We are concerned with the Cauchy problem of the 3D compressible Navier–Stokes–Poisson system. Compared to the previous related works, the main purpose of this paper is two–fold: First, we prove the optimal decay rates of the higher spatial derivatives of the solution. Second, we investigate the influences of the electric field on the qualitative behaviors of solution. More precisely, we show that the density and high frequency part of the momentum of the compressible Navier–Stokes–Poisson system have the same L2 decay rates as the compressible Navier–Stokes equation and heat equation, but the L2 decay rate of the momentum is slower due to the effect of the electric field.
Citation: Guochun Wu, Han Wang, Yinghui Zhang. Optimal time-decay rates of the compressible Navier–Stokes–Poisson system in R3[J]. Electronic Research Archive, 2021, 29(6): 3889-3908. doi: 10.3934/era.2021067
[1] |
Guochun Wu, Han Wang, Yinghui Zhang .
Optimal time-decay rates of the compressible Navier–Stokes–Poisson system in |
[2] |
Yuhui Chen, Ronghua Pan, Leilei Tong .
The sharp time decay rate of the isentropic Navier-Stokes system in |
[3] | Yue Cao . Blow-up criterion for the 3D viscous polytropic fluids with degenerate viscosities. Electronic Research Archive, 2020, 28(1): 27-46. doi: 10.3934/era.2020003 |
[4] | Jingjing Zhang, Ting Zhang . Local well-posedness of perturbed Navier-Stokes system around Landau solutions. Electronic Research Archive, 2021, 29(4): 2719-2739. doi: 10.3934/era.2021010 |
[5] | Lirong Huang, Jianqing Chen . Existence and asymptotic behavior of bound states for a class of nonautonomous Schrödinger-Poisson system. Electronic Research Archive, 2020, 28(1): 383-404. doi: 10.3934/era.2020022 |
[6] | Xiu Ye, Shangyou Zhang . A stabilizer free WG method for the Stokes equations with order two superconvergence on polytopal mesh. Electronic Research Archive, 2021, 29(6): 3609-3627. doi: 10.3934/era.2021053 |
[7] | Jun Zhou . Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28(1): 67-90. doi: 10.3934/era.2020005 |
[8] |
Jiayi Han, Changchun Liu .
Global existence for a two-species chemotaxis-Navier-Stokes system with |
[9] | Li Cai, Fubao Zhang . The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, 2021, 29(3): 2475-2488. doi: 10.3934/era.2020125 |
[10] | Huafei Di, Yadong Shang, Jiali Yu . Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source. Electronic Research Archive, 2020, 28(1): 221-261. doi: 10.3934/era.2020015 |
We are concerned with the Cauchy problem of the 3D compressible Navier–Stokes–Poisson system. Compared to the previous related works, the main purpose of this paper is two–fold: First, we prove the optimal decay rates of the higher spatial derivatives of the solution. Second, we investigate the influences of the electric field on the qualitative behaviors of solution. More precisely, we show that the density and high frequency part of the momentum of the compressible Navier–Stokes–Poisson system have the same L2 decay rates as the compressible Navier–Stokes equation and heat equation, but the L2 decay rate of the momentum is slower due to the effect of the electric field.
We consider the following 3D compressible Navier-Stokes- Poisson (NSP) system:
{ρt+∇⋅m=0, x∈R3, t>0,mt+∇⋅(m⨂mρ)+∇p(ρ)+ρ∇ϕ=μΔ(mρ)+(μ+ν)∇(∇⋅(mρ)),−λ2Δϕ=ρ−ˉρ, lim|x|→∞ϕ(x,t)→0,ρ(x,0)=ρ0(x), m(x,0)=m0(x), x∈R3. | (1.1) |
Here, the density
To go directly to the theme of this paper, let us give some explanations about the above model. For the existence and long time behavior of the solution to the compressible Navier–Stokes (NS) system (i.e.,
We remark that this paper is strongly motivated by Li–Matsumura–Zhang [14]. Their main results can be outlined as follows: Assume that
‖∇k(ρ−ˉρ)(t)‖L2≲(1+t)−34−k2‖(ρ0−ˉρ,m0)‖Hl∩L1,fork=0,1, | (1.2) |
‖∇k(m,∇ϕ)(t)‖L2≲(1+t)−14−k2‖(ρ0−ˉρ,m0)‖Hl∩L1,fork=0,1, | (1.3) |
and
‖(ρ−ˉρ,m)(t)‖H4≲‖(ρ0−ˉρ,m0)‖Hl∩L1. | (1.4) |
However, it is clear that
In this paper, we first introduce some notations and conventions. We use
fl=F−1[ϕ(ξ)ˆf],andfh=F−1[(1−ϕ(ξ))ˆf]. |
If the Fourier transform of
Now, we state out our main results in the following theorem:
Theorem 1.1. Let
‖∇k(ρ−ˉρ)‖L2≲(1+t)−34−k2, | (1.5) |
‖∇k(m,∇ϕ)‖L2≲(1+t)−14−k2, | (1.6) |
and
‖∇k(mh,∇ϕh)‖L2≲(1+t)−34−k2, | (1.7) |
for
Remark 1.2. Compared to the result (1.2)-(1.4) in [14], the
Now, let us sketch the strategy of proving Theorem 1.1. Motivated by the results in (1.2)-(1.4), we will focus on deriving the
12ddt∫R3|∇2nh|2+|∇2uh|2+|∇2∇ϕh|2dx+(μ1+μ2)∫R3|∇3uh|2dx≲δ0(‖∇2n‖2L2+‖∇2∇ϕh‖2L2+‖∇3u‖2L2. | (1.8) |
However, it should be mentioned that in the process of deducing the energy inequality (1.8), we encounter the trouble term
−⟨∇2(∇n⋅u)h,∇2nh⟩=−⟨∇2(∇n⋅u)−∇2(∇n⋅u)l,∇2nh⟩=−⟨∇2(∇nh⋅u)+∇2(∇nl⋅u)−∇2(∇n⋅u)l,∇2nh⟩ | (1.9) |
:=I21+I22+I23, |
and then make full use of the benefit of the low–frequency and high–frequency decomposition technique to bound the terms
∇2(∇nh⋅u)=u⋅∇3nh+2∇u⋅∇2nh+∇2u⋅∇nh, |
and using integration by parts, we have
⟨u⋅∇3nh,∇2nh⟩=−12∫R3divu|∇2nh|2dx. |
Thus we can deduce
I2≲δ0(‖∇2n‖2L2+‖∇2nh‖2L2+‖∇3u‖2L2) | (1.10) |
as in (2.13). Now, note that (1.8) only gives the dissipation estimate for
ddt∫R3∇uh∇2nhdx+∫R3|∇2nh|2−|∇2uh|2+|∇2∇ϕh|2dx≲δ0(‖∇2n‖2L2+‖∇3u‖2L2+‖∇2uh‖2L2+‖∇2nh‖2L2)+(‖∇2nh‖2L2+‖∇3uh‖2L2). | (1.11) |
Next, we choose a sufficiently large positive constant
E1(t)=D12(‖∇2nh‖2L2+‖∇2uh‖2L2+‖∇2Eh‖2L2)+∫R3∇uh∇2nhdx. | (1.12) |
Noting that (1.12) is equivalent to
ddtE1(t)+C1E1(t)≲‖∇2nl‖2L2+‖∇3ul‖2L2, | (1.13) |
then the optimal
This section is devoted to prove the optimal
{nt+∇⋅u=f1,ut+∇n+E−μ1Δu−μ2∇(∇⋅u)=−f2−f3,E=∇(−Δ)−1n, lim|x|→∞E→0,n(x,0)=n0(x)=:ρ0(x)−1, u(x,0)=u0(x)=m0(x)/ρ0(x), x∈R3, | (2.1) |
where
f1=−n∇⋅u−∇n⋅u, |
f2=(u⋅∇)u+(1−p′(1+n)1+n)∇n+μ1(n1+n)Δu+μ2(n1+n)∇(∇⋅u), |
f3=−n∇ϕ=−nE, |
and as in [14], we have taken
f2∼O(1)(n∇n+u∇u+n∇2u), |
and
‖∇kE‖L2≲‖∇k−1n‖L2, k≥1. |
Second, the decay rates on the linearized system of (2.1) are given in the following lemma:
Lemma 2.1 Assume that
‖∇kˉn(t)‖L2≲(1+t)−34−k2(‖U0‖L1+‖∇kU0‖L2), | (2.2) |
‖∇k(ˉE,ˉm)(t)‖L2≲(1+t)−14−k2(‖U0‖L1+‖∇kU0‖L2). | (2.3) |
Proof. See [14].
Third, we state the
Lemma 2.2. Assume that the assumptions of Theorem 1.1 are in force, Then for
‖∇knl(t)‖L2≲(1+t)−3+2k4, | (2.4) |
‖∇k(El,ml)(t)‖L2≲(1+t)−1+2k4. | (2.5) |
Proof. See [3].
Next, we will prove Theorem 1.1 in three cases. Before giving the precise proofs of these three cases, we must emphasize that under the assumption of Theorem 1.1, [14] proved that the following estimate holds
‖(ρ−ˉρ,m)(t)‖H4≲δ0. | (2.6) |
More details of
Case 1. Proof of Theorem 1.1 for
Step 1. High–frequency
⟨F−1(1−ϕ(ξ))∇2(2.1)1,∇2nh⟩+⟨F−1(1−ϕ(ξ))∇2(2.1)2,∇2uh⟩, |
and using integration by parts, yields directly
12ddt∫R3|∇2nh|2+|∇2uh|2+|∇2Eh|2dx+(μ1+μ2)∫R3|∇3uh|2dx=−⟨∇2(n∇⋅u)h,∇2nh⟩−⟨∇2(∇n⋅u)h,∇2nh⟩−⟨∇Eh,∇2(n∇⋅u)h⟩−⟨∇Eh,∇2(∇n⋅u)h⟩−⟨∇2(f2+f3)h,∇2uh⟩:=5∑i=1Ii. | (2.7) |
The right-hand side of (2.7) can be estimated one by one. For term
|I1|=|−⟨∇2(n∇⋅u)h,∇2nh⟩|≲‖∇2(n∇⋅u)‖L2‖∇2nh‖L2≲(‖∇u‖L∞‖∇2n‖L2+‖n‖L∞‖∇3u‖L2)‖∇2nh‖L2≲(‖∇u‖H2‖∇2n‖L2+‖n‖H2‖∇3u‖L2)‖∇2nh‖L2≲δ0(‖∇2n‖2L2+‖∇3u‖2L2). | (2.8) |
The second term
I2=−⟨∇2(∇n⋅u)h,∇2nh⟩=−⟨∇2(∇n⋅u)−∇2(∇n⋅u)l,∇2nh⟩=−⟨∇2(∇nh⋅u)+∇2(∇nl⋅u)−∇2(∇n⋅u)l,∇2nh⟩:=I21+I22+I23. | (2.9) |
It is easy to obtain
∇2(∇nh⋅u)=u⋅∇3nh+2∇u⋅∇2nh+∇2u⋅∇nh. |
Following from integration by parts, we have
⟨u⋅∇3nh,∇2nh⟩=−12∫R3divu|∇2nh|2dx, |
thus
|I21|≲(‖∇u‖L∞‖∇2nh‖L2+‖∇nh‖L3‖∇2u‖L6)‖∇2nh‖L2≲(‖∇u‖H2‖∇2nh‖L2+‖∇n‖H1‖∇3u‖L2)‖∇2nh‖L2≲δ0(‖∇2n‖2L2+‖∇3u‖2L2). | (2.10) |
For the term
|I22|=|⟨∇2(∇nl⋅u),∇2nh⟩|≲‖∇2(∇nl⋅u)‖L2‖∇2nh‖L2≲(‖u‖L∞‖∇3nl‖L2+‖∇nl‖L3‖∇2u‖L6)‖∇2nh‖L2≲(‖u‖H2‖∇2n‖L2+‖∇n‖H1‖∇3u‖L2)‖∇2nh‖L2≲δ0(‖∇2n‖2L2+‖∇3u‖2L2+‖∇2nh‖2L2). | (2.11) |
For the term
|I23|=|⟨∇2(∇n⋅u)l,∇2nh⟩|≲‖∇2(∇n⋅u)l‖L2‖∇2nh‖L2≲‖∇n⋅u‖L2‖∇2nh‖L2≲‖u‖L3‖∇n‖L6‖∇2nh‖L2≲‖u‖H1‖∇2n‖L2‖∇2nh‖L2≲δ0(‖∇2n‖2L2+‖∇2nh‖2L2), | (2.12) |
Substituting (2.10)-(2.12) into (2.9), we can conclude that
I2≲δ0(‖∇2n‖2L2+‖∇2nh‖2L2+‖∇3u‖2L2) | (2.13) |
For the term
|I3|+|I4|=|⟨∇Eh,∇2(n∇⋅u)h⟩|+|⟨∇Eh,∇2(∇n⋅u)h⟩|≲‖∇2Eh‖L2(‖∇2(n∇⋅u)‖L2+‖∇2(∇n⋅u)h‖L2)≲δ0(‖∇2Eh‖2L2+‖∇2n‖2L2+‖∇3u‖2L2), | (2.14) |
For the term
I5=−⟨∇2(f2+f3)h,∇2uh⟩=⟨∇(f2+f3)h,∇3uh⟩=⟨∇(n∇n)h+∇(u∇u)h+∇(n∇2u)h−∇(nE)h,∇3uh⟩:=I51+I52+I53+I54. | (2.15) |
For the term
|I51|=|⟨∇(n∇n)h,∇3uh⟩|≲‖∇(n∇n)‖L2‖∇3uh‖L2≲(‖∇n‖L3‖∇n‖L6+‖n‖L∞‖∇2n‖L2)‖∇3uh‖L2≲(‖∇n‖H1‖∇2n‖L2+‖n‖H2‖∇2n‖L2)‖∇3uh‖L2≲δ0(‖∇2n‖2L2+‖∇3uh‖2L2). | (2.16) |
For the term
|I52|=|⟨∇(u∇u)h,∇3uh⟩|≲‖∇2(u∇u)‖L2‖∇3uh‖L2≲(‖u‖L∞‖∇3u‖L2+‖∇u‖L3‖∇2u‖L6)‖∇3uh‖L2≲(‖u‖H2‖∇3u‖L2+‖∇u‖H1‖∇3u‖L2)‖∇3uh‖L2≲δ0(‖∇3u‖2L2+‖∇3uh‖2L2). | (2.17) |
For the term
|I53|=|⟨∇(n∇2u)h,∇3uh⟩|≲‖∇(n∇2u)‖L2‖∇3uh‖L2≲(‖n‖L∞‖∇3u‖L2+‖∇2u‖L3‖∇n‖L6)‖∇3uh‖L2≲(‖n‖H2‖∇3u‖L2+‖∇2u‖H1‖∇2n‖L2)‖∇3uh‖L2≲δ0(‖∇3u‖2L2+‖∇2n‖2L2). | (2.18) |
For the term
|I54|=|∇(nE)h,∇3uh⟩|≲‖∇2(nE)‖L2‖∇3uh‖L2≲(‖E‖L∞‖∇2n‖L2+‖n‖L3‖∇2E‖L6)‖∇3uh‖L2≲(‖∇E‖H1‖∇2n‖L2+‖n‖H1‖∇2n‖L2)‖∇3uh‖L2≲(‖n‖H1‖∇2n‖L2+‖n‖H1‖∇2n‖L2)‖∇3uh‖L2≲δ0(‖∇2n‖2L2+‖∇3uh‖2L2). | (2.19) |
Thus, one may deduce that
|I5|≲δ0(‖∇2n‖2L2+‖∇3u‖2L2). | (2.20) |
Substituting (2.8), (2.13)–(2.14) and (2.20) into (2.7) and using the smallness of
12ddt∫R3|∇2nh|2+|∇2uh|2+|∇2Eh|2dx+(μ1+μ2)∫R3|∇3uh|2dx≲δ0(‖∇2n‖2L2+‖∇2Eh‖2L2+‖∇3u‖2L2). | (2.21) |
Step 2. Dissipation of
ddt∫R3∇uh∇2nhdx+∫R3|∇2nh|2−|∇2uh|2+|∇2Eh|2dx=−⟨∇2(n∇⋅u)h,∇uh⟩−⟨∇2(∇n⋅u)h,∇uh⟩−⟨∇(f2+f3)h∇2nh⟩+(μ1+μ2)⟨∇3uh,∇2nh⟩:=I6+I7+I8+I9. | (2.22) |
We should estimate the right-hand side of (2.22) one by one. For
|I6|≲δ0(‖∇2n‖2L2+‖∇3u‖2L2+‖∇2uh‖2L2). | (2.23) |
For
|I7|≲δ0(‖∇2n‖2L2+‖∇2uh‖2L2‖∇3u‖2L2+‖∇2nh‖2L2). | (2.24) |
For
|I8|≲δ0(‖∇2n‖2L2+‖∇3u‖2L2. | (2.25) |
For
|I9|≲(μ1+μ2)‖∇3uh‖L2‖∇2nh‖L2≲14‖∇2nh‖2L2+‖∇3uh‖2L2. | (2.26) |
Putting (2.23)–(2.26)into (2.22) and using the smallness of
ddt∫R3∇uh∇2nhdx+∫R3|∇2nh|2+|∇2Eh|2dx≲δ0(‖∇2n‖2L2+‖∇3u‖2L2+‖∇2uh‖2L2+‖∇2nh‖2L2)+14‖∇2nh‖2L2+‖∇3uh‖2L2+∫R3|∇2uh|2dx. | (2.27) |
Step 3. Closing the estimates. Now, we are in a position to close the estimates. To do this, we choose sufficiently large time
E1(t)=D12(‖∇2nh‖2L2+‖∇2uh‖2L2+‖∇2Eh‖2L2)+∫R3∇uh∇2nhdx, | (2.28) |
for
D1×(2.21)+(2.27), |
which together with the smallness of
ddtE1(t)+(34−δ0)‖∇2nh‖2L2+[(μ1+μ2)D1−2]‖∇3uh‖2L2+‖∇2Eh‖2L2≲‖∇2nl‖2L2+‖∇3ul‖2L2, | (2.29) |
where we have used the fact that
(34−δ0)‖∇2nh‖2L2+[(μ1+μ2)D1−2]‖∇3uh‖2L2+‖∇2Eh‖2L2≥C1E1(t). | (2.30) |
Hence, by virtue of (2.4)-(2.5), (2.29)-(2.30) and Gronwall's inequality, we can arrive at
‖∇2nh‖2L2+‖∇2uh‖2L2+‖∇2Eh‖2L2≲(1+t)−74. | (2.31) |
Furthermore, combining with (2.4)-(2.5) and (2.31), the following estimates can be obtained:
‖∇2n‖2L2≲‖∇2nh‖2L2+‖∇2nl‖2L2≲(1+t)−74, | (2.32) |
and
‖∇2(u,E)‖2L2≲‖∇2(uh,Eh)‖2L2+‖∇2(ul,El)‖2L2≲(1+t)−54. | (2.33) |
The proof of Theorem 1.1 for
Case 2. Proof of Theorem 1.1 for
Step 1. High–frequency
⟨F−1(1−ϕ(ξ))∇3(2.1)1,∇3nh⟩+⟨F−1(1−ϕ(ξ))∇3(2.1)2,∇3uh⟩, |
and using integration by parts, which implies
12ddt∫R3|∇3nh|2+|∇3uh|2+|∇3Eh|2dx+(μ1+μ2)∫R3|∇4uh|2dx=−⟨∇3(n∇⋅u)h,∇3nh⟩−⟨∇3(∇n⋅u)h,∇3nh⟩−⟨∇2Eh,∇3(n∇⋅u)h⟩−⟨∇2Eh,∇3(∇n⋅u)h⟩−⟨∇3(f2+f3)h,∇3uh⟩:=5∑i=1Ji. | (2.34) |
The five terms in the above equation can be estimated as follows. Firstly, for term
|J1|=|⟨∇3(n∇⋅u)h,∇3nh⟩|≲‖∇3(n∇⋅u)‖L2‖∇3nh‖L2≲(‖∇u‖L∞‖∇3n‖L2+‖n‖L∞‖∇4u‖L2)‖∇3nh‖L2≲(‖∇u‖H2‖∇3n‖L2+‖n‖H2‖∇4u‖L2)‖∇3nh‖L2≲δ0(‖∇3n‖2L2+‖∇3nh‖2L2+‖∇4u‖2L2), | (2.35) |
The term
J2=−⟨∇3(∇n⋅u)h,∇3nh⟩=−⟨∇3(∇n⋅u)−∇3(∇n⋅u)l,∇3nh⟩=−⟨∇3(∇nh⋅u)+∇3(∇nl⋅u)−∇3(∇n⋅u)l,∇3nh⟩:=J21+J22+J23. | (2.36) |
It is obvious that
∇3(∇nh⋅u)=u⋅∇4nh+3∇u⋅∇3nh+3∇2u⋅∇2nh+∇nh⋅∇3u. |
By virtue of integration by parts, we arrive at
⟨u⋅∇4nh,∇3nh⟩=−12∫R3divu|∇3nh|2dx, |
thus
|J21|≲(‖∇u‖L∞‖∇3nh‖L2+‖∇2u‖L3‖∇2nh‖L6+‖∇nh‖L3‖∇3u‖L6)‖∇3nh‖L2≲(‖∇u‖H2‖∇3nh‖L2+‖∇2u‖H1‖∇3nh‖L2+‖∇n‖H1‖∇4u‖L2)‖∇3nh‖L2≲δ0(‖∇3nh‖2L2+‖∇4u‖2L2), | (2.37) |
For the term
|J22|=|⟨∇3(∇nl⋅u),∇3nh⟩|≲‖∇3(∇nl⋅u)‖L2‖∇3nh‖L2≲(‖u‖L∞‖∇4nl‖L2+‖∇nl‖L3‖∇3u‖L6)‖∇3nh‖L2≲(‖u‖H2‖∇3n‖L2+‖∇n‖H1‖∇4u‖L2)‖∇3n‖L2≲δ0(‖∇3n‖2L2+‖∇4u‖2L2). | (2.38) |
For the term
|J23|=|⟨∇3(∇n⋅u)l,∇3nh⟩|≲‖∇(∇n⋅u)‖L2‖∇3nh‖L2≲(‖u‖L3‖∇2n‖L6+‖∇u‖L3‖∇n‖L6)‖∇3nh‖L2≲‖u‖H1‖∇3n‖L2‖∇3nh‖L2+‖u‖14L2‖∇2u‖34L2‖∇2n‖L2‖∇3nh‖L2≲δ0(‖∇3n‖2L2+‖∇3nh‖2L2)+(1+t)−14×14(1+t)−54×34(1+t)−74‖∇3nh‖L2≲δ0(‖∇3n‖2L2+‖∇3nh‖2L2)+(1+t)−94−12‖∇3nh‖L2≲δ0(‖∇3n‖2L2+‖∇3nh‖2L2)+(1+t)−92+(1+t)−1‖∇3nh‖2L2. | (2.39) |
Substituting (2.37)-(2.39) into (2.36), we can achieve
J2≲δ0(‖∇3n‖2L2+‖∇3nh‖2L2+‖∇4u‖2L2)+(1+t)−92+(1+t)−1‖∇3nh‖2L2. | (2.40) |
For the term
|J3|+|J4|≲δ0(‖∇3Eh‖2L2+‖∇3n‖2L2+‖∇4u‖2L2)+(1+t)−92+(1+t)−1‖∇3Eh‖2L2, | (2.41) |
For the term
J5=−⟨∇3(f2+f3)h,∇3uh⟩=⟨∇2(f2+f3)h,∇4uh⟩=⟨∇2(n∇n)h+∇(u∇u)h+∇(n∇2u)h−∇(nE)h,∇4uh⟩:=J51+J52+J53+J54. | (2.42) |
For the term
|J51|=|⟨∇2(n∇n)h,∇4uh⟩|≲‖∇2(n∇n)‖L2‖∇4uh‖L2≲(‖∇n‖L3‖∇2n‖L6+‖n‖L∞‖∇3n‖L2)‖∇4uh‖L2≲(‖∇n‖H1‖∇3n‖L2+‖n‖H2‖∇3n‖L2)‖∇4uh‖L2≲δ0(‖∇3n‖2L2+‖∇4uh‖2L2). | (2.43) |
For the term
|J52|=|⟨∇2(u∇u)h,∇4uh⟩|≲‖∇3(u∇u)‖L2‖∇4uh‖L2≲(‖∇u‖L∞‖∇4u‖L2+‖∇u‖L3‖∇3u‖L6)‖∇4uh‖L2≲(‖∇u‖H2‖∇4u‖L2+‖∇u‖H1‖∇4u‖L2)‖∇4uh‖L2≲δ0(‖∇4u‖2L2+‖∇4uh‖2L2). | (2.44) |
For the term
|J53|=|⟨∇2(n∇2u)h,∇4uh⟩|≲‖∇2(n∇2u)‖L2‖∇4uh‖L2≲(‖n‖L∞‖∇4u‖L2+‖∇2n‖L6‖∇2u‖L3)‖∇4uh‖L2≲(‖n‖H2‖∇4u‖L2+‖∇3n‖L2‖∇2u‖H1)‖∇4uh‖L2≲δ0(‖∇4u‖2L2+‖∇3n‖2L2). | (2.45) |
For the term
|J54|=|∇2(nE)h,∇4uh⟩|≲‖∇3(nE)‖L2‖∇4uh‖L2≲(‖E‖L∞‖∇3n‖L2+‖n‖L3‖∇3E‖L6)‖∇4uh‖L2≲(‖∇E‖H1‖∇3n‖L2+‖n‖H1‖∇3n‖L2)‖∇4uh‖L2≲(‖n‖H1‖∇3n‖L2+‖n‖H1‖∇3n‖L2)‖∇4uh‖L2≲δ0(‖∇3n‖2L2+‖∇4uh‖2L2). | (2.46) |
Thus, we can immediately to obtain
|J5|≲δ0(‖∇3n‖2L2+‖∇4u‖2L2). | (2.47) |
Substitute (2.35), (2.40)–(2.41) and (2.47) into (2.34) and use the smallness of
12ddt∫R3|∇3nh|2+|∇3uh|2+|∇3Eh|2dx+(μ1+μ2)∫R3|∇4uh|2dx≲δ0(‖∇3Eh‖2L2+‖∇4u‖2L2+‖∇3n‖2L2)+(1+t)−92+(1+t)−1‖∇3nh‖2L2+(1+t)−1‖∇3Eh‖2L2. | (2.48) |
Step 2. Dissipation of
ddt∫R3∇2uh∇3nhdx+∫R3|∇3nh|2−|∇3uh|2+|∇3Eh|2dx=−⟨∇3(n∇⋅u)h,∇uh⟩−⟨∇3(∇n⋅u)h,∇uh⟩−⟨∇2(f2+f3)h∇3nh⟩+(μ1+μ2)⟨∇4uh,∇3nh⟩:=J6+J7+J8+J9. | (2.49) |
For the term
|J6|≲δ0(‖∇3n‖2L2+‖∇4u‖2L2+‖∇3uh‖2L2). | (2.50) |
For the term
|J7|≲δ0(‖∇3n‖2L2+‖∇4u‖2L2)+(1+t)−92+(1+t)−1‖∇3uh‖2L2. | (2.51) |
For the term
|J8|≲δ0(‖∇3n‖2L2+‖∇4uh‖2L2+‖∇3uh‖2L2). | (2.52) |
For
|J9|≲(μ1+μ2)‖∇4uh‖L2‖∇3nh‖L2≲14‖∇3nh‖2L2+‖∇4uh‖2L2. | (2.53) |
Substituting (2.50)–(2.53)into (2.49) and making use of the smallness of
ddt∫R3∇2uh∇3nhdx+∫R3|∇3nh|2+|∇3Eh|2dx≲δ0(‖∇3n‖2L2+‖∇3nh‖2L2+‖∇3uh‖2L2+‖∇4u‖2L2)+(1+t)−92+(1+t)−1‖∇3uh‖2L2+14‖∇3nh‖2L2+‖∇4uh‖2L2+∫R3|∇3uh|2dx. | (2.54) |
Step 3. Closing the estimates. Now, let us close the estimates. For any
E2(t)=D22(‖∇3nh‖2L2+‖∇3uh‖2L2+‖∇3Eh‖2L2)+∫R3∇2uh∇3nhdx, | (2.55) |
for
D2×(2.48)+(2.54), |
for
ddtE2(t)+(34−δ0)‖∇3nh‖2L2+[(μ1+μ2)D2−2]‖∇4uh‖2L2+‖∇3Eh‖2L2≲‖∇3nl‖2L2+‖∇4ul‖2L2, | (2.56) |
where we have used the fact that
(34−δ0)‖∇3nh‖2L2+[(μ1+μ2)D2−2]‖∇4uh‖2L2+‖∇3Eh‖2L2≥C2E2(t). | (2.57) |
Thus, in view of (2.4)-(2.5), (2.56)-(2.57) and Gronwall's argument, we have
‖∇3nh‖2L2+‖∇3uh‖2L2+‖∇3Eh‖2L2≲(1+t)−94. | (2.58) |
Furthermore, utilizing (2.4)-(2.5) and (2.58), it is easy to have
‖∇3n‖2L2≲‖∇3nh‖2L2+‖∇3nl‖2L2≲(1+t)−94, | (2.59) |
‖∇3(u,E)‖2L2≲‖∇3(uh,Eh)‖2L2+‖∇3(ul,Eh)‖2L2≲(1+t)−74. | (2.60) |
This complete the proof of Theorem 1.1 for
Case 3. Proof of Theorem 1.1 for
Step 1. High–frequency
⟨F−1(1−ϕ(ξ))∇4(2.1)1,∇4nh⟩+⟨F−1(1−ϕ(ξ))∇4(2.1)2,∇4uh⟩, |
and applying integration by parts, we have
12ddt∫R3|∇4nh|2+|∇4uh|2+|∇4Eh|2dx+(μ1+μ2)∫R3|∇5uh|2dx=−⟨∇4(n∇⋅u)h,∇4nh⟩−⟨∇4(∇n⋅u)h,∇4nh⟩−⟨∇3Eh,∇4(n∇⋅u)h⟩−⟨∇3Eh,∇4(∇n⋅u)h⟩−⟨∇4(f2+f3)h,∇4uh⟩:=5∑i=1Ki. | (2.61) |
We will estimate the right-hand side of the above equation term by term. First, for term
|K1|=|⟨∇4(n∇⋅u)h,∇4nh⟩|≲‖∇4(n∇⋅u)‖L2‖∇4nh‖L2≲(‖∇u‖L∞‖∇4n‖L2+‖n‖L∞‖∇5u‖L2)‖∇4nh‖L2≲(‖∇u‖H2‖∇4n‖L2+‖n‖H2‖∇5u‖L2)‖∇4nh‖L2≲δ0(‖∇4n‖2L2+‖∇4nh‖2L2+‖∇5u‖2L2), | (2.62) |
For the term
K2=−⟨∇4(∇n⋅u)h,∇4nh⟩=−⟨∇4(∇n⋅u)−∇4(∇n⋅u)l,∇4nh⟩=−⟨∇4(∇nh⋅u)+∇4(∇nl⋅u)−∇4(∇n⋅u)l,∇4nh⟩:=K21+K22+K23. | (2.63) |
Notice that
∇4(∇nh⋅u)=u⋅∇5nh+4∇u⋅∇4nh+6∇2u⋅∇3nh+4∇3u⋅∇2nh+∇4u⋅∇nh. |
From integration by parts, one has
⟨u∇5nh,∇3nh⟩=−12∫R3divu|∇4nh|2dx. |
Note that
⟨∇3u∇2nh,∇4nh⟩=⟨∇3uh∇2nh,∇4nh⟩+⟨∇3ul∇2nh,∇4nh⟩, |
and
⟨∇4u∇nh,∇4nh⟩=⟨∇4uh∇nh,∇4nh⟩+⟨∇4ul∇nh,∇4nh⟩. |
Thus, we can have the following estimate
|K21|≲(‖∇u‖L∞‖∇4nh‖L2+‖∇2u‖L3‖∇3nh‖L6+‖∇2nh‖L3‖∇3uh‖L6+‖∇2nh‖L3‖∇3ul‖L6+‖∇nh‖L3‖∇4uh‖L6+‖∇4ul‖L3‖∇nh‖L6)‖∇4nh‖L2≲(‖∇u‖H2‖∇4nh‖L2+‖∇2u‖H1‖∇4nh‖L2+‖∇2n‖H1‖∇4uh‖L2+‖∇2n‖H1‖∇4u‖L2+‖∇n‖H1‖∇5uh‖L2+‖u‖H1‖∇4nh‖L2)‖∇4nh‖L2≲δ0(‖∇4n‖2L2+‖∇5u‖2L2), | (2.64) |
For the term
|K22|=|⟨∇4(∇nl⋅u),∇4nh⟩|≲‖∇4(∇nl⋅u)‖L2‖∇4nh‖L2≲(‖u‖L∞‖∇5nl‖L2+‖∇nl‖L3‖∇4u‖L6)‖∇4nh‖L2≲(‖u‖H2‖∇4n‖L2+‖n‖H1‖∇5u‖L2)‖∇4nh‖L2≲δ0(‖∇4n‖2L2+‖∇5u‖2L2+‖∇4nh‖2L2). | (2.65) |
For the term
|K23|=|⟨∇4(∇n⋅u)l,∇4nh⟩|≲‖∇4(∇n⋅u)l‖L2‖∇4nh‖L2≲‖∇2(∇n⋅u)‖L2‖∇4nh‖L2≲(‖u‖L3‖∇3n‖L6+‖∇n‖L6‖∇2u‖L3)‖∇4nh‖L2≲(‖u‖H1‖∇4n‖L2+‖∇2n‖L2‖∇u‖14L2‖∇3u‖34L2)‖∇4nh‖L2≲δ0(‖∇4n‖2L2+‖∇4nh‖2L2)+(1+t)−114−12‖∇4nh‖L2≲δ0(‖∇4n‖2L2+‖∇4nh‖2L2)+(1+t)−112+(1+t)−1‖∇4nh‖2L2. | (2.66) |
Substituting (2.64)-(2.66) into (2.63), we can arrive at
K2≲δ0(‖∇4n‖2L2+‖∇4nh‖2L2+‖∇5u‖2L2)+(1+t)−112+(1+t)−1‖∇4nh‖2L2. | (2.67) |
For the term
|K3|+|K4|≲δ0(‖∇4Eh‖2L2+‖∇4n‖2L2+‖∇5u‖2L2)+(1+t)−112+(1+t)−1‖∇4Eh‖2L2, | (2.68) |
For the term
K5=⟨∇3(f2+f3)h,∇5uh⟩=⟨∇3(f2+f3)h,∇5uh⟩=⟨∇3(n∇n)h+∇(u∇u)h+∇(n∇3u)h−∇(nE)h,∇5uh⟩:=K51+K52+K53+K54. | (2.69) |
For the term
|K51|=|⟨∇3(n∇n)h,∇5uh⟩|≲‖∇3(n∇n)‖L2‖∇5uh‖L2≲(‖∇n‖L3‖∇3n‖L6+‖n‖L∞‖∇4n‖L2)‖∇5uh‖L2≲(‖∇n‖H1‖∇4n‖L2+‖n‖H2‖∇4n‖L2)‖∇5uh‖L2≲δ0(‖∇4n‖2L2+‖∇5uh‖2L2). | (2.70) |
For the term
|K52|=|⟨∇3(u∇u)h,∇5uh⟩|≲‖∇4(u∇u)‖L2‖∇5uh‖L2≲(‖u‖L∞‖∇5u‖L2+‖∇u‖L3‖∇4u‖L6)‖∇5uh‖L2≲(‖u‖H2‖∇5u‖L2+‖∇u‖H1‖∇5u‖L2)‖∇5uh‖L2≲δ0(‖∇5u‖2L2+‖∇5uh‖2L2). | (2.71) |
For the term
|K53|=|⟨∇3(n∇2u)h,∇5uh⟩|≲‖∇3(n∇2u)‖L2‖∇5uh‖L2≲(‖n‖L∞‖∇5u‖L2+‖∇2u‖L3‖∇3n‖L6)‖∇5uh‖L2≲(‖n‖H2‖∇5u‖L2+‖∇2u‖H1‖∇4n‖L2)‖∇5uh‖L2≲δ0(‖∇5u‖2L2+‖∇4n‖2L2). | (2.72) |
For the term
|K54|=|∇3(nE)h,∇5uh⟩|≲‖∇4(nE)‖L2‖∇5uh‖L2≲(‖E‖L∞‖∇4n‖L2+‖n‖L3‖∇4E‖L6)‖∇5uh‖L2≲(‖∇E‖H1‖∇4n‖L2+‖n‖H1‖∇4n‖L2)‖∇5uh‖L2≲(‖n‖H1‖∇4n‖L2+‖n‖H1‖∇4n‖L2)‖∇5uh‖L2≲δ0‖∇4n‖2L2+‖∇5uh‖2L2. | (2.73) |
Thus, we can arrive at
|K5|≲δ0(‖∇4n‖2L2+‖∇5u‖2L2). | (2.74) |
Substituting (2.62), (2.67)–(2.68) and (2.74) into (2.61) and using the smallness of
12ddt∫R3|∇4nh|2+|∇4uh|2+|∇4Eh|2dx+(μ1+μ2)∫R3|∇5uh|2dx≲δ0(‖∇4Eh‖2L2+‖∇5u‖2L2+‖∇4n‖2L2)+(1+t)−92+(1+t)−1‖∇4nh‖2L2+(1+t)−1‖∇4Eh‖2L2. | (2.75) |
Step 2. Dissipation of
ddt∫R3∇3uh∇4nhdx+∫R3|∇4nh|2−|∇4uh|2+|∇4Eh|2dx=−⟨∇4(n∇⋅u)h,∇3uh⟩−⟨∇4(∇n⋅u)h,∇3uh⟩−⟨∇4(f2+f3)h,∇4nh⟩+(μ1+μ2)⟨∇5uh,∇4nh⟩:=K6+K7+K8+K9. | (2.76) |
For the term
(2.77) |
For the term
(2.78) |
For the term
(2.79) |
For
(2.80) |
Substituting (2.77)–(2.80) into (2.76) and using the smallness of
(2.81) |
Step 3. Closing the estimates. Now, we are in a position to close the estimates. To do this, we define the temporal energy functional
(2.82) |
for
and using the smallness of
(2.83) |
since
(2.84) |
Therefore, together with (2.4)-(2.5), (2.83)-(2.84) and Gronwall's argument, we have
(2.85) |
Consequently, we have from (2.4)-(2.5) and (2.85) that
(2.86) |
(2.87) |
This completes the proof of Theorem 1.1 for
Therefore, we complete the proof of Theorem 1.1.
Appendix A. Analytic tools. We will use the Sobolev interpolation of Gagliardo-Nirenberg inequality.
Lemma A.1. Let
where
Lemma A.2. Let
where
Finally, we introduce the lemma concerning the estimate for the low-frequency part and the high-frequency part of
Lemma A.3. If
Proof. For
and hence
Guochun Wu's research was in part supported by National Natural Science Foundation of China (No. 11701193, 11671086), Natural Science Foundation of Fujian Province (No. 2018J05005, 2017J01562), Program for Innovative Research Team in Science and Technology in Fujian Province University Quanzhou High–Level Talents Support Plan (No. 2017ZT012). Yinghui Zhang' research is partially supported by Guangxi Natural Science Foundation (No. 2019JJG110003, 2019AC20214), and National Natural Science Foundation of China (No. 11771150, 11571280, 11301172 and 11226170.)
[1] |
Long time behavior of weak solutions to Navier–Stokes–Poisson system. J. Math. Fluid Mech. (2012) 14: 279-294. ![]() |
[2] |
Optimal decay rate for the compressible Navier–Stokes–Poisson system in the critical framework. J. Differential Equations (2017) 263: 8391-8417. ![]() |
[3] | Q. Chen, G. Wu and Y. Zhang, Optimal large time behavior of the compressible bipolar Navier-Stokes-Poisson system with unequal viscosities, Preprint, arXiv: 2104.08565v1 [math.AP] 17 Apr 2021. |
[4] |
On the global existence and time decay estimates in critical spaces for the Navier–Stokes–Poisson system. Math. Nachr. (2017) 290: 1939-1970. ![]() |
[5] |
Local and global existence for the coupled Navier–Stokes–Poisson problem. Quart. Appl. Math. (2003) 61: 345-361. ![]() |
[6] |
R. Duan, et al. Optimal - convergence rates for the compressible Navier-Stokes equations with potential force, J. Differential Equations, 238 (2007), 220-33. doi: 10.1016/j.jde.2007.03.008
![]() |
[7] |
Stability of rarefaction wave and boundary layer for outflow problem on the two–fluid Navier–Stokes–Poisson equations. Commun. Pure Appl. Anal. (2013) 12: 985-1014. ![]() |
[8] |
Global in time weak solution for compressible barotropic self-gravitating fluids. Discrete Contin. Dyn. Syst. (2004) 11: 113-130. ![]() |
[9] |
Global existence for compressible Navier-Stokes-Poisson equations in three and higher dimensions. J. Differential Equations (2009) 246: 4791-4812. ![]() |
[10] |
On large time behavior of solutions to the compressible Navier-Stokes equations in the half space in . Arch. Rational Mech. Anal. (2002) 165: 89-159. ![]() |
[11] |
Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space. Arch. Ration. Mech. Anal. (2005) 177: 231-330. ![]() |
[12] |
Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in . J. Differ. Equ. (2002) 184: 587-619. ![]() |
[13] |
Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in . Comm. Math. Phys. (1999) 200: 621-659. ![]() |
[14] |
Optimal decay rate of the compressible Navier-Stokes-Poisson system in . Arch. Ration. Meth. Anal. (2010) 196: 681-713. ![]() |
[15] |
Time asymptotic behavior of the bipolar Navier–Stokes–Poisson system. Acta Math. Sci. B (2009) 29: 1721-1736. ![]() |
[16] |
Y. Li and J. Liao, Existence and zero-electron-mass limit of strong solutions to the stationary compressible Navier-Stokes-Poisson equation with large external force, Math. Methods Appl. Sci., 41 (2018), 646–663. doi: 10.1002/mma.4634
![]() |
[17] | Y. Li and N. Zhang, Decay rate of strong solutions to compressible Navier-Stokes-Poisson equations with external force, Electron. J. Differential Equations, (2019), Paper No. 61, 18 pp. |
[18] | The initial value problem for the equations of motion of compressible viscous and heat conductive fluids. Proc. Japan Acad. Ser. A Math. Sci. (1979) 55: 337-342. |
[19] |
The initial value problem for the equations of motion of viscous and heat–conductive gases. J. Math. Kyoto Univ. (1980) 20: 67-104. ![]() |
[20] |
A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat conductive fluids, Comm. Math. Phys., 89 (1983), 445–464. doi: 10.1007/BF01214738
![]() |
[21] |
A sharp time–weighted inequality for the compressible Navier–Stokes–Poisson system in the critical framework. J. Differential Equations (2019) 266: 6426-6458. ![]() |
[22] |
Global existence for the non-isentropic compressible Navier-Stokes-Poisson system in three and higher dimensions. Nonlinear Anal. Real World Appl. (2012) 13: 650-664. ![]() |
[23] |
Decay of the non-isentropic Navier–Stokes–Poisson equations. J. Math. Anal. Appl. (2013) 400: 293-303. ![]() |
[24] |
W. Wang and X. Xu, The decay rate of solution for the bipolar Navier–Stokes–Poisson system, J. Math. Phys., 55 (2014), 091502, 22 pp. doi: 10.1063/1.4894766
![]() |
[25] |
Decay of the Navier-Stokes-Poisson equations. J. Differential Equations (2012) 253: 273-297. ![]() |
[26] |
Pointwise estimates for bipolar compressible Navier–Stokes–Poisson system in dimension three. Arch. Rational Mech. Anal. (2017) 226: 587-638. ![]() |
[27] |
Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in . J. Differential Equations (2011) 250: 866-891. ![]() |
[28] |
On the existence of solutions to the Navier-Stokes-Poisson equations of a two-demensional compressible flow. Math. Methods Appl. Sci. (2007) 30: 305-329. ![]() |
[29] |
F. Zhou and Y. Li, Convergence rate of solutions toward stationary solutions to the bipolar Navier–Stokes–Poisson equations in a half line, Bound. Value Probl., 2013 (2013), 22 pp. doi: 10.1186/1687-2770-2013-124
![]() |
[30] |
Large time behaviors of the isentropic bipolar compressible Navier–Stokes–Poisson system. Acta Math. Sci. Ser. B (Engl. Ed.) (2011) 31: 1725-1740. ![]() |