[r], Go(3)[r], G5(5)[r], Ga(S)[r], G5 (5)[r), G (5)[r])
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defined by
Gi(9)[r]=n—An+u-Vn+uVn+ V- (nVe)
+ V(AVE) — v 4 2unn, in Q,
GL(3)r) =& —Aé+u-Vé+a-Ve+é—n—f, inQ,
G5(9)[r)=us — Au+u-Vi+a-Vu—nVe, in Q,
V-a=0, in Q,
on  0¢ .
a—a—O,U—O, OTL(O,T)XaQ,
7(0) = 719, &(0) = &, @(0) = ay, in Q.

Proof. For any fixed (7,¢, 4, f) € Saa, We set (gn, ges Gu, 0,0, Ug) € Y. Since

0 € C(f), it suffices to show the existence of (7, ¢,4) € V;, X Y, X Y,, such that
fie — Afi + @ - Vi + VA + V - (AVE)

+ V(aVeE) — yn + 2uni = gy, in Q,

G —AG+T-Véta-Veti—n=ge, inQ,

Uy —At+u-Va+a-Vu—nVe =g, inQ,

(5.5)
V.-a=0, in Q,

on  oc .

E—a—o,u—(), OH(O,T)XaQ,

7711(0) = 7710, E(O) = 50, ﬂ(O) = ﬂo, in Q.

Next, we use Leray-Schauder’s fixed point method to prove the existence of solutions
of the problem (5.5), the operator T : (n,4) € X,, x X, = (f,u) € Y¥,, x Y, with
(n, ¢, u) solving the decoupled problem:

e —An+a-Va+aVa+ V- (aVe)

+ V(aVe) — yn + 2uni = gy, in Q,
¢t —Aé+u-Vée+u-Ve+é—n=g., inQ,
Uy —Atu+u-Vi+a-Vau—nVep =g,, inQ.

(5.6)

The system (5.6) is complemented by the corresponding Neumann boundary and
initial conditions. Similar to the proof of Lemmas 2.3, 2.4, 2.5 and 2.6, we conduct
that operator T : X, x X,, = X,, x X, is well-defined and compact. -
Similar to the proof of Theorem 3.1, (7, @) solves the coupled problem (7, ¢, 4, f)€
Saa, and we set (gn, ge, Gu, Mo, Co, Ug) € Y. Since 0 € C(f), it suffices to show the
existence of (1, ¢, 1) € Y,, X Y. x Y, such that
ne—An+n=-a-Vio—a4-Vn—V-(aVe)
— V(AVe) + aly + 1)n — 2unn + ag, in Q,
¢ —Ac+é=—-u-Ve—u-Ve+ an+ age, in Q,
Uy — At =—u-Vu—1u-Vu+anVe + ag,, inQ,

(5.7)

complemented by the corresponding Neumann boundary and initial conditions.
Taking the L2-inner product with @ for the third equation of (5.7) implies

1
f/ﬂ2dac+/ |Vﬁ|2dx:a/ﬁV<pﬁdx+a/ﬂgudac.
2 Ja Q Q Q
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By the Poincaré inequality and Young’s inequality, we have

d, N - -
Slallze + lalE: < Calz: + llguliz) + Cllalz. (5.8)
Taking the L2-inner product with ¢ for the second equation of (5.7) implies

1
f/EQda:—&—/ |Va\2dx+/52dx
2 Q Q Q

:/ uVeedr + a/ nedr + a/ gecdz.
Q Q Q
With the Poincaré inequality and Young’s inequality in hand, we see that
d ., . . - -
%HC”%? +llelFn < Clalze + llgellz=) + Clielz.. (5.9)

Taking the L2-inner product with —AG¢ for the second equation of (5.7) implies

1
7/ \Vé\Qd:L"+/ \A5|2dx+/ |Veé|2dx
2 Ja Q Q

:/ uVeAédx + / uVeAedr — oz/ nAedr — a/ gcAcdx
Q Q Q Q

=J1 + Jo + J3.
For the term J;

7 :/ aVeAeds < || Ad| 2] Vel Ll 4
Q

| _ -
SEIIACH%z +C|| Vel F [|all 72 -
For the term J5, we see that
1
Jo :/ uVEAedr = ”/ Va|Vé|?dr
Q 2 Jo
<[Val| [ Ve[
1 1 ~
<[IVull2(IVel 721 AcllZ2 + Vel L2)
1, .. -

§6||AC||2L2 + O Ve[

For the term Js3, we get

J3 =— a/ nAcdx — oz/ gcAcdr
Q Q

1, .- -
<glladli: + Clalze + llgelz=).
Therefore, combining J;, Jo and J3, we have
d . - - -
$IIVCII2L2 +|Velin < ClIvelz: + C(lallz: + llgellz2)- (5.10)

Taking the L2-inner product with 7 for the first equation of (5.7) implies

4 ﬁng;+/ |Vﬁ|2dx+/ﬁ2dm
dt Jo Q Q

=— / aVandr + | VaaVédzs + | VaaVedz + a(y + 1) / #2dz
Q Q Q Q
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+2u/ ﬁﬁ2d$+05/ ngndx
Q Q

=Js+ J5+ Jg + J7.
For the term Jy, by Gagliardo-Nirenberg interpolation inequality, we have
Jy=— / aVandx < || p4]| V| L2 |7 e
Q
<C(IValzzllallzz + [[all ) VAl 2 (|7l g
<OllalF + ClIVal g2 |la] = + Cllall 7.
<O||7illz + olIValZ + CllallZe.
For the term Js,
Jo = [ VanVeds < [Vl 2 ol 0 V2]
Q
1 4 .
<[IVall (|l g ([Vell 72l Ael 2. + Vel L2)
<O|IVall7. + Vel 2| A 2 + C|[VE] 7
<6||Vii||32 + 0||A¢| 2 + C|| V3.
For the term Jg,
Jo= [ Vanveds < [l |ad]
Q
1 1 - B
<1222 1Vl 72 + (172l L2)[| Ac] L2
<5|Vali. + Cllifl7. + C.

For the term Jz,

Jr =a(y + 1) / n2dx + 2/1,/

Q Q
S(v+DIAlZe + lgnllz2 7l 2 + 7] 2712

anldr + a/ nGgndx
Q

1 1 -
<(v+ D)7z + llgall 2l z2 + 7l (1] 22 1VA] 22 + (17l 22)
<O||Vi] 2 + Cllal e + Cllgall7e-

Therefore, by choosing § small enough, from Jy, J5, Jg and J7, it follows that

d, .
%Hnlliz + |77
<C(|IAllZz + IVelzz + lallZ2) + 8l Al 2 + 8[IVallZz + CllgnllZe- (5.11)

By choosing ¢ small enough and combining (5.8)-(5.11), we get

d
2
<C(llgnlliz + llgellzz + lgullzz) + CURNT: + lelz + llalZe)-

[l + llellzn + lalZ2) + NallFn + ez + lal

Applying Gronwall’s lemma to the resulting differential inequality, we obatin

t t t
1722 + 122 + ]2 + / il2edr + / lel3adr + / lil2ndr < C. (5.12)
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Taking the L2-inner product with —Ad for the third equation of (5.7) implies
1d

~12 ~12
- — d Aul|“d
2dt/9‘vu| x+/Q| al“dx
:/ @ - VaAudx + / - VuAudx — a/ naVeAudr — a/ guAudr
Q Q Q Q
=Js + Jg + J1o.
With the use of the Gagliardo-Nirenberg interpolation inequality, we derive
Jg :/ @ - VaAudx < ||a||pa||Va| pa|| Al L2
Q
1 ! - .

<[l (Vall .| Al 22 + IVl 2) || Al L2

<S||AG|2. + C|| V|32
and

A :/ i Vadidz < ||Ad| g2 | V| gsl|]
Q
1o .

<ClAdl| 2 [[Vul g (VallZa el 22 + llalz2)

<8||Adl|7. + ClIVal[Z..
For the term J1g, we deduce

Jio :a/ ﬁthAﬁdaE—a/ guAtudz
Q Q
<8||Adl|7e + ClIAll72 + llgulZ2)-

By choosing § small enough, with the estimates Jg, Jg and Jig, we have
d, . - .
ZIVali: +1Adl7: < CIVali: + CllgullZ:. (5.13)

Applying V to the first equation of (5.7), multiplying it by VAG¢, and integrating
over ) give

lg/ \Ac\%lx—f—/ \VAc|2dx+/ |Ac|?dx

—— / V(aVe)VAdr — / V(aVe)VAEdr + o / ViV Aéda
Q Q Q

+a/ Vg.VAédx
Q
=J11 + Ji2 + Jis.
For the first term Ji1, we have
Ji1=— / V(aVe)VAedr = —/ VuVeVAedr — / uAEV Acdx
Q Q Q
<|IVAZ| 2|Vl L4 |Ve|| s + [[VAE|| L2 ||u]| Lo | Al pa
1 1 1 1
<|IVAe|| = (IVal . [[Aul 2, + [Vl =) ([ Vel 221 Acll 22 + Vel z2)
+ |VAE| 2 |a]| g2 (| VAEF2 | AE)I 2 + [|AE] L2)
<OIVAE|2: + C||Aa||2. + C||AE||2-.
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Similarly, for the term Jyo,
Jig =— / V(uVe)VAedr = —/ VuaVeV Aedr — / uAcVAedz
Q Q Q
<[IVAE| 2|Vl pa[[Vel s + [Ja] Lo | A]| L4 [V Al 2
1 et . B
SCIVAY ([ Val fellAul 72 + [Vl L2) [ Vel
1 1 . 1 1 _ .
+ (lallz:1VallZ. + llallz2)(|Ael 22 IVAE]| 7. + [|Ac] =) IV Al L2
<O||VAE 2, + 8| A3z + C||VAE||7: + C||Vii||7-
For the rest term Ji3, we see
Jis :a/ VﬁVAédx—i—a/ Vg.VAcdx
Q Q
<8I VAEZ: + C(IValZ: + [Vgelz2)-
By choosing § small enough, we get
d, .. -
1Az + [l Ad]
<C(IValz> + 1AclZ: + IVall72) + CllAall7. + ol Adll7
+ C||VAE|32 + C|IVgellZ.. (5.14)
From (5.13) and (5.14), along with ¢ small enough, it follows that
d N - - -
S (IVallZ: + [ Ac]Z) + [|Aal| 7z + | A7
<C(IValz: + |Aclz:) + (IValg: + [|Aullze + IVAElT: + IVell72) + Cllgallz.-
Applying Gronwall’s lemma to the resulting differential inequality, we know

t t
V)25 + AG]2 +/ ||Aa||2L2dT+/ 1AG2 dr < C.
0 0

Taking the L2-inner product with —A# for the first equation of (5.7) implies
1d

77/ \vm2dx+/ \Am2dx+/ \Vi|2da

=— / - VaAndz — / - VnAndz — / V(aVe)Andx —/ V(aVe)Andx
Q Q Q Q

—a(l—i—v)/ﬁAﬁdm+2u/ﬁﬁAﬁdm—a/gnAﬁdx
Q Q Q
=J14 + J15 + J16 + J17 + J1s.

With the Gagliardo-Nirenberg interpolation inequality in hand, we can estimate Ji4
as follows

Ty = — / - Vadidz < | g [ Vil | A7 g2
Q
1 1 . .
<Cllallg (IVall z2 A0 72 + VAl 2) | AR L2
<8||Adil[7. + ClIValZ..
Similar to above estimates, we see

Jis = — / o - ViAndx < ||ﬂ|‘L4||Vﬁ“L4||AfL‘|Lz
Q
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<Cllallg Vol ar|An]l >
<G| AR 2 + C|| V7l 3.
Similarly, we derive
Jig = — / V(rVe)Andr = 7/ ViaVeAndr — / nAcAndx
Q Q Q
<[IVallpa Vel pall Anll e + (|7l || Ac]| pa || A ]| 2
<(IVall 2l AR)| 7. + IVAl L2) [ Vel mr | ARl L2
1 1 . ! ! B .
+ (Il 221Vl £ + 12l 2) ([ACl [ VAl 2 + [[Ac] L2)l| A 2
<O||AR||2, + C|| Va2 + C|VAE2: + C
and
Jiz =— | V(aVe)Andr = —/ VaVeéAndr — / VnAEAndz
Q Q Q
<[V pal| Vel || Anl| 2 + |7] L[| Ac] La[[ AR 12
1 1 - .
<(IVallZ:[|A%[ 7. + [IVall L)l Vel g | Anl 2
1 3 ~ -
+ nlla (1Ael 7 IVAE L + [[Ad] L2)l| A 2
<O||AR||3. + C||VAE|3: + C.
For the rest terms, we know
Jis=—a(l+7) / nAndxr + 2,u/ nnAndr — a/ gnAndx
Q Q Q
<@+ NNl | AR 2 + 2ulnl| s [[]l o [| AR L2 + ([gnl 2 | AR L2

<(L+ DIl AR 22 + ANV + 172 7] A7
+ [lgnll L2 |AR| L2
<O 72 + ClIValZz + CllgalZe-
Therefore, Taking § small enough and together with Jy4 — Jig, we see that

d,_. -
VAl + 19713
<C(IVill: + IVl + VAT + [VAGR: +llgl3e) + C.

Applying Gronwall’s lemma to the resulting differential inequality, we know
t
IVil2, +/ IVil2ndr < C.
0

Therefore, from Leray-Schauder theorem, we derive the existence of solution for
(5.5). Along with the regularity of (7, ¢, @), the uniqueness of solution can easily
get, so we omit the process. O

Theorem 5.1. Assume that 5 = (71, ¢, U, f) € Saq be an optimal solution for the
control problem (5.3). Then, there exist Lagrange multipliers (A, n, p,&, o, w) €
L2(Q) = (L*(0,T; H'(R2)))" x L*(Q) x (H' ()" x (H*())" x (H'(Q2))" such that for
all ( ncuf ) € Vi X Ve x Vi x C(f) has

51/ / TL*TLdTLd.’ﬂdtJrﬁg/ / C*CdCdiEdtﬁ*ﬂg/ / (@ — uq)udzdt
Qa Qq Qq
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+ 54/Q ((T) — ng)n(T)dx + B5/ @(T) — cq)é(T)dx

Qq

T
7/ /(ﬁt—Afz+ﬂ~Vﬁ+ﬂ~Vﬁ+V~(ﬁVE)JrV(ﬁVE)77ﬁ+2pfm)>\dxdt
0 Q
T T .
—/ /(Et—Aé—i—ﬂ-VE+11-VE+E—ﬁ)ndxdt+ﬁ7/ FFdzdt
0o Ja 0o Jau

T
- / / (i — Au+a-Va+a-Va—nVe) pdedt + / n(0)édx + / ¢(0)pdx
0o Ja Q Q

T ~
+/Qu(0)wdx + Bs /Qd (@(T) — uq)a(T)dx +/0 /andxdt >0, (5.15)

where C(f) ={6(f - f):60>0,f elU}.

Proof. With the Lemma 5.3 in hand, we get that § € S,4 is a regular point. Then,
togather with Theorem 3.1 in [20], it follows that there exist Lagrange multipliers
(A m,p, € p,w) € LHQ) x (L2(0,T; HH(Q))) x L2H(Q) x (H(Q)) x (H*(Q))" x
(H'(Q))" such that
T (8)[r] = (GL(3)[r], ) = (Ga(3)[rl,m) = (G5(3)[r], p) — (GL(S)[r]. )
—(G5(3)[r) @) = (G5(3)[r],w) = 0,

for all r = (R, ¢, 4, f) € Vi, x Vo x Vi, x C(f). Hence, the proof follows from Lemmas
5.1 and 5.2. O

Corollary 5.1. Assume that 3§ = (71, ¢, a4, f) € Saq be an optimal solution for the
control problem (5.3). Then, there exist Lagrange multipliers (\,n,p) € L*(Q) x
(L2(0,T; HY(Q)))" x L*(Q), satisfying

T T
/ / (ng — An+a- Vi + V(aVe) — yn 4 2unn) Adxdt — / / nndzdt
0o Ja 0o Ja

T T
—/ /ﬁVgopdxdt = ﬁl/ / (7 — ng)ndxdt, (5.16)
0o Ja 0 Jag

T T
/ /(Et—A5+ﬂ-Vé+é)ndxdt+/ /V-(ﬁV&)Admdt
0 Q 0 Q
T
6, / / (¢ — cq)idudt, (5.17)
o Jag

T T
/ / (i — A+ @ Vi + i - Vi) pdedt + / / aVadzdt
0 Q 0 Q

T T
—|—/ / @ - Vendzdt = 53/ / (t — ug)udzdt, (5.18)
0 Ja 0 Jau

which corresponds to the linear system
— M — AN+ T -VA=VAVE— A+ 2u n —n—Vpp
= B1(7 — na),
= —An+u-Vn+n+V(aVA) = Ba(¢ - ca),
—pe = Ap+ (@-V)p+ (p- VI)a+ AV + Ve = B3(a — ua),

(5.19)
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subject to the following boundary and final conditions

V- p= 07 m Q,
ox _on
% = a,P=0 on (0,T) x 99,
MT) = Bs((T) — nq),n(T) = B5(e(T) — ca),
p(T) = B5(e(T) — cq), in €,
and the following identities hold
T
/ /Q (Bef +n0)(f — f)dzdt >0, Vf eU. (5.20)
0 d

Proof. By taking (E,ﬂ,f) = (0,0,0) in (5.15), then it follows that the equation
(5.16) holds. In light of an analogous argument, and in light of the (5.15), it
guarantees that (5.17) and (5.18) hold. On the other hand, let (7,¢,a) = (0,0,0),
as an immediate consequence we obtain

T o T _ _ _
57/0 ffdxdt+/0 fndzdt >0, Vfec(f).

By choosing f = f — f € C(f) for all f € U, thus we achieve (5.20). O

Theorem 5.2. Under the assumptions of Theorem 5.1, system (5.19) has a unique
weak solution such that

t t t
N2+ ll2 + ]2 + / IN[3adr + / 2 dr + / lolBprdr < C.

Proof. For convenience, we set A = \N(T'—t), 7j = n(T p = p(T —t), in order to
A,

— t),
simplify notations, we still write A, 7, p instead of A, 7, p , then the adjoint system

(5.19) can be written as follow
A — AN+ G- VA—=VAVE—yA+2u n —n—Vpp
= 51(A — ng), in Q,
Nt —An+u-Vn+n+ V(@aVA) = (¢ — ca), in Q,
ot —Ap+(@-Vp+ (p-VH)a+ A\Va +nVe = B3(i — ug), in Q,

subject to the following boundary and final conditions

(5.21)

V.-p=0, in @,
%:%’p:(), on (0,T) x 09,
AM0) = Ba(R(T) — na),n(0) = Bs(e(T) — ca),

p(0) = B5(e(T) — cq), in Q.

Following an analogous reasoning as in the proof of Lemma 5.3, we omit the process
and just give a number of a priori estimates as follows.
Taking the L2-inner product with X for the first equation of (5.21) implies

Ld
24t Jq

:/ VAVde—k’y/ >\2dx+/ )\ndx—i—/ )\Vgopdx+61/(ﬁ—nd))\dx
Q Q Q Q Q

<IIVAllz2lIVellzz + AL + M 22 (nllz2 + llollz2) + Bill7 — nallz2 [ Al 2

A2d:c+/ |V)\|2dx+2u/ Nndz
Q Q
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1 _
<SIVAIZ: + CUIMZ: + [InllZ + llelZ2) + Clln = nallZe.
Then, we have
d _
Sz + I < CUNIZ: + lInliz2 + lllZ2) + Clla = nal7- (5.22)

Taking the L2-inner product with —An for the first equation of (5.21) implies

1d 9 9

:/ - VAANz — / V)\VEA)\dx—fy/ )\A)\da:+2u/ ANz
Q Q Q Q

—/nA)\dx—/Vgo,oA)\da:—i—ﬁl/(ﬁ—nd)A)\dx
Q Q Q

<lfalla IV s [ AN z2 + [ VAl s [ Vell o | AN L2 + A VA2
+ Az lInllza [AM 2 + 0]l 2 [AX] L2 + [l L2 | AN 22
+ Bill AX| 2|7 = ngll72

1 1
<lfallzz (VA Z21ANIZ2 + IVAI2)[AM L2 + Y[ VAIZ
1 1
+ (IVAIZ A Z2 + IV ) IVell g | A 2 + lInll 2] A >
+Ipllzzl| AN 22 + Bi | AX]| 2 (|72 — nal|7 2
1
<SIANIZ: + CUVAIL: + [InllZ: + llpl72)-
Thus, we get
d _
FIVAIZ: + VA < CUVAIZ: + lInllZe + llllZ2) + Ol = nallZ2. (5:23)

Taking the L2-inner product with 7 for the second equation of (5.21) implies

1d 9 9 / 9
- dx + Vn|“dx + d
2dt QT’ v /Q| nfde Qn v

:/QﬁVAVnd:U +B2/Qn(67 cq)dx
<l VA s [IVnllzz + B2llnllrzlle — cal 22
<l (VM2 I AN E: + VML) IVl z2 + Ballallze e = call e
<2 ([ Vnl2a + 6N + CIVAL: + Clinli3e + Clle — call2e.
As an immediate consequence, we obtain
i\l 122 + Inllz < 8IAXIZ2 + ClIVAlLe + Clinllze + Clle — callzo.  (5.24)
ge Mz T M = L? L MLz dllL2
Taking the L2-inner product with p for the third equation of (5.21) implies

1d 9 9
=— / (p- V) updx — )\/ Vnpdr — / nVEpdx—l—Bg/(ﬂ — ug)pdx
Q Q Q Q

<llpllz=VallLallplies + MValz2llollez + lInll L2 [1Vell Lalloll s
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+ Ballpll 21w — vall >
1 1 _
<llellc2IValla: (ol 21V el 22 + llpllz) + MIVall e pll 22
1 1 _
+lnllz2 Vel a Aol L2Vl E: + lIpll2) + Bsllpllc2(le — wall 2

1 _ i}
<5 IVplZ: + Cllpl - (IValZ +1) + ClinllZs + Clla — uall7-

Therefore, we see that

d _ ,
ez + Nl < CllpllZz(IValzn + 1) + Clinllz: + Clla = uallz2. (5.25)

Combining (5.22)-(5.25) and taking ¢ small enough, we have

d

(MG + lInliZz + llollZe) + Iz + [1nllZs + llellF
<C(IValz + DA + InllZe + pll72) + Clla = nallZ:

+Clle—call7z + Clla — uql|3--

Applying Gronwall’s lemma to the resulting differential inequality, we know

t t t
I\ + Wl + e + [ WABiedr+ [ s + [ llfndr < c.
0 0 0

The proof is complete. 0
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