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Abstract. This paper deals with a distributed optimal control problem to the
coupled chemotaxis-fluid models. We first explore the global-in-time existence

and uniqueness of a strong solution. Then, we define the cost functional and

establish the existence of Lagrange multipliers. Finally, we derive some extra
regularity for the Lagrange multiplier.

1. Introduction. In this paper, we study the coupled chemotaxis-fluid models
with the initial-bounary conditions

nt + u · ∇n = ∆n−∇ · (n∇c) + γn− µn2, in Q ≡ (0, T )× Ω,

ct + u · ∇c = ∆c− c+ n+ f, in Q,

ut + u · ∇u = ∆u−∇π + n∇ϕ, in Q,

∇ · u = 0, in Q,

∂n

∂ν
=
∂c

∂ν
= 0, u = 0, on (0, T )× ∂Ω,

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), in Ω,

(1.1)

where Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω. ν is the outward
normal vector to ∂Ω, and γ, µ are positive constants. n, c denote the bacterial
density, the oxygen concentration, respectively. u, π are the fluid velocity and the
associated pressure. Here, the function f denotes a control that acts on chemical
concentration, which lies in a closed convex set U . We observe that in the sub-
domains where f ≥ 0 we inject oxygen, and conversely where f ≤ 0 we extract
oxygen.

In order to understand the development of system (1.1), let us mention some
previous contributions in this direction. Jin [11] dealed with the time periodic
problem of (1.1) in spatial dimension n = 2, 3. Jin [12] also obtained the existence
of large time periodic solution in Ω ⊂ R3 without the term u · ∇u.

2020 Mathematics Subject Classification. Primary: 92C17, 49J20; Secondary: 49K20, 35K51.

Key words and phrases. Chemotaxis-fluid models, optimal control, Lagrange multipliers.
This work is supported by the Jilin Scientific and Technological Development Program (no.

20210101466JC).
∗ Corresponding author: Changchun Liu.

4269

http://dx.doi.org/10.3934/era.2021085


4270 YUNFEI YUAN AND CHANGCHUN LIU

Espejo and Suzuki [6] discussed the chemotaxis-fluid model

nt + u · ∇n = ∆n−∇ · (n∇c) + n(γ − µn), (1.2)

ct + u · ∇c = ∆c− c+ n, (1.3)

ut = ∆u−∇π + n∇ϕ, (1.4)

∇ · u = 0, (1.5)

∂n

∂ν
=
∂c

∂ν
= 0, u = 0. (1.6)

They proved the global existence of weak solution. Tao and Winkler [17] proved
the existence of global classical solution and the uniform boundedness. Tao and
Winkler [18] also obtained the global classical solution and uniform boundedness
under the condition of µ > 23.

The optimal control problems governed by the coupled partial differential equa-
tions is important. Colli et al. [4] studied the distributed control problem for a
phase-field system of conserved type with a possibly singular potential. Liu and
Zhang [14] considered the optimal control of a new mechanochemical model with
state constraint. Chen et al. [3] studied the distributed optimal control problem
for the coupled Allen-Cahn/Cahn-Hilliard equations. Recently, Guillén-González
et al. [9] studied a bilinear optimal control problem for the chemo-repulsion model
with the linear production term. The existence, uniqueness and regularity of strong
solutions of this model are deduced. They also derived the first-order optimality
conditions by using a Lagrange multipliers theorem. Frigeri et al. [8] studied an
optimal control problem for two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes
systems with degenerate mobility and singular potential. Some other results can be
found in [2, 5, 13, 15, 19].

In this paper, we discuss the optimal control problem for (1.1). We adjust the
external source f , so that the bacterial density n, oxygen concentration c and fluid
velocity u are as close as possible to a desired state nd, cd and ud, and at the
final moment T is as close as possible to a desired state nΩ, cΩ and uΩ. The
main difficulties for treating the problem are caused by the nonlinearity of u · ∇u.
Our method is based on fixed point method and Simon’s compactness results. We
overcome the above difficulties and derive first-order optimality conditions by using
a Lagrange multipliers theorem.

2. Basic estimates of linearized problem. In this section, we will construct the
existence and some priori estimates of the linearized problem for the chemotaxis-
Navier-Stokes system in a bounded domain Ω ⊂ R2. The proofs in this section will
be established for a detailed framework.

In the following lemmas we will state the Gagliardo-Nirenberg interpolation in-
equality [7].

Lemma 2.1. Let l and k be two integers satisfying 0 6 l < k. Suppose that 1 6 q,
r 6∞, p > 0 and l

k 6 a 6 1 such that

1

p
− l

N
= a

(
1

q
− k

N

)
+ (1− a)

1

r
. (2.1)

Then, for any u ∈ W k,q(Ω) ∩ Lr(Ω), there exist two positive constants C1 and C2

depending only on Ω, q, k, r and N such that the following inequality holds∥∥Dlu
∥∥
Lp 6 c1

∥∥Dku
∥∥a
Lq ‖u‖1−aLr + c2‖u‖Lr
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with the following exception: If 1 < q <∞ and k− l− N
q is a non-negative integer,

the (2.1) holds only for a satisfying l
k ≤ a < 1.

The following log-interpolation inequality has been proved by [1].

Lemma 2.2. Let Ω ⊂ R2 be a bounded domain with smooth boundary. Then for
all non-negative u ∈ H1(Ω), there holds

‖u‖3L3(Ω) ≤ δ‖u‖
2
H1(Ω)‖(u+ 1) log(u+ 1)‖L1(Ω) + p

(
δ−1
)
‖u‖L1(Ω),

where δ is any positive number, and p(·) is an increasing function.

We first consider the existence of solutions to the linear problem of system (1.1).
Assume functions u0 ∈ H1(Ω), û ∈ L4

(
0, T ;L4(Ω)

)
, n̂ ∈ L2

(
0, T ;L2(Ω)

)
, and

consider 
ut −∆u+ û · ∇u = −∇π + n̂∇ϕ, in Q,

∇ · u = 0, in Q,

u = 0, on ∂Ω,

u(x, 0) = u0(x), in Ω.

(2.2)

By using fixed point method, the existence of solutions can be easily obtained.
Therefore, we ignore the process of proof and just give the regularity estimate.

Lemma 2.3. Let u0 ∈ H1(Ω), û ∈ L4
(
0, T ;L4(Ω)

)
, n̂ ∈ L2

(
0, T ;H1(Ω)

)
,∇ϕ ∈

L∞(Q), and u be the solution of the problem (2.2), then u ∈ L∞
(
0, T ;H1(Ω)

)
∩

L2
(
0, T ;H2(Ω)

)
and ut ∈ L2(0, T ;L2(Ω)).

Proof. Multiplying the first equation of (2.2) by u, and integrating it over Ω, we
get

1

2

d

dt

∫
Ω

u2dx+

∫
Ω

|∇u|2dx+

∫
Ω

u2dx

=

∫
Ω

n̂∇ϕ · udx+

∫
Ω

u2dx

≤‖n̂‖L2‖u‖L2 + ‖u‖2L2

≤C(‖n̂‖2L2 + ‖u‖2L2).

By Gronwall’s inequality, we have

‖u‖2L2 +

∫ T

0

‖u‖2H1dτ ≤ C

(∫ T

0

‖n̂‖2L2dτ + ‖u0‖2L2

)
.

Operating the Helmholtz projection operator P to the first equation of (2.2), we
know

ut +Au+ P (û · ∇u) = P (n̂∇ϕ),

where A := −P∆ is called Stokes operator, which is an unbounded self-adjoint
positive operator in L2 with compact inverse, for more properties of Stokes operator,
we refer to [10]. Note that ∇ · u = 0, that is Pu = u, P∆u = ∆u, Put = ut. So,
in following calculations, we ignore the projection operator P . Multiplying this
equation by ∆u, and integrating it over Ω, we get

1

2

d

dt

∫
Ω

|∇u|2dx+

∫
Ω

|∆u|2dx+

∫
Ω

|∇u|2dx
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=

∫
Ω

P (û∇u)∆udx−
∫

Ω

P (n̂∇ϕ)∆udx+

∫
Ω

|∇u|2dx.

For the terms on the right, we have∫
Ω

P (û∇u)∆udx−
∫

Ω

P (n̂∇ϕ)∆udx+

∫
Ω

|∇u|2dx

≤‖û‖L4‖∇u‖L4‖∆u‖L2 + ‖n̂‖L2‖∆u‖L2 + ‖∇u‖2L2

≤‖û‖L4‖∇u‖1/2L2 ‖∆u‖3/2L2 + ‖û‖L4‖∇u‖L2‖∆u‖L2 + ‖n̂‖L2‖∆u‖L2 + ‖∇u‖2L2

≤1

2
‖∆u‖2L2 + C

(
‖û‖4L4 + ‖û‖2L4 + 1

)
‖∇u‖2L2 + ‖n̂‖2L2 .

Therefore, we get

d

dt
‖∇u‖2L2 + ‖∇u‖2H1 ≤ C

(
‖û‖4L4 + ‖û‖2L4 + 1

)
‖∇u‖2L2 + C‖n̂‖2L2 + C.

By Gronwall’s inequality, we derive

‖∇u‖2L2 +

∫ T

0

‖∇u‖2H1dτ ≤ C.

Multiplying the first equation of (2.2) by ut, and combining with above inequality,
we have ∫ T

0

∫
Ω

|ut|2dxdt ≤ C.

Summing up, we complete the proof.

For the above solution u, we consider the following linear problem
ct −∆c+ u · ∇c+ c = n̂+ + f, in Q,

∂c

∂ν
= 0, on (0, T )× ∂Ω,

c(x, 0) = c0(x), in Ω.

(2.3)

Along with fixed point method, the existence of solutions can be easily obtained.
Thus we omit the proof and only give the regularity estimate.

Lemma 2.4. Let c0 ∈ H2(Ω), n̂ ∈ L2
(
0, T ;H1(Ω)

)
, f ∈ L2

(
0, T ;H1(Ω)

)
, u

be the solution of the problem (2.2), and c be the solution of (2.3). Then c ∈
L∞

(
(0, T ), H2(Ω)

)
∩ L2

(
(0, T ), H3(Ω)

)
and ct ∈ L2(0, T ;L2(Ω)).

Proof. Multiplying the first equation of (2.3) by c, and integrating it over Ω, we
infer from

∫
Ω
c(u · ∇c) = − 1

2

∫
Ω
c2∇ · udx = 0 that

1

2

d

dt

∫
Ω

c2dx+

∫
Ω

|∇c|2dx+

∫
Ω

c2dx ≤ ‖n̂‖L2‖c‖L2 + ‖f‖L2‖c‖L2 .

Therefore, we have

‖c‖2L2 + ‖c‖2H1 ≤ C(‖c0‖2L2 +

∫ t

0

(‖n̂‖2L2 + ‖f‖2L2)dτ).

Multiplying the first equation of (2.3) by −∆c, and integrating it over Ω, we get

1

2

d

dt

∫
Ω

|∇c|2dx+

∫
Ω

|∆c|2dx+

∫
Ω

|∇c|2dx

=

∫
Ω

u∇c∆cdx−
∫

Ω

∆cn̂dx−
∫

Ω

∆cfdx.
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Using the Young inequality and the Hölder inequality, we obtain∫
Ω

u∇c∆cdx−
∫

Ω

∆cn̂dx−
∫

Ω

∆cfdx

≤‖u‖L4‖∇c‖L4‖∆c‖L2 + ‖n̂‖L2‖∆c‖L2 + ‖f‖L2‖∆c‖L2

≤C‖u‖H1(‖∇c‖
1
2

L2‖∆c‖
1
2

L2 + ‖∇c‖L2)‖∆c‖L2 + ‖n̂‖L2‖∆c‖L2 + ‖f‖L2‖∆c‖L2

=C‖u‖H1‖∇c‖
1
2

L2‖∆c‖
3
2

L2 + C‖∇c‖L2‖∆c‖L2 + ‖n̂‖L2‖∆c‖L2 + ‖f‖L2‖∆c‖L2

≤1

2
‖∆c‖2L2 + C‖u‖4H1‖∇c‖2L2 + C(‖n̂‖2L2 + ‖f‖2L2).

Combining this and above inequalities, we conclude

d

dt
‖∇c‖2L2 + ‖∇c‖2H1 ≤ C‖u‖4H1‖∇c‖2L2 + C(‖n̂‖2L2 + ‖f‖2L2).

We therefore verify that

‖∇c‖2L2 +

∫ t

0

‖∇c‖2H1 ≤ C(

∫ t

0

‖n̂‖2L2dτ +

∫ t

0

‖f‖2L2dτ).

Applying ∇ to the first equation of (2.3), multiplying it by ∇∆c, and integrating
over Ω give

1

2

d

dt

∫
Ω

|∆c|2dx+

∫
Ω

|∇∆c|2dx+

∫
Ω

|∆c|2dx

=

∫
Ω

∇(u∇c)∇∆cdx−
∫

Ω

∇n̂+∇∆cdx−
∫

Ω

∇f∇∆cdx.

For the terms on the right, we obtain∫
Ω

∇(u∇c)∇∆cdx−
∫

Ω

∇n̂+∇∆cdx−
∫

Ω

∇f∇∆cdx

≤‖∇∆c‖L2 (‖u‖L4‖∆c‖L4 + ‖∇u‖L4‖∇c‖L4) + ‖∇n̂‖L2‖∇∆c‖L2

+ ‖∇f‖L2‖∇∆c‖L2

≤‖∇∆c‖L2(‖u‖L4‖∆c‖
1
2

L2‖∇∆c‖
1
2

L2 + ‖u‖L4‖∆c‖L2

+ ‖∇u‖
1
2

L2‖∆u‖
1
2

L2‖∇c‖
1
2

L2‖∆c‖
1
2

L2 + ‖∇u‖L2‖∇c‖
1
2

L2‖∆c‖
1
2

L2

+ ‖∇u‖
1
2

L2‖∆u‖
1
2

L2‖∇c‖L2 + ‖∇u‖L2‖∇c‖L2) + ‖∇n̂‖L2‖∇∆c‖L2

+ ‖∇f‖L2‖∇∆c‖L2

≤1

2
‖∇∆c‖2L2 + C(1 + ‖∆c‖2L2 + ‖∆u‖2L2 + ‖∇n̂‖2L2 + ‖∇f‖2L2).

Straightforward calculations yield

‖∆c‖2L2 +

∫ t

0

‖∆c‖2H1dτ ≤ C
(

1 +

∫ t

0

‖n̂‖2H1dτ +

∫ t

0

‖f‖2H1dτ

)
.

Multiplying the first equation of (2.3) by ct, and combining with above inequality,
we have ∫ T

0

∫
Ω

|ct|2dxdt ≤ C,

and thereby precisely arrive at the conclusion.
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With above solutions u and c in hand, we deal with the following linear problem.
nt −∆n+ u · ∇n+ n = −∇ · (n∇c) + (1 + γ)n̂+ − µn̂+n, in Q,

∂n

∂ν

∣∣∣∣
∂Ω

= 0,

n(x, 0) = n0(x), in Ω.

(2.4)

By a similar argument as the above two problems, the existence of solutions can be
easily obtained. Therefore, we only give the regularity estimate.

Lemma 2.5. Suppose 0 ≤ n0 ∈ H1(Ω), n̂ ∈ L2
(
0, T ;H1(Ω)

)
∩ L4

(
0, T ;L4(Ω)

)
,

and u, c, n are the solutions of the problem (2.2), (2.3) and (2.4), respectively.
Then n ≥ 0, n ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) and nt ∈ L2(0, T ;L2(Ω)).

Proof. Firstly, we verify the nonnegativity of n. We examine the set A(t) = {x :
n(x, t) < 0}. Along with (2.4), we get

d

dt

∫
A(t)

ndx−
∫
∂A(t)

∂n

∂ν
ds+

∫
A(t)

ndx = (1 + γ)

∫
A(t)

n̂+dx− µ
∫
A(t)

n̂+ndx.

Since ∂n
∂ν ≥ 0 on ∂{n < 0}, from this we deduce that the right hand side is nonneg-

ative. Integrating this equality on [0, t] gives∫
A(t)

ndxdτ +

∫ t

0

∫
A(t)

ndxdτ = 0.

Then, we get n ≥ 0.
Next, multiplying the first equation of (2.4) by n, and integrating it over Ω, we

get

1

2

d

dt

∫
Ω

n2dx+

∫
Ω

(
n2 + |∇n|2

)
dx+ µ

∫
Ω

n̂+n
2dx

=

∫
Ω

n∇c∇ndx+ (1 + γ)

∫
Ω

nn̂+dx

≤‖n‖L4‖∇c‖L4‖∇n‖L2 + (1 + γ)‖n̂‖L2‖n‖L2

≤C(‖n‖
1
2

L2‖∇n‖
1
2

L2 + ‖n‖L2)‖c‖H2‖∇n‖L2 + (1 + γ)‖n̂‖L2‖n‖L2

≤C(‖n‖2L2‖c‖4H2 + ‖n‖2L2‖c‖2H2 + ‖n̂‖L2) +
1

2
‖n‖2H1 .

So, we derive that

‖n‖2L2 +

∫ T

0

‖n‖2H1dt ≤ C

(
1 +

∫ T

0

‖n̂‖2L2dt

)
.

Multiplying the first equation of (2.4) by −∆n, and integrating it over Ω, we get

1

2

d

dt

∫
Ω

|∇n|2dx+

∫
Ω

|∆n|2dx+

∫
Ω

|∇n|2dx

=

∫
Ω

u∇n∆ndx+

∫
Ω

(∇ · (n∇c)∆n− (1 + γ)n̂+∆n+ µn̂+n∆n) dx

≤‖u‖L4‖∇n‖L4‖∆n‖L2 + ‖n‖L4‖∆c‖L4‖∆n‖L2 + ‖∇n‖L4‖∇c‖L4‖∆n‖L2

+ (1 + γ)‖n̂‖L2‖∆n‖L2 + µ‖n‖L4‖n̂‖L4‖∆n‖L2

≤C‖u‖H1(‖∇n‖
1
2

L2‖∆n‖
1
2

L2 + ‖∇n‖L2)‖∆n‖L2
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+ ‖n‖L4

(
‖∆c‖

1
2

L2‖∇∆c‖
1
2

L2 + ‖∆c‖L2

)
‖∆n‖L2 + µ‖n‖L4‖n̂‖L4‖∆n‖L2

+ (‖∇n‖
1
2

L2‖∆n‖
1
2

L2 + ‖∇n‖L2)‖∇c‖H1‖∆n‖L2 + (1 + γ)‖n̂‖L2‖∆n‖L2

≤1

2
‖∆n‖2L2 + C

(
‖∇n‖2L2 + ‖n‖4L4 + ‖∆c‖4L2 + ‖∇∆c‖2L2 + ‖n̂‖2L2 + ‖n̂‖4L4

)
≤1

2
‖∆n‖2L2 + C(1 + ‖∇n‖2L2 + ‖n‖4L2 + ‖n‖2L2‖∇n‖2L2 + ‖∇∆c‖2L2

+ ‖n̂‖2L2 + ‖n̂‖4L4).

Straightforward calculations yield

‖∇n‖2L2 +

∫ T

0

∫
Ω

(
|∆n|2 + |∇n|2 + n̂+|∇n|2

)
dxdt ≤ C.

Multiplying the first equation of (2.4) by nt, and combining with above inequality,
we have ∫ T

0

∫
Ω

|nt|2dxdt ≤ C.

The proof is complete.

Introduce the spaces

Xu = L4
(
0, T ;L4(Ω)

)
, Xn = L4

(
0, T ;L4(Ω)

)
∩ L2

(
0, T ;H1(Ω)

)
,

Yu = L∞
(
0, T ;H1(Ω)

)
∩ L2

(
0, T ;H2(Ω)

)
,

Yn = L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)).

Define a map

F : Xu ×Xn → Xu ×Xn,

F(û, n̂) = (u, n),

where the (u, n) is the solution of the decoupled linear problem

nt −∆n+ u · ∇n+ n = −∇ · (n∇c) + (1 + γ)n̂+ − µn̂+n, in (0, T )× Ω ≡ Q,
ct −∆c+ u · ∇c+ c = n̂+ + f, in (0, T )× Ω ≡ Q,
ut −∆u+ û · ∇u = −∇π + n̂∇ϕ, in (0, T )× Ω ≡ Q,
∇ · u = 0, in (0, T )× Ω ≡ Q,
∂n

∂ν
=
∂c

∂ν
= 0, u = 0, on (0, T )× ∂Ω,

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), in Ω.

Next, we use fixed point method to prove the local existence of solutions of the
problem (1.1).

Lemma 2.6. The map F : Xu ×Xn → Xu ×Xn is well defined and compact.

Proof. Let (n̂, û) ∈ Xu × Xn, by Lemmas 2.3, 2.4, 2.5 we deduce that (n, u) =
F(n̂, û) is bounded in Yu × Yn. Note that the embeddings H2(Ω) ↪→ H1(Ω) is
compact and interpolating between L∞(0, T ;H1(Ω)) and L2(0, T ;H2(Ω)). It is easy
to get that u is bounded in L4

(
0, T ;L4(Ω)

)
and n is bounded in L4

(
0, T ;L4(Ω)

)
∩

L2
(
0, T ;H1(Ω)

)
. Therefore, the operator F : Xu ×Xn → Xu ×Xn is a compact

operator.
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3. Existence and uniqueness of strong solution of system. From Lemma
2.6, (n, u) ∈ Yn × Yu satisfies pointwisely a.e. in Q the following problem

nt −∆n+ u · ∇n+ n = −∇ · (n∇c)
+ α(1 + γ)n− µn2, in Q,

ct −∆c+ u · ∇c+ c = n+ αf, in Q,

ut −∆u+ u · ∇u = −∇π + αn∇ϕ, in Q,

∇ · u = 0, in Q,

∂n

∂ν
=
∂c

∂ν
= 0, u = 0, on (0, T )× ∂Ω,

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), in Ω.

(3.1)

In order to prove the existence of solution, we first give some a priori estimates.

Lemma 3.1. Let (n, c, u) be a local solution to (3.1). Then, it holds that

‖n‖L1 +

∫ t

0

(‖n‖L1 + ‖n‖L2)dτ ≤ C, (3.2)

‖∇u‖2L2 +

∫ t

0

‖∇u‖2H1dτ ≤ C, (3.3)

‖∇c‖2L2 +

∫ t

0

‖∇c‖2H1dτ ≤ C. (3.4)

Proof. With Lemma 2.5 in hand, we get n ≥ 0. Integrating the first equation of
(3.1) over Ω, we see that

d

dt

∫
Ω

ndx+

∫
Ω

ndx+ µ

∫
Ω

n2dx = α(1 + γ)

∫
Ω

ndx ≤ µ

2

∫
Ω

n2dx+ C.

Solving this differential inequality, we obtain that

‖n‖L1 +

∫ t

0

(‖n‖L1 + ‖n‖L2)dτ ≤ C.

Multiplying the third equation of (3.1) by u, and integrating it over Ω, we get

1

2

d

dt

∫
Ω

u2dx+

∫
Ω

|∇u|2dx+

∫
Ω

u2dx =α

∫
Ω

n∇ϕ · udx+

∫
Ω

u2dx

≤‖n‖L2‖u‖L2 + ‖u‖2L2 ≤ C(‖n‖2L2 + ‖u‖2L2).

Therefore, we see that

‖u‖2L2 +

∫ t

0

‖u‖H1dτ ≤ C.

By the Gagliardo-Nirenberg interpolation inequality, we deduce that∫ t

0

‖u‖4L4dτ ≤C
∫ t

0

(‖u‖2L2‖∇u‖2L2d+ ‖u‖2L2)τ

≤‖u‖2L2

∫ t

0

‖∇u‖2L2dτ +

∫ t

0

‖u‖2L2dτ

≤C.
Multiplying the third equation of (3.1) by ∆u, and integrating it over Ω, we get

d

dt
‖∇u‖2L2 + ‖∇u‖2H1 ≤ C

(
‖u‖4L4 + ‖u‖2L4 + 1

)
‖∇u‖2L2 + C‖n‖2L2 + C.
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Thus, we know

‖∇u‖2L2 +

∫ t

0

‖∇u‖2H1dτ ≤ C.

Multiplying the second equation of (3.1) by c, and integrating it over Ω, we have

1

2

d

dt

∫
Ω

c2dx+

∫
Ω

|∇c|2dx+

∫
Ω

c2dx ≤ ‖n‖L2‖c‖L2 + α‖f‖L2‖c‖L2 .

Then, we have

‖c‖L2 +

∫ t

0

‖c‖H1dτ ≤ C.

Multiplying the second equation of (3.1) by −∆c, and integrating it over Ω, we get

d

dt
‖∇c‖2L2 + ‖∇c‖2H1 ≤ C‖u‖4H1‖∇c‖2L2 + C(‖n‖2L2 + ‖f‖2L2).

Further, we have

‖∇c‖2L2 +

∫ t

0

‖∇c‖2H1dτ ≤ C.

The proof is complete.

Lemma 3.2. Let (n, c, u) be a local solution to (3.1). Then, it holds that

‖(n+ 1) ln(n+ 1)‖L1 + ‖∇c‖2L2 + ‖∇c‖2H1 ≤ C. (3.5)

Proof. We rewrite the first equation of (3.1) as

d

dt
(n+ 1) + u · ∇(n+ 1)−∆(n+ 1)

=−∇ · ((n+ 1) · ∇c) + ∆c+ α(1 + γ)n− µn2.

Multiplying the above equation by ln(n+ 1) and integrating the equation, we have

d

dt

∫
Ω

(n+ 1) ln(n+ 1)dx+ 4

∫
Ω

|∇
√
n+ 1|2dx

≤
∫

Ω

∇(n+ 1) · ∇cdx+

∫
Ω

∆c ln(n+ 1)dx+ α(1 + γ)

∫
Ω

n ln(n+ 1)dx

=I1 + I2 + I3.

For I1, integrating by parts and using Young’s inequality with small δ, we get

I1 = −
∫

Ω

n∆cdx ≤ ‖n‖L2‖∆c‖L2 ≤ δ‖∆c‖2L2 + C‖n‖2L2 .

For the term I2, we have

I2 =

∫
Ω

∆c ln(n+ 1)dx ≤ δ‖∆c‖2L2 + C‖ ln(n+ 1)‖2L2

≤δ‖∆c‖2L2 + C

∫
Ω

(n+ 1) ln(n+ 1)dx.

For the rest term I3, straightforward calculations yield

I3 = α(1 + γ)

∫
Ω

n ln(n+ 1)dx ≤ (1 + γ)

∫
Ω

(n+ 1) ln(n+ 1)dx.



4278 YUNFEI YUAN AND CHANGCHUN LIU

Combining I1, I2 with I3, we conduct that

d

dt

∫
Ω

(n+ 1) ln(n+ 1)dx+ 4

∫
Ω

|∇
√
n+ 1|2dx

≤δ‖∆c‖2L2 + C

∫
Ω

(n+ 1) ln(n+ 1)dx+ C‖n‖2L2 . (3.6)

Multiplying the second equation of (3.1) by ∆c, and integrating it over Ω, we get

1

2

d

dt

∫
Ω

|∇c|2dx+

∫
Ω

|∆c|2dx+

∫
Ω

|∇c|2dx

=

∫
Ω

u∇c∆cdx−
∫

Ω

∆cndx− α
∫

Ω

∆cfdx.

Straightforward calculations yield

d

dt
‖∇c‖2L2 + ‖∇c‖2H1 ≤ C‖∇c‖2L2 + C(‖n‖2L2 + ‖f‖2L2). (3.7)

Combing (3.6) and (3.7), it follows that

d

dt

∫
Ω

(n+ 1) ln(n+ 1)dx+
d

dt
‖∇c‖2L2 + (1− δ)‖∇c‖2H1 + 4

∫
Ω

|∇
√
n+ 1|2dx

≤C
∫

Ω

(n+ 1) ln(n+ 1)dx+ C(‖f‖2L2 + ‖n‖2L2).

Taking δ small enough, and solving this differential inequality, we obtain that

‖(n+ 1) ln(n+ 1)‖L1 + ‖∇c‖2L2 + ‖∇c‖2H1 ≤ C.

The proof is complete.

Lemma 3.3. Assume f ∈ L2(0, T ;H1(Ω)), let (n, c, u) be a local solution to (3.1).
Then, it holds that

‖n‖2L2 + ‖∆c‖2L2 +

∫ t

0

‖n‖H1dτ +

∫ t

0

‖∆c‖H1dτ ≤ C. (3.8)

Proof. Taking the L2-inner product with n for the first equation of (3.1) implies

1

2

d

dt

∫
Ω

n2dx+

∫
Ω

(
n2 + |∇n|2

)
dx+ µ

∫
Ω

n3dx

=

∫
Ω

n∇c∇ndx+ α (1 + γ)

∫
Ω

n2dx

=− 1

2

∫
Ω

n2∆cdx+ α (1 + γ)

∫
Ω

n2dx.

Here, we note that∣∣∣∣∫
Ω

n2∆cdx

∣∣∣∣ ≤‖n‖2L3‖∆c‖L3

≤C‖n‖2L3(‖∇∆c‖
2
3

L2‖∇c‖
1
3

L2 + ‖∇c‖L2)

≤C‖n‖2L3(‖∇∆c‖
2
3

L2 + 1).

From Lemma 2.2 and (3.2), it follows that

− χ

2

∫
Ω

n2∆cdx
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≤C
(
δ‖n‖2H1‖(n+ 1) log(n+ 1)‖L1 + p

(
δ−1
)
‖n‖L1

) 2
3 (‖∇∆c‖

2
3

L2 + 1)

≤C
(
δ‖n‖2H1 + p

(
δ−1
)) 2

3 (‖∇∆c‖
2
3

L2 + 1)

≤C(δ‖n‖
4
3

H1‖∇∆c‖
2
3

L2 + δ‖n‖
4
3

H1 + p
2
3

(
δ−1
)
‖∇∆c‖

2
3

L2 + p
2
3

(
δ−1
)
)

≤δ‖∇∆c‖2L2 + Cδ
1
2 ‖n‖2H1 + C

−1/2
δ p

(
δ−1
)
.

As an immediate consequence

d

dt
‖n‖2L2 + ‖n‖2H1 ≤ δ‖∇∆c‖2L2 + Cδ

1
2 ‖n‖2H1 + C‖n‖2L2 . (3.9)

Applying ∇ to the first equation of (3.1), multiplying it by ∇∆c, and integrating
over Ω give

1

2

d

dt

∫
Ω

|∆c|2dx+

∫
Ω

|∇∆c|2dx+

∫
Ω

|∆c|2dx

=

∫
Ω

∇(u∇c)∇∆cdx−
∫

Ω

∇n∇∆cdx−
∫

Ω

∇f∇∆cdx = I4 + I5.

For I4, by using the Gagliardo-Nirenberg interpolation inequality, we get

I4 =

∫
Ω

∇(u∇c)∇∆cdx

≤‖∇∆c‖L2 (‖u‖L4‖∆c‖L4 + ‖∇u‖L4‖∇c‖L4)

≤‖∇∆c‖L2(‖u‖L4‖∆c‖
1
2

L2‖∇∆c‖
1
2

L2 + ‖u‖L4‖∆c‖L2

+ ‖∇u‖
1
2

L2‖∆u‖
1
2

L2‖∇c‖
1
2

L2‖∆c‖
1
2

L2 + ‖∇u‖L2‖∇c‖
1
2

L2‖∆c‖
1
2

L2

+ ‖∇u‖
1
2

L2‖∆u‖
1
2

L2‖∇c‖L2 + ‖∇u‖L2‖∇c‖L2)

≤1

4
‖∇∆c‖2L2 + C(1 + ‖∆c‖2L2 + ‖∆u‖2L2).

For the term I5, we have

I5 =−
∫

Ω

∇n∇∆cdx−
∫

Ω

∇f∇∆cdx

≤C(‖∇n‖2L2 + ‖∇f‖2L2) +
1

4
‖∇∆c‖2L2 .

Along with I4 and I5, we conclude

d

dt
‖∆c‖2L2 + ‖∇∆c‖2L2 + ‖∆c‖2L2

≤C(1 + ‖∆c‖2L2 + ‖∆u‖2L2 + ‖∇n‖2L2 + ‖∇f‖2L2). (3.10)

Combining (3.9) and (3.10), it follows that

d

dt
(‖n‖2L2 + ‖∆c‖2L2) + ‖∆c‖2L2 + (1− Cδ 1

2 )‖n‖2H1 + (1− δ)‖∇∆c‖2L2

≤C(1 + ‖∆c‖2L2 + ‖∆u‖2L2 + ‖∇n‖2L2 + ‖∇f‖2L2).

By choosing δ small enough and using (3.3) and (3.5), we have

‖n‖2L2 + ‖∆c‖2L2 +

∫ t

0

‖n‖H1dτ +

∫ t

0

‖∆c‖H1dτ ≤ C.

The proof is complete.
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Lemma 3.4. Assume f ∈ L2(0, T ;H1(Ω)), let (n, c, u) be a local solution to (3.1).
Then, it holds that

‖∇n‖2L2 +

∫ t

0

‖n‖2H2dτ ≤ C. (3.11)

Proof. Taking the L2-inner product with −∆n for the first equation of (3.1) implies

1

2

d

dt

∫
Ω

|∇n|2dx+

∫
Ω

|∆n|2dx+

∫
Ω

|∇n|2dx

=

∫
Ω

u∇n∆ndx+

∫
Ω

∇ · (n∇c)∆ndx+ (1 + γ)

∫
Ω

|∇n|2dx+ µ

∫
Ω

n2∆ndx

=I6 + I7 + I8.

For the term I6, with the estimate (3.3), we have

I6 =

∫
Ω

u∇n∆ndx = −1

2

∫
Ω

∇u(∇n)2dx ≤ ‖∇u‖L2‖∇n‖2L4

≤‖∇u‖L2(‖∇n‖
1
2

L2‖∆n‖
1
2

L2 + ‖∇n‖L2)2

≤δ‖∆n‖2L2 + C‖∇n‖2L2 .

For the term I7, taking (3.8) into considering, we conduct that

I7 =

∫
Ω

∇ · (n∇c)∆ndx

=

∫
Ω

(∇n∇c+ n∆c)∆ndx

≤‖∆n‖L2 (‖∇n‖L3‖∇c‖L6 + ‖n‖C‖∆c‖L2)

≤C‖∆n‖L2

(
‖∇n‖

H
1
3
‖∇c‖H1 + ‖n‖

H
4
3
‖∆c‖L2

)
≤C‖n‖H2‖n‖

H
4
3
‖c‖H2 ≤ C‖n‖

5
3

H2‖n‖
1
3

L2‖c‖H2

≤δ‖n‖2H2 + C(δ)‖n‖2L2‖c‖6H2 ≤ δ‖n‖2H2 + C.

For the term I8, thanks to the nonnegativity of n, we see that

I8 =(1 + γ)

∫
Ω

|∇n|2dx+ µ

∫
Ω

n2∆ndx

=(1 + γ)

∫
Ω

|∇n|2dx− 2µ

∫
Ω

|∇n|2ndx

≤(1 + γ)‖∇n‖2L2 .

Combine the estimates about I6, I7 and I8, it follows that

d

dt
‖∇n‖2L2 + (1− 4δ)‖n‖2H2 ≤ C‖∇n‖2L2 + C.

By taking δ small enough, we get

‖∇n‖2L2 +

∫ t

0

‖n‖2H2dτ ≤ C.

Therefore, this proof is complete.

Lemma 3.5. The operator F : Xu ×Xn → Xu ×Xn, is continuous.
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Proof. Let {(n̂m, ûm)}m∈N be a sequence of Xu × Xn, Then, with Lemmas 2.3,
2.4 and 2.5 in hand, we conduct that {(nm, um) = F(n̂m, ûm)}m∈N is bounded in
Yu×Yn. Taking the compactness of Yu×Yn in Xu×Xn into consider, we see that F
is a compact operator, which means there exists a subsequence of {F(n̂m, ûm)}m∈N,
for convenience, still denoted as {F(n̂m, ûm)}m∈N, and exists an element (n̂, û) in
Yu × Yn such that

F(n̂m, ûm)→ (n̂, û) weakly in Yu × Yn and strongly in Xu ×Xn.

Let m→∞ and take the limit, it is clear that (n, u) = F(n̂m, ûm) and (n̂m, ûm) =
(n̂, û), this means that F(n̂m, ûm) = (n̂m, ûm). Since uniqueness of limit, the map
F is continuous.

Theorem 3.1. Let u0 ∈ H1(Ω), n0 ∈ H1(Ω), c0 ∈ H2(Ω) with n0 ≥ 0 in Ω, and
f ∈ L2(0, T ;H1(Ω)), then (1.1) exists unique strong solution (n, c, u). Moreover,
there exists a positive C constant such that

‖n‖L∞(0,T ;H1(Ω)) + ‖n‖L2(0,T ;H2(Ω)) + ‖nt‖L2(0,T ;L2(Ω)) + ‖c‖L∞(0,T ;H2(Ω))

+ ‖c‖L2(0,T ;H3(Ω)) + ‖ct‖L2(0,T ;L2(Ω)) + ‖u‖L∞(0,T ;H1(Ω))

+ ‖u‖L2(0,T ;H2(Ω)) + ‖ut‖L2(0,T ;L2(Ω)) ≤ C. (3.12)

Proof. From Lemmas 3.1, 3.3 and 3.4, it is easy to verify the existence of solution
and (3.11). Therefore, we will prove the uniqueness of the solution in the following
part. For convenience, we set n = n1 − n2, c = c1 − c2 and u = u1 − u2, where
(ni, ci, ui) is the strong solution of the system, where i = 1, 2. Thus, we obtain the
following system

nt −∆n+ u1 · ∇n+ u∇n2 = −∇ · (n1∇c)
−∇(n∇c2) + γn− µn(n1 + n2), in (0, T )× Ω ≡ Q, (3.13)

ct −∆c+ u1 · ∇c+ u∇c2 + c = n, in (0, T )× Ω ≡ Q, (3.14)

ut −∆u+ u1 · ∇u+ u · ∇u2 = n∇ϕ, in (0, T )× Ω ≡ Q, (3.15)

∇ · u = 0, in (0, T )× Ω ≡ Q, (3.16)

∂n

∂ν
=
∂c

∂ν
= 0, u = 0, on (0, T )× ∂Ω, (3.17)

n0(x) = c0(x) = u0(x) = 0, in Ω. (3.18)

Taking the L2-inner product with n for the (3.13) implies

1

2

d

dt

∫
Ω

n2dx+

∫
Ω

|∇n|2dx+

∫
Ω

n2dx

≤−
∫

Ω

u∇n2ndx+

∫
Ω

n1∇c∇ndx+

∫
Ω

n∇c2∇ndx+ (1 + γ)

∫
Ω

n2dx

=I9 + I10 + I11 + I12.

For the term I9, due to the estimates (3.3) and (3.8), we have

I9 =−
∫

Ω

u∇n2ndx ≤ ‖∇n2‖L2‖u‖L4‖n‖L4

≤C‖∇n2‖L2‖u‖H1(‖n‖
1
2

L2‖∇n‖
1
2

L2 + ‖n‖L2)

≤δ
3
‖∇n‖2L2 + C‖n‖2L2 .
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For the term I10, with the estimate (3.8) and (3.11), we get

I10 =

∫
Ω

n1∇c∇ndx ≤ ‖∇n‖L2‖n1‖L4‖∇c‖L4

≤C‖∇n‖L2‖n1‖H1‖∇c‖H1

≤δ
3
‖∇n‖2L2 + C.

For the term I11,

I11 =

∫
Ω

n∇c2∇ndx ≤ ‖∇n‖L2‖∇c2‖L4‖n‖L4

≤‖∇n‖L2‖∇c2‖H1‖n‖H1

≤δ
3
‖∇n‖2L2 + C.

With the use of estimates Ii(i = 9, 10, 11, 12), we have

d

dt
‖n‖2L2 + ‖n‖H1 ≤ δ‖∇n‖2L2 + C‖n‖2L2 + C. (3.19)

Taking the L2-inner product with c for the (3.14) implies

1

2

d

dt

∫
Ω

c2dx+

∫
Ω

|∇c|2dx+

∫
Ω

c2dx

=−
∫

Ω

u1∇ccdx−
∫

Ω

u∇c2cdx+

∫
Ω

ncdx

≤‖c‖2L4‖∇u1‖L2 + ‖u‖L2‖∇c2‖L4‖c‖L4 + ‖n‖L2‖c‖L2

≤C(‖c‖
1
2

L2‖∇c‖
1
2

L2 + ‖c‖L2)2‖∇u1‖L2 + (‖c‖
1
2

L2‖∇c‖
1
2

L2 + ‖c‖L2)‖u‖L2‖∇c2‖H1

+ ‖n‖L2‖c‖L2

≤δ‖∇c‖2L2 + C‖c‖2L2 .

Then, we get

d

dt
‖c‖2L2 + ‖c‖H1 ≤ δ‖∇c‖2L2 + C‖c‖2L2 . (3.20)

Taking the L2-inner product with c for the (3.15) implies

1

2

∫
Ω

u2dx+

∫
Ω

|∇u|2dx =

∫
Ω

n∇ϕudx.

Straightforward calculations yield

d

dt
‖u‖2L2 + ‖u‖H1 ≤ C(‖u‖2L2 + ‖n‖2L2). (3.21)

Then, a combination of (3.19), (3.20) and (3.21) yields

d

dt
(‖n‖2L2 + ‖c‖2L2 + ‖u‖2L2) + (‖n‖H1 + ‖c‖H1 + ‖u‖H1)

≤δ(‖∇n‖2L2 + ‖∇c‖2L2 + ‖∇u‖2L2) + (‖n‖2L2 + ‖c‖2L2 + ‖u‖2L2) + C.

By choosing δ small enough, we get

d

dt
(‖n‖2L2 + ‖c‖2L2 + ‖u‖2L2) ≤ C(‖n‖2L2 + ‖c‖2L2 + ‖u‖2L2) + C.

Applying Gronwall’s lemma to the resulting differential inequality, we finally obtain
the uniqueness of the solution.
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4. Existence of an optimal control. In this section, we will prove the existence
of the optimal solution of control problem. The method we use for treating this
problem was inspired by some ideas of Guillén-González et al [9]. Assume U ⊂
L2(0, T ;H1(Ωc)) is a nonempty, closed and convex set, where control domain Ωc ⊂
Ω, and Ωd ⊂ Ω is the observability domain. We adjust the external source f , so
that the bacterial density n, oxygen concentration c and fluid velocity u are as close
as possible to a desired state nd, cd and ud, and at the final moment T is as close as
possible to a desired state nΩ, cΩ and uΩ. We consider the optimal control problem
as follows

Minimize the cost functional

J(n, c, u, f) =
β1

2
‖n− nd‖2L2(Qd) +

β2

2
‖c− cd‖2L2(Qd) +

β3

2
‖u− ud‖2L2(Qd)

+
β4

2
‖n(T )− nΩ‖2L2(Ωd) +

β5

2
‖c(T )− cΩ‖2L2(Ωd)

+
β6

2
‖u(T )− uΩ‖2L2(Ωd) +

β7

2
‖f(x, t)‖2L2(Qc), (4.1)

subject to the system (1.1). Moreover, the nonnegative constants βi, i = 1, 2, · · · , 7
are given but not all zero, the functions nd, cd, ud represents the desired states
satisfying

nd ∈ L2(Qd), cd ∈ L2(Qd), ud ∈ L2(Qd),

nΩ ∈ L2(Ωc), cΩ ∈ L2(Ωc), uΩ ∈ L2(Ωc), f ∈ U .

The set of admissible solutions of optimal control problem (4.1) is defined by

Sad = {s = (n, c, u, f) ∈ H : s is a strong solution of (1.1)}.

The function space H is given by

H = Yn × Yc × Yu × U ,

where Yc = L∞
(
0, T ;H2(Ω)

)
∩ L2

(
0, T ;H3(Ω)

)
.

Now, we prove the existence of a global optimal control for problem (1.1).

Theorem 4.1. Suppose f ∈ U is satisfied, and n0 ≥ 0, then the optimal control
problem (4.1) admits a solution (n̄, c̄, ū, f̄) ∈ Sad.

Proof. Along with Theorem 3.1, we conduct that Sad 6= ∅, then there exists the
minimizing sequence {(nm, cm, um, fm)}m∈N ∈ Sad such that

lim
m→+∞

J(nm, cm, um, fm) = inf
(n,c,u,f)∈Sad

J(n, c, u, f). (4.2)

According to the definition of Sad, for each m ∈ N there exists (nm, cm, um, fm)
satisfying

nmt + um · ∇nm = ∆nm −∇ · (nm · ∇cm) + γnm − µn2
m, in Q,

cmt + um · ∇cm = ∆cm − cm + nm + fm, in Q,

umt + um · ∇um = ∆um −∇π + nm∇ϕ, in Q,

∇ · um = 0, in Q,

∂nm
∂ν

∣∣∣
∂Ω

=
∂cm
∂ν

∣∣∣
∂Ω

= 0, um|∂Ω = 0,

nm(0) = n0, cm(0) = c0, um(0) = u0, in Ω.

(4.3)
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Observing that U is a closed convex subset of L2(0, T ;H1(Ωc)). According to
the definition of Sad, we deduce that there exists (n̄, c̄, ū, f̄) bounded in H such
that, for subsequence of (nm, cm, um, fm)m∈N, for convenience, still denoted by
(nm, cm, um, fm), as m→ +∞

nm → n̄, weakly in L2
(
0, T ;H2(Ω)

)
and weakly* in L∞

(
0, T ;H1(Ω)

)
,

cm → c̄, weakly in L2
(
0, T ;H3(Ω)

)
and weakly* in L∞

(
0, T ;H2(Ω)

)
,

um → ū, weakly in L2
(
0, T ;H2(Ω)

)
and weakly* in L∞

(
0, T ;H1(Ω)

)
,

fm → f̄ , weakly in L2(0, T ;H1(Ωc)), and f̃ ∈ U .

According to the Aubin-Lions lemma [16] and the compact embedding theorems,
we obtain

nm → n̄, strongly in C
(
[0, T ];L2(Ω)

)
∩ L2

(
0, T ;H1(Ω)

)
,

cm → c̄, strongly in C
(
[0, T ];H1(Ω)

)
∩ L2

(
0, T ;H2(Ω)

)
,

um → ū, strongly in C
(
[0, T ];L2(Ω)

)
∩ L2

(
0, T ;H1(Ω)

)
.

Since ∇ · (nm∇cm) = ∇nm · ∇cm + nm∆cm is bounded in L2(0, T ;L2(Ω)), then

∇ · (nm∇cm)→ χ, weakly in L2(0, T ;L2(Ω)).

Recalling that

nm∇cm → n̄∇c̄, weakly in L∞(0, T ;L2(Ω)).

Therefore, we get that χ = ∇(n̄∇c̄). Owing to (n̄, c̄, ū, f̄) ∈ H, we see that (n̄, c̄, ū, f̄)
is solution of the system (1.1), along with (4.2) implies that

lim
m→+∞

J(nm, cm, um, fm) = inf
(u,c,u,f)∈Sad

J(u, c, u, f) ≤ J(n̄, c̄, ū, f̄).

On the other hand, we deduce from the weak lower semicontinuity of the cost
functional

J(n̄, c̄, ū, f̄) ≤ lim inf
m→+∞

J(nm, cm, um, fm).

Therefore, this implies that (n̄, c̄, ū, f̄) is an optimal pair for problem (1.1).

5. The first-order necessary optimality condition. In order to derive the first-
order necessary optimality conditions for a local optimal solution of problem (4.1).
To this end, we will use a result on existence of Lagrange multipliers in Banach
spaces ([20]). First, we discuss the following problem

min J(s) subject to s ∈ S = {s ∈ H : G(s) ∈ N}, (5.1)

where J : X → R is a functional, G : X → Y is an operator, X and Y are Banach
spaces, and nonempty closed convex set H is subset of X and nonempty closed
convex cone N with vertex at the origin in Y .
A+ denotes its polar cone

A+ = {ρ ∈ X ′ : 〈ρ, a〉X′ ≥ 0,∀a ∈ A}.

We consider the following Banach spaces

X = Vn × Vc × Vu × L2(0, T ;H1(Ωc)),

Y = L2(Q)× L2(0, T ;H1(Ω))× L2(Q)×H1(Ω)×H2(Ω)×H1(Ω),
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where

Vn = {n ∈ Yn :
∂n

∂ν
on (0, T )× ∂Ω},

Vc = {n ∈ Yc :
∂c

∂ν
on (0, T )× ∂Ω},

Vu = {n ∈ Yu : u = 0 on (0, T )× ∂Ω and ∇ · u = 0 in (0, T )× Ω}

and the operator G = (G1, G2, G3, G4, G5, G6) : X → Y , where

G1 : X → L2(Q), G2 : X → L2(0, T ;H1(Ω)), G3 : X → L2(Q),

G4 : X → H1(Ω), G5 : X → H2(Ω), G6 : X → H1(Ω),

which are defined at each point s = (n, c, u, f) ∈ X by

G1 = nt + u · ∇n−∆n+∇ · (n · ∇c)− γn+ µn2,

G2 = ct + u · ∇c−∆c+ c− n− f,
G3 = ut + u · ∇u−∆u+∇π − n∇ϕ,
G4 = n(0)− n0,

G5 = c(0)− c0,
G6 = u(0)− u0.

(5.2)

The function spaces are given as follows

H = Vn × Vc × Vu × U .

We see that H is a closed convex subset of X and N = {0}, and rewrite the optimal
control problem

min J(s) subject to s ∈ Sad = {s ∈ H : G(s) = 0}. (5.3)

Taking the differentiability of J and G into consider, it follows that

Lemma 5.1. The functional J : X → R is Fréchet differentiable and the Fréchet
derivative of J in s̄ = (n̄, c̄, ū, f̄) ∈ X in the direction r = (ñ, c̃, ũ, f̃) is given by

J ′(s̄)[r] =β1

∫ T

0

∫
Ωd

(n̄− nd)ñdxdt+ β2

∫ T

0

∫
Ωd

(c̄− cd)c̃dxdt

+ β3

∫ T

0

∫
Ωd

(ū− ud)ũ(T )dxdt+ β4

∫
Ωd

(n̄(T )− nΩ)ñ(T )dx

+ β5

∫
Ωd

(c̄(T )− cΩ)c̃dx+ β6

∫
Ωd

(ū(T )− uΩ)ũ(T )dx

+ β7

∫ T

0

∫
Ωd

f̄ f̃dxdt. (5.4)

Lemma 5.2. The operator G : X → Y is continuous-Fréchet differentiable and the
Fréchet derivative of J in s̄ = (n̄, c̄, ū, f̄) ∈ X in the direction r = (ñ, c̃, ũ, f̃), is the
linear operator

G′(s̄)[r] = (G′1(s̄)[r], G′2(s̄)[r], G′3(s̄)[r], G′4(s̄)[r], G′5(s̄)[r], G′6(s̄)[r])
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defined by

G′1(s̄)[r] = ñt −∆ñ+ ū · ∇ñ+ ũ∇n̄+∇ · (n̄∇c̃)
+∇(ñ∇c̄)− γñ+ 2µñn̄, in Q,

G′2(s̄)[r] = c̃t −∆c̃+ ū · ∇c̃+ ũ · ∇c̄+ c̃− ñ− f̃ , in Q,

G′3(s̄)[r] = ũt −∆ũ+ ū · ∇ũ+ ũ · ∇ū− ñ∇ϕ, in Q,

∇ · ũ = 0, in Q,

∂ñ

∂ν
=
∂c̃

∂ν
= 0, ũ = 0, on (0, T )× ∂Ω,

ñ(0) = ñ0, c̃(0) = c̃0, ũ(0) = ũ0, in Ω.

Lemma 5.3. Let s̄ = (n̄, c̄, ū, f̄) ∈ Sad, then s̄ is a regular point.

Proof. For any fixed (n̄, c̄, ū, f̄) ∈ Sad, we set (gn, gc, gu, ñ0, c̃0, ũ0) ∈ Y . Since
0 ∈ C(f̄), it suffices to show the existence of (ñ, c̃, ũ) ∈ Yn × Yc × Yu such that

ñt −∆ñ+ ū · ∇ñ+ ũ∇n̄+∇ · (n̄∇c̃)
+∇(ñ∇c̄)− γñ+ 2µñn̄ = gn, in Q,

c̃t −∆c̃+ ū · ∇c̃+ ũ · ∇c̄+ c̃− ñ = gc, in Q,

ũt −∆ũ+ ū · ∇ũ+ ũ · ∇ū− ñ∇ϕ = gu, in Q,

∇ · ũ = 0, in Q,

∂ñ

∂ν
=
∂c̃

∂ν
= 0, ũ = 0, on (0, T )× ∂Ω,

ñ(0) = ñ0, c̃(0) = c̃0, ũ(0) = ũ0, in Ω.

(5.5)

Next, we use Leray-Schauder’s fixed point method to prove the existence of solutions
of the problem (5.5), the operator T : (ṅ, u̇) ∈ Xn × Xu → (ñ, ũ) ∈ Yn × Yu with
(ñ, c̃, ũ) solving the decoupled problem:

ñt −∆ñ+ ū · ∇ñ+ ũ∇n̄+∇ · (n̄∇c̃)
+∇(ñ∇c̄)− γñ+ 2µṅn̄ = gn, in Q,

c̃t −∆c̃+ ū · ∇c̃+ ũ · ∇c̄+ c̃− ṅ = gc, in Q,

ũt −∆ũ+ ū · ∇ũ+ u̇ · ∇ū− ṅ∇ϕ = gu, in Q.

(5.6)

The system (5.6) is complemented by the corresponding Neumann boundary and
initial conditions. Similar to the proof of Lemmas 2.3, 2.4, 2.5 and 2.6, we conduct
that operator T : Xn ×Xu → Xn ×Xu is well-defined and compact.

Similar to the proof of Theorem 3.1, (ñ, ũ) solves the coupled problem (n̄, c̄, ū, f̄)∈
Sad, and we set (gn, gc, gu, ñ0, c̃0, ũ0) ∈ Y . Since 0 ∈ C(f̄), it suffices to show the
existence of (ñ, c̃, ũ) ∈ Yn × Yc × Yu such that

ñt −∆ñ+ ñ = −ū · ∇ñ− ũ · ∇n̄−∇ · (n̄∇c̃)
−∇(ñ∇c̄) + α(γ + 1)ñ− 2µñn̄+ αgn, in Q,

c̃t −∆c̃+ c̃ = −ū · ∇c̃− ũ · ∇c̄+ αñ+ αgc, in Q,

ũt −∆ũ = −ū · ∇ũ− ũ · ∇ū+ αñ∇ϕ+ αgu, in Q,

(5.7)

complemented by the corresponding Neumann boundary and initial conditions.
Taking the L2-inner product with ũ for the third equation of (5.7) implies

1

2

∫
Ω

ũ2dx+

∫
Ω

|∇ũ|2dx = α

∫
Ω

ñ∇ϕũdx+ α

∫
Ω

ũgudx.
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By the Poincaré inequality and Young’s inequality, we have

d

dt
‖ũ‖2L2 + ‖ũ‖2H1 ≤ C(‖ñ‖2L2 + ‖gu‖2L2) + C‖ũ‖2L2 . (5.8)

Taking the L2-inner product with c̃ for the second equation of (5.7) implies

1

2

∫
Ω

c̃2dx+

∫
Ω

|∇c̃|2dx+

∫
Ω

c̃2dx

=

∫
Ω

ũ∇c̄c̃dx+ α

∫
Ω

ñc̃dx+ α

∫
Ω

gcc̃dx.

With the Poincaré inequality and Young’s inequality in hand, we see that

d

dt
‖c̃‖2L2 + ‖c̃‖2H1 ≤ C(‖ñ‖2L2 + ‖gc‖2L2) + C‖c̃‖2L2 . (5.9)

Taking the L2-inner product with −∆c̃ for the second equation of (5.7) implies

1

2

∫
Ω

|∇c̃|2dx+

∫
Ω

|∆c̃|2dx+

∫
Ω

|∇c̃|2dx

=

∫
Ω

ũ∇c̄∆c̃dx+

∫
Ω

ū∇c̃∆c̃dx− α
∫

Ω

ñ∆c̃dx− α
∫

Ω

gc∆c̃dx

=J1 + J2 + J3.

For the term J1

J1 =

∫
Ω

ũ∇c̄∆c̃dx ≤ ‖∆c̃‖L2‖∇c̄‖L4‖ũ‖L4

≤1

6
‖∆c̃‖2L2 + C‖∇c̄‖2H1‖ũ‖2H1 .

For the term J2, we see that

J2 =

∫
Ω

ū∇c̃∆c̃dx = −1

2

∫
Ω

∇ū|∇c̃|2dx

≤‖∇ū‖L2‖∇c̃‖2L4

≤‖∇ū‖L2(‖∇c̃‖
1
2

L2‖∆c̃‖
1
2

L2 + ‖∇c̃‖L2)

≤1

6
‖∆c̃‖2L2 + C‖∇c̃‖2L2 .

For the term J3, we get

J3 =− α
∫

Ω

ñ∆c̃dx− α
∫

Ω

gc∆c̃dx

≤1

6
‖∆c̃‖2L2 + C(‖ñ‖2L2 + ‖gc‖2L2).

Therefore, combining J1, J2 and J3, we have

d

dt
‖∇c̃‖2L2 + ‖∇c̃‖2H1 ≤ C‖∇c̃‖2L2 + C(‖ñ‖2L2 + ‖gc‖2L2). (5.10)

Taking the L2-inner product with ñ for the first equation of (5.7) implies

d

dt

∫
Ω

ñ2dx+

∫
Ω

|∇ñ|2dx+

∫
Ω

ñ2dx

=−
∫

Ω

ũ∇n̄ñdx+

∫
Ω

∇ñn̄∇c̃dx+

∫
Ω

∇ññ∇c̄dx+ α(γ + 1)

∫
Ω

ñ2dx
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+ 2µ

∫
Ω

n̄ñ2dx+ α

∫
Ω

ñgndx

=J4 + J5 + J6 + J7.

For the term J4, by Gagliardo-Nirenberg interpolation inequality, we have

J4 =−
∫

Ω

ũ∇n̄ñdx ≤ ‖ũ‖L4‖∇n̄‖L2‖ñ‖L4

≤C(‖∇ũ‖
1
2

L2‖ũ‖
1
2

L2 + ‖ũ‖L2)‖∇n̄‖L2‖ñ‖H1

≤δ‖ñ‖2H1 + C‖∇ũ‖L2‖ũ‖L2 + C‖ũ‖2L2

≤δ‖ñ‖2H1 + δ‖∇ũ‖2L2 + C‖ũ‖2L2 .

For the term J5,

J5 =

∫
Ω

∇ñn̄∇c̃dx ≤ ‖∇ñ‖L2‖n̄‖L4‖∇c̃‖L4

≤‖∇ñ‖L2‖n̄‖H1(‖∇c̃‖
1
2

L2‖∆c̃‖
1
2

L2 + ‖∇c̃‖L2)

≤δ‖∇ñ‖2L2 + ‖∇c̃‖L2‖∆c̃‖L2 + C‖∇c̃‖2L2

≤δ‖∇ñ‖2L2 + δ‖∆c̃‖L2 + C‖∇c̃‖2L2 .

For the term J6,

J6 =

∫
Ω

∇ññ∇c̄dx ≤ ‖ñ‖2L4‖∆c̄‖L2

≤(‖ñ‖
1
2

L2‖∇ñ‖
1
2

L2 + ‖ñ‖L2)‖∆c̄‖L2

≤δ‖∇ñ‖2L2 + C‖ñ‖2L2 + C.

For the term J7,

J7 =α(γ + 1)

∫
Ω

ñ2dx+ 2µ

∫
Ω

n̄ñ2dx+ α

∫
Ω

ñgndx

≤(γ + 1)‖ñ‖2L2 + ‖gn‖L2‖ñ‖L2 + ‖n̄‖L2‖ñ‖2L4

≤(γ + 1)‖ñ‖2L2 + ‖gn‖L2‖ñ‖L2 + ‖n̄‖L2(‖ñ‖
1
2

L2‖∇ñ‖
1
2

L2 + ‖ñ‖L2)

≤δ‖∇ñ‖L2 + C‖ñ‖2L2 + C‖gn‖2L2 .

Therefore, by choosing δ small enough, from J4, J5, J6 and J7, it follows that

d

dt
‖ñ‖2L2 + ‖ñ‖2H1

≤C(‖ñ‖2L2 + ‖∇c̃‖2L2 + ‖ũ‖2L2) + δ‖∆c̃‖L2 + δ‖∇ũ‖2L2 + C‖gn‖2L2 . (5.11)

By choosing δ small enough and combining (5.8)-(5.11), we get

d

dt
(‖ñ‖2L2 + ‖c̃‖2H1 + ‖ũ‖2L2) + ‖ñ‖2H1 + ‖c̃‖2H2 + ‖ũ‖2H1

≤C(‖gn‖2L2 + ‖gc‖2L2 + ‖gu‖2L2) + C(‖ñ‖2L2 + ‖c̃‖2H1 + ‖ũ‖2L2).

Applying Gronwall’s lemma to the resulting differential inequality, we obatin

‖ñ‖2L2 + ‖c̃‖2H1 + ‖ũ‖2L2 +

∫ t

0

‖ñ‖2H1dτ +

∫ t

0

‖c̃‖2H2dτ +

∫ t

0

‖ũ‖2H1dτ ≤ C. (5.12)
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Taking the L2-inner product with −∆ũ for the third equation of (5.7) implies

1

2

d

dt

∫
Ω

|∇ũ|2dx+

∫
Ω

|∆ũ|2dx

=

∫
Ω

ū · ∇ũ∆ũdx+

∫
Ω

ũ · ∇ū∆ũdx− α
∫

Ω

ñ∇ϕ∆ũdx− α
∫

Ω

gu∆ũdx

=J8 + J9 + J10.

With the use of the Gagliardo-Nirenberg interpolation inequality, we derive

J8 =

∫
Ω

ū · ∇ũ∆ũdx ≤ ‖ū‖L4‖∇ũ‖L4‖∆ũ‖L2

≤‖ū‖H1(‖∇ũ‖
1
2

L2‖∆ũ‖
1
2

L2 + ‖∇ũ‖L2)‖∆ũ‖L2

≤δ‖∆ũ‖2L2 + C‖∇ũ‖2L2

and

J9 =

∫
Ω

ũ · ∇ū∆ũdx ≤ ‖∆ũ‖L2‖∇ū‖L4‖ũ‖L4

≤C‖∆ũ‖L2‖∇ū‖H1(‖∇ũ‖
1
2

L2‖ũ‖
1
2

L2 + ‖ũ‖L2)

≤δ‖∆ũ‖2L2 + C‖∇ũ‖2L2 .

For the term J10, we deduce

J10 =α

∫
Ω

ñ∇ϕ∆ũdx− α
∫

Ω

gu∆ũdx

≤δ‖∆ũ‖2L2 + C(‖ñ‖2L2 + ‖gu‖2L2).

By choosing δ small enough, with the estimates J8, J9 and J10, we have

d

dt
‖∇ũ‖2L2 + ‖∆ũ‖2L2 ≤ C‖∇ũ‖2L2 + C‖gu‖2L2 . (5.13)

Applying ∇ to the first equation of (5.7), multiplying it by ∇∆c̃, and integrating
over Ω give

1

2

d

dt

∫
Ω

|∆c|2dx+

∫
Ω

|∇∆c|2dx+

∫
Ω

|∆c|2dx

=−
∫

Ω

∇(ū∇c̃)∇∆c̃dx−
∫

Ω

∇(ũ∇c̄)∇∆c̃dx+ α

∫
Ω

∇ñ∇∆c̃dx

+ α

∫
Ω

∇gc∇∆c̃dx

=J11 + J12 + J13.

For the first term J11, we have

J11 =−
∫

Ω

∇(ū∇c̃)∇∆c̃dx = −
∫

Ω

∇ū∇c̃∇∆c̃dx−
∫

Ω

ū∆c̃∇∆c̃dx

≤‖∇∆c̃‖L2‖∇ū‖L4‖∇c̃‖L4 + ‖∇∆c̃‖L2‖ū‖L4‖∆c̃‖L4

≤‖∇∆c̃‖L2(‖∇ū‖
1
2

L2‖∆ū‖
1
2

L2 + ‖∇ū‖L2)(‖∇c̄‖
1
2

L2‖∆c̄‖
1
2

L2 + ‖∇c̄‖L2)

+ ‖∇∆c̃‖L2‖ū‖H1(‖∇∆c̃‖
1
2

L2‖∆c̃‖
1
2

L2 + ‖∆c̃‖L2)

≤δ‖∇∆c̃‖2L2 + C‖∆ū‖2L2 + C‖∆c̃‖2L2 .
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Similarly, for the term J12,

J12 =−
∫

Ω

∇(ũ∇c̄)∇∆c̃dx = −
∫

Ω

∇ũ∇c̄∇∆c̃dx−
∫

Ω

ũ∆c̄∇∆c̃dx

≤‖∇∆c̃‖L2‖∇ũ‖L4‖∇c̄‖L4 + ‖ũ‖L4‖∆c̄‖L4‖∇∆c̃‖L2

≤C‖∇∆c̃‖L2(‖∇ũ‖
1
2

L2‖∆ũ‖
1
2

L2 + ‖∇ũ‖L2)‖∇c̄‖H1

+ (‖ũ‖
1
2

L2‖∇ũ‖
1
2

L2 + ‖ũ‖L2)(‖∆c̄‖
1
2

L2‖∇∆c̄‖
1
2

L2 + ‖∆c̄‖L2)‖∇∆c̃‖L2

≤δ‖∇∆c̃‖2L2 + δ‖∆ũ‖2L2 + C‖∇∆c̄‖2L2 + C‖∇ũ‖2L2 .

For the rest term J13, we see

J13 =α

∫
Ω

∇ñ∇∆c̃dx+ α

∫
Ω

∇gc∇∆c̃dx

≤δ‖∇∆c̃‖2L2 + C(‖∇ñ‖2L2 + ‖∇gc‖2L2).

By choosing δ small enough, we get

d

dt
‖∆c̃‖2L2 + ‖∆c̃‖2H1

≤C(‖∇ñ‖2L2 + ‖∆c̃‖2L2 + ‖∇ũ‖2L2) + C‖∆ū‖2L2 + δ‖∆ũ‖2L2

+ C‖∇∆c̄‖2L2 + C‖∇gc‖2L2 . (5.14)

From (5.13) and (5.14), along with δ small enough, it follows that

d

dt
(‖∇ũ‖2L2 + ‖∆c̃‖2L2) + ‖∆ũ‖2L2 + ‖∆c̃‖2H1

≤C(‖∇ũ‖2L2 + ‖∆c̃‖2L2) + (‖∇ñ‖2L2 + ‖∆ū‖2L2 + ‖∇∆c̄‖2L2 + ‖∇gc‖2L2) + C‖gu‖2L2 .

Applying Gronwall’s lemma to the resulting differential inequality, we know

‖∇ũ‖2L2 + ‖∆c̃‖2L2 +

∫ t

0

‖∆ũ‖2L2dτ +

∫ t

0

‖∆c̃‖2H1dτ ≤ C.

Taking the L2-inner product with −∆ñ for the first equation of (5.7) implies

1

2

d

dt

∫
Ω

|∇ñ|2dx+

∫
Ω

|∆ñ|2dx+

∫
Ω

|∇ñ|2dx

=−
∫

Ω

ū · ∇ñ∆ñdx−
∫

Ω

ũ · ∇n̄∆ñdx−
∫

Ω

∇(ñ∇c̄)∆ñdx−
∫

Ω

∇(n̄∇c̃)∆ñdx

− α(1 + γ)

∫
Ω

ñ∆ñdx+ 2µ

∫
Ω

ñn̄∆ñdx− α
∫

Ω

gn∆ñdx

=J14 + J15 + J16 + J17 + J18.

With the Gagliardo-Nirenberg interpolation inequality in hand, we can estimate J14

as follows

J14 =−
∫

Ω

ū · ∇ñ∆ñdx ≤ ‖ū‖L4‖∇ñ‖L4‖∆ñ‖L2

≤C‖ū‖H1(‖∇ñ‖
1
2

L2‖∆ñ‖
1
2

L2 + ‖∇ñ‖L2)‖∆ñ‖L2

≤δ‖∆ñ‖2L2 + C‖∇ñ‖2L2 .

Similar to above estimates, we see

J15 =−
∫

Ω

ũ · ∇n̄∆ñdx ≤ ‖ũ‖L4‖∇n̄‖L4‖∆ñ‖L2
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≤C‖ũ‖H1‖∇n̄‖H1‖∆ñ‖L2

≤δ‖∆ñ‖L2 + C‖∇n̄‖2H1 .

Similarly, we derive

J16 =−
∫

Ω

∇(ñ∇c̄)∆ñdx = −
∫

Ω

∇ñ∇c̄∆ñdx−
∫

Ω

ñ∆c̄∆ñdx

≤‖∇ñ‖L4‖∇c̄‖L4‖∆ñ‖L2 + ‖ñ‖L4‖∆c̄‖L4‖∆ñ‖L2

≤(‖∇ñ‖
1
2

L2‖∆ñ‖
1
2

L2 + ‖∇ñ‖L2)‖∇c̄‖H1‖∆ñ‖L2

+ (‖ñ‖
1
2

L2‖∇ñ‖
1
2

L2 + ‖ñ‖L2)(‖∆c̄‖
1
2

L2‖∇∆c̄‖
1
2

L2 + ‖∆c̄‖L2)‖∆ñ‖L2

≤δ‖∆ñ‖2L2 + C‖∇ñ‖2L2 + C‖∇∆c̄‖2L2 + C

and

J17 =−
∫

Ω

∇(n̄∇c̃)∆ñdx = −
∫

Ω

∇n̄∇c̃∆ñdx−
∫

Ω

∇n̄∆c̃∆ñdx

≤‖∇n̄‖L4‖∇c̃‖L4‖∆ñ‖L2 + ‖n̄‖L4‖∆c̃‖L4‖∆ñ‖L2

≤(‖∇n̄‖
1
2

L2‖∆n̄‖
1
2

L2 + ‖∇n̄‖L2)‖∇c̃‖H1‖∆ñ‖L2

+ ‖n̄‖H1(‖∆c̃‖
1
2

L2‖∇∆c̃‖
1
2

L2 + ‖∆c̃‖L2)‖∆ñ‖L2

≤δ‖∆ñ‖2L2 + C‖∇∆c̃‖2L2 + C.

For the rest terms, we know

J18 =− α(1 + γ)

∫
Ω

ñ∆ñdx+ 2µ

∫
Ω

ñn̄∆ñdx− α
∫

Ω

gn∆ñdx

≤(1 + γ)‖ñ‖L2‖∆ñ‖L2 + 2µ‖ñ‖L4‖n̄‖L4‖∆ñ‖L2 + ‖gn‖L2‖∆ñ‖L2

≤(1 + γ)‖ñ‖L2‖∆ñ‖L2 + C(‖ñ‖
1
2

L2‖∇ñ‖
1
2

L2 + ‖ñ‖L2)‖n̄‖H1‖∆ñ‖L2

+ ‖gn‖L2‖∆ñ‖L2

≤δ‖∆ñ‖2L2 + C‖∇ñ‖2L2 + C‖gn‖2L2 .

Therefore, Taking δ small enough and together with J14 − J18, we see that

d

dt
‖∇ñ‖2L2 + ‖∇ñ‖2H1

≤C(‖∇ñ‖2L2 + ‖∇n̄‖2H1 + ‖∇∆c̄‖2L2 + ‖∇∆c̃‖2L2 + ‖gn‖2L2) + C.

Applying Gronwall’s lemma to the resulting differential inequality, we know

‖∇ñ‖2L2 +

∫ t

0

‖∇ñ‖2H1dτ ≤ C.

Therefore, from Leray-Schauder theorem, we derive the existence of solution for
(5.5). Along with the regularity of (ñ, c̃, ũ), the uniqueness of solution can easily
get, so we omit the process.

Theorem 5.1. Assume that s̄ = (n̄, c̄, ū, f̄) ∈ Sad be an optimal solution for the
control problem (5.3). Then, there exist Lagrange multipliers (λ, η, ρ, ξ, ϕ, ω) ∈
L2(Q)× (L2(0, T ;H1(Ω)))′×L2(Q)× (H1(Ω))′× (H2(Ω))′× (H1(Ω))′ such that for

all (ñ, c̃, ũ, f̃) ∈ Vn × Vc × Vu × C(f̄) has

β1

∫ T

0

∫
Ωd

(n̄− nd)ñdxdt+ β2

∫ T

0

∫
Ωd

(c̄− cd)c̃dxdt+ β3

∫ T

0

∫
Ωd

(ū− ud)ũdxdt
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+ β4

∫
Ωd

(n̄(T )− nΩ)ñ(T )dx+ β5

∫
Ωd

(c̄(T )− cΩ)c̃(T )dx

−
∫ T

0

∫
Ω

(ñt −∆ñ+ ū · ∇ñ+ ũ · ∇n̄+∇ · (n̄∇c̃) +∇(ñ∇c̄)− γñ+ 2µñn̄)λdxdt

−
∫ T

0

∫
Ω

(c̃t −∆c̃+ ū · ∇c̃+ ũ · ∇c̄+ c̃− ñ) ηdxdt+ β7

∫ T

0

∫
Ωd

f̃ f̄dxdt

−
∫ T

0

∫
Ω

(ũt −∆ũ+ ū · ∇ũ+ ũ · ∇ū− ñ∇ϕ) ρdxdt+

∫
Ω

ñ(0)ξdx+

∫
Ω

c̃(0)ϕdx

+

∫
Ω

ũ(0)ωdx+ β6

∫
Ωd

(ū(T )− uΩ)ũ(T )dx+

∫ T

0

∫
Ω

f̃ηdxdt ≥ 0, (5.15)

where C(f̄) = {θ(f − f̄) : θ ≥ 0, f ∈ U}.

Proof. With the Lemma 5.3 in hand, we get that s̄ ∈ Sad is a regular point. Then,
togather with Theorem 3.1 in [20], it follows that there exist Lagrange multipliers
(λ, η, ρ, ξ, ϕ, ω) ∈ L2(Q) × (L2(0, T ;H1(Ω)))′ × L2(Q) × (H1(Ω))′ × (H2(Ω))′ ×
(H1(Ω))′ such that

J ′(s̄)[r]− 〈G′1(s̄)[r], λ〉 − 〈G′2(s̄)[r], η〉 − 〈G′3(s̄)[r], ρ〉 − 〈G′4(s̄)[r], ξ〉
− 〈G′5(s̄)[r], ϕ〉 − 〈G′6(s̄)[r], ω〉 ≥ 0,

for all r = (ñ, c̃, ũ, f̃) ∈ Vn×Vc×Vu×C(f̄). Hence, the proof follows from Lemmas
5.1 and 5.2.

Corollary 5.1. Assume that s̄ = (n̄, c̄, ū, f̄) ∈ Sad be an optimal solution for the
control problem (5.3). Then, there exist Lagrange multipliers (λ, η, ρ) ∈ L2(Q) ×
(L2(0, T ;H1(Ω)))′ × L2(Q), satisfying∫ T

0

∫
Ω

(ñt −∆ñ+ ū · ∇ñ+∇(ñ∇c̄)− γñ+ 2µñn̄)λdxdt−
∫ T

0

∫
Ω

ñηdxdt

−
∫ T

0

∫
Ω

ñ∇ϕρdxdt = β1

∫ T

0

∫
Ωd

(n̄− nd)ñdxdt, (5.16)∫ T

0

∫
Ω

(c̃t −∆c̃+ ū · ∇c̃+ c̃) ηdxdt+

∫ T

0

∫
Ω

∇ · (n̄∇c̃)λdxdt

=β2

∫ T

0

∫
Ωd

(c̄− cd)c̃dxdt, (5.17)∫ T

0

∫
Ω

(ũt −∆ũ+ ū · ∇ũ+ ũ · ∇ū) ρdxdt+

∫ T

0

∫
Ω

ũ∇n̄λdxdt

+

∫ T

0

∫
Ω

ũ · ∇c̄ηdxdt = β3

∫ T

0

∫
Ωd

(ū− ud)ũdxdt, (5.18)

which corresponds to the linear system
− λt −∆λ+ ū · ∇λ−∇λ∇c̄− γλ+ 2µλn̄− η −∇ϕρ
= β1(n̄− nd),
− ηt −∆η + ū · ∇η + η +∇(n̄∇λ) = β2(c̄− cd),
− ρt −∆ρ+ (ū · ∇)ρ+ (ρ · ∇T )ū+ λ∇n̄+ η∇c̄ = β3(ū− ud),

(5.19)
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subject to the following boundary and final conditions

∇ · ρ = 0, in Q,

∂λ

∂ν
=
∂η

∂ν
, ρ = 0, on (0, T )× ∂Ω,

λ(T ) = β4(n̄(T )− nΩ), η(T ) = β5(c̄(T )− cΩ),

ρ(T ) = β5(c̄(T )− cΩ), in Ω,

and the following identities hold∫ T

0

∫
Ωd

(β7f̄ + η)(f − f̄)dxdt ≥ 0, ∀f ∈ U . (5.20)

Proof. By taking (c̃, ũ, f̃) = (0, 0, 0) in (5.15), then it follows that the equation
(5.16) holds. In light of an analogous argument, and in light of the (5.15), it
guarantees that (5.17) and (5.18) hold. On the other hand, let (ñ, c̃, ũ) = (0, 0, 0),
as an immediate consequence we obtain

β7

∫ T

0

f̃ f̄dxdt+

∫ T

0

f̃ηdxdt ≥ 0, ∀f̃ ∈ C(f̄).

By choosing f̃ = f − f̄ ∈ C(f̄) for all f̄ ∈ U , thus we achieve (5.20).

Theorem 5.2. Under the assumptions of Theorem 5.1, system (5.19) has a unique
weak solution such that

‖λ‖2H1 + ‖η‖2L2 + ‖ρ‖2L2 +

∫ t

0

‖λ‖2H2dτ +

∫ t

0

‖η‖2H1dτ +

∫ t

0

‖ρ‖2H1dτ ≤ C.

Proof. For convenience, we set λ̃ = λ(T − t), η̃ = η(T − t), ρ̃ = ρ(T − t), in order to

simplify notations, we still write λ, η, ρ instead of λ̃, η̃, ρ̃ , then the adjoint system
(5.19) can be written as follow

λt −∆λ+ ū · ∇λ−∇λ∇c̄− γλ+ 2µλn̄− η −∇ϕρ
= β1(n̄− nd), in Q,

ηt −∆η + ū · ∇η + η +∇(n̄∇λ) = β2(c̄− cd), in Q,

ρt −∆ρ+ (ū · ∇)ρ+ (ρ · ∇T )ū+ λ∇n̄+ η∇c̄ = β3(ū− ud), in Q,

(5.21)

subject to the following boundary and final conditions

∇ · ρ = 0, in Q,

∂λ

∂ν
=
∂η

∂ν
, ρ = 0, on (0, T )× ∂Ω,

λ(0) = β4(n̄(T )− nΩ), η(0) = β5(c̄(T )− cΩ),

ρ(0) = β5(c̄(T )− cΩ), in Ω.

Following an analogous reasoning as in the proof of Lemma 5.3, we omit the process
and just give a number of a priori estimates as follows.

Taking the L2-inner product with λ for the first equation of (5.21) implies

1

2

d

dt

∫
Ω

λ2dx+

∫
Ω

|∇λ|2dx+ 2µ

∫
Ω

λ2n̄dx

=

∫
Ω

∇λ∇c̄dx+ γ

∫
Ω

λ2dx+

∫
Ω

ληdx+

∫
Ω

λ∇ϕρdx+ β1

∫
Ω

(n̄− nd)λdx

≤‖∇λ‖L2‖∇c̄‖L2 + γ‖λ‖2L2 + ‖λ‖L2(‖η‖L2 + ‖ρ‖L2) + β1‖n̄− nd‖L2‖λ‖L2
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≤1

2
‖∇λ‖2L2 + C(‖λ‖2L2 + ‖η‖2L2 + ‖ρ‖2L2) + C‖n̄− nd‖2L2 .

Then, we have

d

dt
‖λ‖2L2 + ‖λ‖2H1 ≤ C(‖λ‖2L2 + ‖η‖2L2 + ‖ρ‖2L2) + C‖n̄− nd‖2L2 . (5.22)

Taking the L2-inner product with −∆η for the first equation of (5.21) implies

1

2

d

dt

∫
Ω

|∇λ|2dx+

∫
Ω

|∆λ|2dx

=

∫
Ω

ū · ∇λ∆λdx−
∫

Ω

∇λ∇c̄∆λdx− γ
∫

Ω

λ∆λdx+ 2µ

∫
Ω

λn̄∆λdx

−
∫

Ω

η∆λdx−
∫

Ω

∇ϕρ∆λdx+ β1

∫
Ω

(n̄− nd)∆λdx

≤‖ū‖L4‖∇λ‖L4‖∆λ‖L2 + ‖∇λ‖L4‖∇c̄‖L4‖∆λ‖L2 + γ‖∇λ‖2L2

+ ‖λ‖L4‖n̄‖L4‖∆λ‖L2 + ‖η‖L2‖∆λ‖L2 + ‖ρ‖L2‖∆λ‖L2

+ β1‖∆λ‖L2‖n̄− nd‖2L2

≤‖ū‖H1(‖∇λ‖
1
2

L2‖∆λ‖
1
2

L2 + ‖∇λ‖L2)‖∆λ‖L2 + γ‖∇λ‖2L2

+ (‖∇λ‖
1
2

L2‖∆λ‖
1
2

L2 + ‖∇λ‖L2)‖∇c̄‖H1‖∆λ‖L2 + ‖η‖L2‖∆λ‖L2

+ ‖ρ‖L2‖∆λ‖L2 + β1‖∆λ‖L2‖n̄− nd‖2L2

≤1

2
‖∆λ‖2L2 + C(‖∇λ‖2L2 + ‖η‖2L2 + ‖ρ‖2L2).

Thus, we get

d

dt
‖∇λ‖2L2 + ‖∇λ‖2H1 ≤ C(‖∇λ‖2L2 + ‖η‖2L2 + ‖ρ‖2L2) + C‖n̄− nd‖2L2 . (5.23)

Taking the L2-inner product with η for the second equation of (5.21) implies

1

2

d

dt

∫
Ω

η2dx+

∫
Ω

|∇η|2dx+

∫
Ω

η2dx

=

∫
Ω

n̄∇λ∇ηdx+ β2

∫
Ω

η(c̄− cd)dx

≤‖n̄‖L4‖∇λ‖L4‖∇η‖L2 + β2‖η‖L2‖c̄− cd‖L2

≤‖n̄‖H1(‖∇λ‖
1
2

L2‖∆λ‖
1
2

L2 + ‖∇λ‖L2)‖∇η‖L2 + β2‖η‖L2‖c̄− cd‖L2

≤1

2
‖∇η‖2L2 + δ‖∆λ‖2L2 + C‖∇λ‖L2 + C‖η‖2L2 + C‖c̄− cd‖2L2 .

As an immediate consequence, we obtain

d

dt
‖η‖2L2 + ‖η‖2H1 ≤ δ‖∆λ‖2L2 + C‖∇λ‖L2 + C‖η‖2L2 + C‖c̄− cd‖2L2 . (5.24)

Taking the L2-inner product with ρ for the third equation of (5.21) implies

1

2

d

dt

∫
Ω

ρ2dx+

∫
Ω

|∇ρ|2dx

=−
∫

Ω

(ρ · ∇T )ūρdx− λ
∫

Ω

∇n̄ρdx−
∫

Ω

η∇c̄ρdx+ β3

∫
Ω

(ū− ud)ρdx

≤‖ρ‖L2‖∇ū‖L4‖ρ‖L4 + λ‖∇n̄‖L2‖ρ‖L2 + ‖η‖L2‖∇c̄‖L4‖ρ‖L4
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+ β3‖ρ‖L2‖ū− ud‖L2

≤‖ρ‖L2‖∇ū‖H1(‖ρ‖
1
2

L2‖∇ρ‖
1
2

L2 + ‖ρ‖L2) + λ‖∇n̄‖L2‖ρ‖L2

+ ‖η‖L2‖∇c̄‖H1(‖ρ‖
1
2

L2‖∇ρ‖
1
2

L2 + ‖ρ‖L2) + β3‖ρ‖L2‖ū− ud‖L2

≤1

2
‖∇ρ‖2L2 + C‖ρ‖2L2(‖∇ū‖2H1 + 1) + C‖η‖2L2 + C‖ū− ud‖2L2 .

Therefore, we see that

d

dt
‖ρ‖2L2 + ‖ρ‖2H1 ≤ C‖ρ‖2L2(‖∇ū‖2H1 + 1) + C‖η‖2L2 + C‖ū− ud‖2L2 . (5.25)

Combining (5.22)-(5.25) and taking δ small enough, we have

d

dt
(‖λ‖2H1 + ‖η‖2L2 + ‖ρ‖2L2) + ‖λ‖2H2 + ‖η‖2H1 + ‖ρ‖2H1

≤C(‖∇ū‖2H1 + 1)(‖λ‖2H1 + ‖η‖2L2 + ‖ρ‖2L2) + C‖n̄− nd‖2L2

+ C‖c̄− cd‖2L2 + C‖ū− ud‖2L2 .

Applying Gronwall’s lemma to the resulting differential inequality, we know

‖λ‖2H1 + ‖η‖2L2 + ‖ρ‖2L2 +

∫ t

0

‖λ‖2H2dτ +

∫ t

0

‖η‖2H1dτ +

∫ t

0

‖ρ‖2H1dτ ≤ C.

The proof is complete.
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