Special Issues

On the existence of solutions for the Frenkel-Kontorova models on quasi-crystals

  • Received: 01 December 2020 Revised: 01 August 2021 Published: 08 October 2021
  • Primary: 70K43, 52C23, 37A60; Secondary: 82B20

  • This article focuses on recent investigations on equilibria of the Frenkel-Kontorova models subjected to potentials generated by quasi-crystals.

    We present a specific one-dimensional model with an explicit potential driven by the Fibonacci quasi-crystal. For a given positive number $ \theta $, we show that there are multiple equilibria with rotation number $ \theta $, e.g., a minimal configuration and a non-minimal equilibrium configuration. Some numerical experiments verifying the existence of such equilibria are provided.

    Citation: Jianxing Du, Xifeng Su. On the existence of solutions for the Frenkel-Kontorova models on quasi-crystals[J]. Electronic Research Archive, 2021, 29(6): 4177-4198. doi: 10.3934/era.2021078

    Related Papers:

  • This article focuses on recent investigations on equilibria of the Frenkel-Kontorova models subjected to potentials generated by quasi-crystals.

    We present a specific one-dimensional model with an explicit potential driven by the Fibonacci quasi-crystal. For a given positive number $ \theta $, we show that there are multiple equilibria with rotation number $ \theta $, e.g., a minimal configuration and a non-minimal equilibrium configuration. Some numerical experiments verifying the existence of such equilibria are provided.



    加载中


    [1] B. Adamczewski and Y. Bugeaud, Transcendence and Diophantine approximation, in Combinatorics, Automata and Number Theory, vol. 135 of Encyclopedia Math. Appl., Cambridge Univ. Press, Cambridge, (2010), 410–451.
    [2] Breakdown of universality in renormalization dynamics for critical invariant torus. Europhys. Lett. (1991) 15: 381-386.
    [3] Chaotic trajectories in the standard map. The concept of anti-integrability. Phys. D (1990) 43: 199-219.
    [4] Solution of a tridiagonal operator equation. Linear Algebra Appl. (2006) 414: 389-405.
    [5] The analyticity breakdown for Frenkel-Kontorova models in quasi-periodic media: Numerical explorations. J. Stat. Phys. (2013) 150: 1183-1200.
    [6] O. M. Braun and Y. S. Kivshar, The Frenkel-Kontorova Model, Texts and Monographs in Physics, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-10331-9
    [7] Minimal configurations for the Frenkel-Kontorova model on a quasicrystal. Comm. Math. Phys. (2006) 265: 165-188.
    [8] Calibrated configurations for Frenkel-Kontorova type models in almost periodic environments. Ann. Henri Poincaré (2017) 18: 2905-2943.
    [9] Analytical inversion of general tridiagonal matrices. J. Phys. A (1997) 30: 7919-7933.
    [10] Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting. Comm. Pure Appl. Math. (2003) 56: 1501-1524.
    [11] L. Sadun, Topology of Tiling Spaces, vol. 46 of University Lecture Series, American Mathematical Society, Providence, RI, 2008. doi: 10.1090/ulect/046
    [12] Invertibility of a tridiagonal operator with an application to a non-uniform sampling problem. Linear Multilinear Algebra (2017) 65: 973-990.
    [13] KAM theory for quasi-periodic equilibria in one-dimensional quasi-periodic media. SIAM J. Math. Anal. (2012) 44: 3901-3927.
    [14] A continuous family of equilibria in ferromagnetic media are ground states. Comm. Math. Phys. (2017) 354: 459-475.
    [15] S. Tompaidis, Numerical study of invariant sets of a quasiperiodic perturbation of a symplectic map, Experiment. Math., 5 (1996), 211–230, http://projecteuclid.org/euclid.em/1047915102. doi: 10.1080/10586458.1996.10504589
    [16] Equilibrium configurations for generalized Frenkel-Kontorova models on quasicrystals. Comm. Math. Phys. (2019) 371: 1-17.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(470) PDF downloads(82) Cited by(0)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog