In this paper, we study the following Schrödinger-Poisson equations with double critical exponents:
$ \begin{equation*} \left\{ \begin{array}{lr} -\Delta u = |u|^4u+\phi |u|^3 u +\lambda u,\quad& in\,\,\Omega,\\ -\Delta \phi = |u|^5,\quad& in\,\,\Omega,\\ u = \phi = 0,\quad& on\,\,\partial\Omega, \end{array} \right. \end{equation*} $
where $ \Omega $ is a bounded domain in $ \mathbb{R}^3 $ with Lipschitz boundary, $ \lambda $ is a real parameter satisfying suitable conditions. Using variational methods, we show the existence and nonexistence of nontrivial solutions for the Schrödinger-Poisson equations.
Citation: Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations[J]. Electronic Research Archive, 2021, 29(3): 2475-2488. doi: 10.3934/era.2020125
In this paper, we study the following Schrödinger-Poisson equations with double critical exponents:
$ \begin{equation*} \left\{ \begin{array}{lr} -\Delta u = |u|^4u+\phi |u|^3 u +\lambda u,\quad& in\,\,\Omega,\\ -\Delta \phi = |u|^5,\quad& in\,\,\Omega,\\ u = \phi = 0,\quad& on\,\,\partial\Omega, \end{array} \right. \end{equation*} $
where $ \Omega $ is a bounded domain in $ \mathbb{R}^3 $ with Lipschitz boundary, $ \lambda $ is a real parameter satisfying suitable conditions. Using variational methods, we show the existence and nonexistence of nontrivial solutions for the Schrödinger-Poisson equations.
[1] |
C. O. Alves, A. B. Nóbrega and M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differ. Equ., 55 (2016), Art. 48, 28 pp. doi: 10.1007/s00526-016-0984-9
![]() |
[2] |
Existence of semiclassical ground state solutions for a generalized Choquard equation. J. Differ. Equations. (2014) 257: 4133-4164. ![]() |
[3] |
Multiplicity and concentration of solutions for a quasilinear Choquard equation. J. Math. Phys. (2014) 55: 423-443. ![]() |
[4] |
Y. Ao, Existence of solutions for a class of nonlinear Choquard equations with critical growth, Appl. Anal., (2019), 1–17. doi: 10.1080/00036811.2019.1608961
![]() |
[5] |
On a system involving a critically growing nonlinearity. J. Math. Anal. Appl. (2012) 387: 433-438. ![]() |
[6] |
Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pur. Appl. Math. (1983) 36: 437-477. ![]() |
[7] |
L. Cai and F. Zhang, The Brezis-Nirenberg type double critical problem for the Choquard equation, SN Partial Differential Equations and Applications, 1 (2020). doi: 10.1007/s42985-020-00032-0
![]() |
[8] |
An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire (1985) 2: 463-470. ![]() |
[9] |
Some existence results for superlinear elliptic boundary value problems involving critical exponents. J. Funct. Anal. (1986) 69: 289-306. ![]() |
[10] |
Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. (2012) 63: 233-248. ![]() |
[11] |
Xiaojing Feng, Ground state solution for a class of Schrödinger-Poisson-type systems with partial potential, Z. Angew. Math. Phys., 71 (2020), Paper No. 37, 16 pp. doi: 10.1007/s00033-020-1254-4
![]() |
[12] |
The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation. Sci. China Math. (2018) 61: 1219-1242. ![]() |
[13] |
C. Y. Lei, G. S. Liu and H. M. Suo, Positive solutions for a Schrödinger-Poisson system with singularity and critical exponent, J. Math. Anal. Appl., 483 (2020), 123647, 21 pp. doi: 10.1016/j.jmaa.2019.123647
![]() |
[14] |
F. Li, Y. Li and J. Shi, Existence of positive solutions to Schrödinger-Poisson type systems with critical exponent, Commun. Contemp. Math., 16 (2014), 1450036, 28 pp. doi: 10.1142/S0219199714500369
![]() |
[15] |
F. Li, L. Long, Y. Huang and Z. Liang, Ground state for Choquard equation with doubly critical growth nonlinearity, J. Qual. Theory Differ. Equ., (2019), 1–15. doi: 10.14232/ejqtde.2019.1.33
![]() |
[16] |
Ground states for Choquard equations with doubly critical exponents. Rocky Mountain J. Math. (2019) 49: 153-170. ![]() |
[17] |
Existence of a ground state solution for Choquard equation with the upper critical exponent. Comput. Math. Appl. (2018) 76: 2635-2647. ![]() |
[18] |
Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Studies in Appl. Math. (1976/77) 57: 93-105. ![]() |
[19] |
The Choquard equation and related questions. Nonlinear Anal. (1980) 4: 1063-1072. ![]() |
[20] |
Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. (2010) 195: 455-467. ![]() |
[21] |
Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics. J. Funct Anal. (2013) 265: 153-184. ![]() |
[22] |
P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence, RI, 1986. doi: 10.1090/cbms/065
![]() |
[23] |
Nonlinear Choquard equations: Doubly critical case. Appl. Math. Lett. (2018) 76: 148-156. ![]() |
[24] |
M. Struwe, Variational Methods, Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-662-02624-3
![]() |
[25] |
Groundstates for a local nonlinear perturbation of the Choquard equations with lower critical exponent. J. Math. Anal. Appl. (2018) 464: 1184-1202. ![]() |
[26] |
M. Willem, Minimax Theorems, Birkhäuser Boston, 1996. doi: 10.1007/978-1-4612-4146-1
![]() |
[27] |
M. Willem, Functional Analysis, Springer New York, 2013. doi: 10.1007/978-1-4614-7004-5
![]() |
[28] |
On the critical cases of linearly coupled Choquard systems. Appl. Math. Lett. (2019) 91: 1-8. ![]() |
[29] |
Existence, uniqueness and multiplicity of positive solutions for schrödinger-Poisson system with singularity. J. Math. Anal. Appl. (2016) 437: 160-180. ![]() |
[30] |
Existence and asymptotic behavior of positive solutions for Kirchhoff type problems with steep potential well. J. Differ. Equations (2020) 269: 10085-10106. ![]() |