In this paper, multidimensional stability of pyramidal traveling fronts are studied to the reaction-diffusion equations with degenerate Fisher-KPP monostable and combustion nonlinearities. By constructing supersolutions and subsolutions coupled with the comparison principle, we firstly prove that under any initial perturbation (possibly large) decaying at space infinity, the three-dimensional pyramidal traveling fronts are asymptotically stable in weighted L∞ spaces on Rn(n≥4). Secondly, we show that under general bounded perturbations (even very small), the pyramidal traveling fronts are not asymptotically stable by constructing a solution which oscillates permanently between two three-dimensional pyramidal traveling fronts on R4.
Citation: Denghui Wu, Zhen-Hui Bu. Multidimensional stability of pyramidal traveling fronts in degenerate Fisher-KPP monostable and combustion equations[J]. Electronic Research Archive, 2021, 29(6): 3721-3740. doi: 10.3934/era.2021058
[1] | Denghui Wu, Zhen-Hui Bu . Multidimensional stability of pyramidal traveling fronts in degenerate Fisher-KPP monostable and combustion equations. Electronic Research Archive, 2021, 29(6): 3721-3740. doi: 10.3934/era.2021058 |
[2] | Cui-Ping Cheng, Ruo-Fan An . Global stability of traveling wave fronts in a two-dimensional lattice dynamical system with global interaction. Electronic Research Archive, 2021, 29(5): 3535-3550. doi: 10.3934/era.2021051 |
[3] | Jin Li, Yongling Cheng . Barycentric rational interpolation method for solving KPP equation. Electronic Research Archive, 2023, 31(5): 3014-3029. doi: 10.3934/era.2023152 |
[4] | Peng Gao, Pengyu Chen . Blowup and MLUH stability of time-space fractional reaction-diffusion equations. Electronic Research Archive, 2022, 30(9): 3351-3361. doi: 10.3934/era.2022170 |
[5] | Shao-Xia Qiao, Li-Jun Du . Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, 2021, 29(3): 2269-2291. doi: 10.3934/era.2020116 |
[6] | J. Vanterler da C. Sousa, Kishor D. Kucche, E. Capelas de Oliveira . Stability of mild solutions of the fractional nonlinear abstract Cauchy problem. Electronic Research Archive, 2022, 30(1): 272-288. doi: 10.3934/era.2022015 |
[7] | Léo Girardin, Danielle Hilhorst . Spatial segregation limit of traveling wave solutions for a fully nonlinear strongly coupled competitive system. Electronic Research Archive, 2022, 30(5): 1748-1773. doi: 10.3934/era.2022088 |
[8] | Harish Bhatt . Second-order time integrators with the Fourier spectral method in application to multidimensional space-fractional FitzHugh-Nagumo model. Electronic Research Archive, 2023, 31(12): 7284-7306. doi: 10.3934/era.2023369 |
[9] | Yi Wei . The Riccati-Bernoulli subsidiary ordinary differential equation method to the coupled Higgs field equation. Electronic Research Archive, 2023, 31(11): 6790-6802. doi: 10.3934/era.2023342 |
[10] | Ibtissam Issa, Zayd Hajjej . Stabilization for a degenerate wave equation with drift and potential term with boundary fractional derivative control. Electronic Research Archive, 2024, 32(8): 4926-4953. doi: 10.3934/era.2024227 |
In this paper, multidimensional stability of pyramidal traveling fronts are studied to the reaction-diffusion equations with degenerate Fisher-KPP monostable and combustion nonlinearities. By constructing supersolutions and subsolutions coupled with the comparison principle, we firstly prove that under any initial perturbation (possibly large) decaying at space infinity, the three-dimensional pyramidal traveling fronts are asymptotically stable in weighted L∞ spaces on Rn(n≥4). Secondly, we show that under general bounded perturbations (even very small), the pyramidal traveling fronts are not asymptotically stable by constructing a solution which oscillates permanently between two three-dimensional pyramidal traveling fronts on R4.
In this paper, we investigate the large time behavior of solutions to the following Cauchy problem:
{ut(t,x)=Δu(t,x)+f(u(t,x)),x∈Rn,t>0,u(0,x)=u0(x),x∈Rn, | (1) |
where
(H1):
Such equations arise in various phenomena in population dynamics, combustion and chemistry ecology (see [1]), where
In what follows, we shall study the multidimensional stability of three-dimensional pyramidal traveling fronts to Eq. (1) in
u(t,x)=ϕf(p),p=x−cft, |
where
{ϕ″f(p)+cfϕ′f(p)+f(ϕf(p))=0,ϕ′f(p)<0,∀p∈R,ϕf(+∞)=0,ϕf(−∞)=1. | (2) |
Such solution
(H2): There exists
limp→+∞ϕ′f(p)ϕf(p)=Λ<Λ1≤0, |
where
The equation (1) with assumptions (H1)-(H2) is called degenerate Fisher-KPP monostable and combustion equation. In fact, it follows from [1,10] that the assumptions (H1)-(H2) hold with
In
However, due to the influence of curvature and spatial dimension, there are other types of traveling fronts in
In
0≤θ1<θ2<⋯<θl<2πandmax1≤j≤l(θj+1−θj)<π, |
where
h(y,z)=max1≤j≤lhj(y,z)=max1≤j≤lm∗(ycosθj+zsinθj)for(y,z)∈R2, |
where
Theorem I (see Wang and Bu [19]) Assume that (H1)-(H2) hold. For any
Vyy+Vzz+Vss+cVs+f(V)=0, | (3) |
limγ→+∞sup(y,z,s)∈D(γ)|V(y,z,s)−ϕf(c∗fc(s−h(y,z)))|ϕβf(c∗fc(s−h(y,z)))=0,∀β∈(Λ1Λ,1), |
where
ϕf(c∗fc(s−h(y,z)))<V(y,z,s)<1,∀(y,z,s)∈R3. |
It is obvious that the three-dimensional pyramidal front in Theorem I is also the solution to Eq. (1) in
In the following, we use the moving coordinate with speed
{ϑt−Δϑ−cϑs−f(ϑ)=0,t>0,(x,y,z,s)∈Rn−3×R3,ϑ(0,x,y,z,s)=ϑ0(x,y,z,s),(x,y,z,s)∈Rn−3×R3. | (4) |
In the sequel, the solution to Eq. (4) is written as
Theorem 1.1. Assume that
limR→+∞sup|x|+|y|+|z|+|s|≥R|ϑ0(x,y,z,s)−V(y,z,s)|ϕβf(c∗fc(s−h(y,z)))=0 |
for some
limt→+∞sup(x,y,z,s)∈Rn|ϑ(t,x,y,z,s;ϑ0)−V(y,z,s)|ϕβf(c∗fc(s−h(y,z)))=0. | (5) |
The above theorem shows that under the initial perturbations decaying as
Theorem 1.2. Suppose that
V(y,z,s−ϑ−0(x))≤ϑ0(x,y,z,s)≤V(y,z,s−ϑ+0(x)) | (6) |
for some smooth functions
sup(x,y,z,s)∈Rn|ϑ(t,x,y,z,s;ϑ0)−V(y,z,s)|ϕβf(c∗fc(s−h(y,z)))≤Ct−n−32,t>0, | (7) |
where
If the initial perturbations in Theorem 1.2 keep the sign, then we can obtain that the convergence rate (7) is optimal in some sense.
Proposition 1. Let
D1(1+t)−n−32≤sup(x,y,z,s)∈Rn|ϑ(t,x,y,z,s;ϑ0)−V(y,z,s)|ϕβf(c∗fc(s−h(y,z)))≤D2t−n−32,t>0. |
Finally, by constructing a solution to Eq. (1) which oscillates permanently between two pyramidal traveling fronts, we show that the three-dimensional pyramidal traveling fronts are not asymptotically stable under general bounded perturbations (even very small) on
Theorem 1.3. Let
limm→+∞sup|x|≤m!−1,(y,z,s)∈R3|u(tm,x,y,z,s)−V(y,z,s−ctm+(−1)mˉδ)|ϕβf(c∗fc(s−ctm−h(y,z)))=0, |
where
Remark 1. From the perspective of dynamical systems, the above result yields that in the weighted
We organize this paper as follows. In Section 2, we give some preliminaries including the properties of the pyramidal traveling fronts, some known results on the curvature flow problem and a mollified pyramid. In Section 3, we prove that the three-dimensional pyramidal traveling fronts are asymptotically stable in
In this section, we state some known results which play an important role in the proving of the main results. Throughout the paper, let
γ1:=supp∈R|ϕ′(p)ϕ(p)|,γ2:=supp∈R|ϕ′′(p)ϕ(p)|,γ3:=supu∈[−ι,1+ι]|f′(u)| |
and fix
32f′(1)<f′(u)<12f′(1). |
We now recall some known results on the curvature flow problem. See [14] for more details. The mean curvature flow for a graphical surface
{wt√1+|∇w|2=div(∇w√1+|∇w|2),x∈Rn−3,t>0,w(0,x)=w0(x),x∈Rn−3. | (8) |
Assume that on
0=wt−√1+|∇w|2⋅div(∇w√1+|∇w|2)=wt−Δw+n−3∑i,j=1wxiwxjwxixj1+|∇w|2≥wt−Δw−k|∇w|2. |
It is clear that
{v+t=Δv++k|∇v+|2,x∈Rn−3,t>0,v+(0,x)=w0(x),x∈Rn−3. |
Taking the Cole-Hopf transformation
{w+t=Δw+,x∈Rn−3,t>0,w+(0,x)=exp(kw0(x)),x∈Rn−3. |
Thus we can obtain that
v+(t,x)=1klog|∫Rn−3Γ(t,x−η)exp(kw0(η))dη|, | (9) |
where
Γ(t,η)=1(4πt)n−32exp(−|η|24t). |
Therefore (9) gives an upper estimate for the solution
{v−t=Δv–k|∇v−|2,x∈Rn−3,t>0,v−(0,x)=w0(x),x∈Rn−3. |
That is,
v−(t,x)=−1klog|∫Rn−3Γ(t,x−η)exp(−kw0(η))dη|. | (10) |
Let
{v±t=Δv±±k|∇v±|2,x∈Rn−3,t>0,v±(0,x)=w0(x),x∈Rn−3. |
The following lemma gives the large time behavior of
Lemma 2.1. If the initial value
limt→∞supx∈Rn−3|v±(t,x)|=0, |
respectively. If we further assume that
supx∈Rn−3|v±(t,x)|≤1k||exp(kw0)−1||L1(Rn−3)⋅t−n−32,t>0. |
Similar to the proof of Lemma 3.2 of [16] and Lemma 2.2 of [14], we can obtain the following key estimates about the three-dimensional pyramidal fronts and planar fronts, respectively.
Lemma 2.2. Let
˜k1Vs(y,z,s)≤Vss(y,z,s)≤−˜k1Vs(y,z,s),∀(y,z,s)∈R3. | (11) |
Lemma 2.3. Let
˜k2ϕ′f(p)≤ϕ′′f(p)≤−˜k2ϕ′f(p),∀p∈R. |
Let
{˜kVs(y,z,s)≤Vss(y,z,s)≤−˜kVs(y,z,s),∀(y,z,s)∈R3,˜kϕ′f(p)≤ϕ′′f(p)≤−˜kϕ′f(p),∀p∈R. | (12) |
The following lemma shows some properties on three-dimensional pyramidal traveling fronts
Lemma 2.4. ([19,Lemmas 3.3 and 3.4]) Let
limR→+∞sup|s−h(y,z)|≥RVs(y,z,s)ϕβf(c∗fc(s−h(y,z)))=0,∀β∈(Λ1Λ,1), | (13) |
and
infδ≤V(y,z,s)≤1−δVs(y,z,s)<0foranyδ∈(0,ι∗). | (14) |
Remark 2. Obviously,
A1:=sup(y,z,s)∈R3Vs(y,z,s)ϕβf(c∗fc(s−h(y,z)))<+∞,A2:=sup(y,z,s)∈R3,θ∈[0,1]ϕβf(c∗fc(s+θ−h(y,z)))ϕβf(c∗fc(s−h(y,z)))<+∞. |
Finally, we show a mollified pyramid, which was constructed by Taniguchi [17]. Let
˜ρ(r)>0,˜ρr(r)≤0forr≥0,˜ρ(r)=1ifr>0issmallenough,˜ρ(r)=e−rifr>0islargeenough,sayr>R0,2π∫∞0r˜ρ(r)dr=1. |
Clearly, the function
|Di1yDi2zρ(y,z)|≤M∗ρ(y,z),∀(y,z)∈R2, |
where
φ(y,z)=∫R2ρ(y−y′,z−z′)h(y′,z′)dy′dz′=∫R2ρ(y′,z′)h(y−y′,z−z′)dy′dz′. | (15) |
Let
S(y,z):=c√1+|∇φ(y,z)|2−c∗f, | (16) |
where
Lemma 2.5. Let
sup(y,z)∈R2|Di1yDi2zφ(y,z)|<K1forsomeconstantK1>0,h(y,z)<φ(y,z)≤h(y,z)+2πm∗∫∞0r2˜ρ(r)dr,|∇φ(y,z)|<m∗,0<S(y,z)≤c−c∗f,∀(y,z)∈R2 |
and
limλ→∞sup{S(y,z)|(y,z)∈R2,dist((y,z),Γ)≥λ}=0,limλ→∞sup{φ(y,z)−h(y,z)|(y,z)∈R2,dist((y,z),Γ)≥λ}=0. |
Lemma 2.6. There exist two positive constants
0<ν1=inf(y,z)∈R2φ(y,z)−h(y,z)S(y,z)≤sup(y,z)∈R2φ(y,z)−h(y,z)S(y,z)=ν2<∞. |
In addition, for integers
sup(y,z)∈R2|Di1yDi2zφ(y,z)S(y,z)|<K2 |
and
|φyy(y,z)|,|φzz(y,z)|≤m∗M∗,∀(y,z)∈R2. |
In this section, we give the proof of asymptotic stability of three-dimensional pyramidal fronts
Lemma 3.1. Let
v+t=Δxv++˜k|∇xv+|2,x∈Rn−3,t>0, | (17) |
the function defined by
V+(t,x,y,z,s)=V(y,z,s−v+(t,x)−σδ(1−e−λt))+δe−λtϕβf(c∗fc(s−v+(t,x)−σδ(1−e−λt)−φ(υy,υz)υ)) |
is a supersolution to Eq. (4) in
Proof. Let
H[V+]:=V+t−ΔV+−cV+s−f(V+)=−Vηv+t−σδλe−λtVη−δλe−λtϕβf(ξ)−c∗fcδβe−λtϕβ−1f(ξ)ϕ′f(ξ)v+t−c∗fcβσδ2λe−2λtϕβ−1f(ξ)ϕ′f(ξ)−Vηη|∇xv+|2+VηΔxv+−c∗2fc2δβ(β−1)e−λtϕβ−2f(ξ)ϕ′f(ξ)2|∇xv+|2−c∗2fc2δβe−λtϕβ−1f(ξ)ϕ″f(ξ)|∇xv+|2+c∗fcδβe−λtϕβ−1f(ξ)ϕ′f(ξ)Δxv+−Vyy−c∗2fc2β(β−1)δe−λtϕβ−2f(ξ)ϕ′f(ξ)2φ2Y(Y,Z)−c∗2fc2βδe−λtϕβ−1f(ξ)ϕ″f(ξ)φ2Y(Y,Z)+c∗fcυβδe−λtϕβ−1f(ξ)ϕ′f(ξ)φYY(Y,Z)−Vzz−c∗2fc2β(β−1)δe−λtϕβ−2f(ξ)ϕ′f(ξ)φ2Z(Y,Z)−c∗2fc2βδe−λtϕβ−1f(ξ)ϕ″f(ξ)φ2Z(Y,Z)+c∗fcυβδe−λtϕβ−1f(ξ)ϕ′f(ξ)φZZ(Y,Z) |
−Vss−β(β−1)δe−λtϕβ−2f(ξ)ϕ′f(ξ)2c∗2fc2−βδe−λtϕβ−1f(ξ)ϕ″f(ξ)c∗2fc2−cVs−c∗fβδe−λtϕβ−1f(ξ)ϕ′f(ξ)−f(V(y,z,η)+δe−λtϕβf(ξ))=−σδλe−λtVη−δλe−λtϕβf(ξ)−c∗fcβσδ2λe−2λtϕβ−1f(ξ)ϕ′f(ξ)+Vη(−v+t+Δxv+)−Vηη|∇xv+|2+c∗fcδβe−λtϕβ−1f(ξ)[(−v+t+Δxv+)ϕ′f(ξ)−c∗fc|∇xv+|2ϕ″f(ξ)]−c∗2fc2δβ(β−1)e−λtϕβ−2f(ξ)ϕ′f(ξ)2|∇xv+|2−c∗2fc2β(β−1)δe−λtϕβ−2f(ξ)ϕ′f(ξ)2[1+|∇φ(Y,Z)|2]−c∗2fc2βδe−λtϕβ−1f(ξ)ϕ″f(ξ)[1+|∇φ(Y,Z)|2]+c∗fcυβδe−λtϕβ−1f(ξ)ϕ′f(ξ)Δφ(Y,Z)−c∗fβδe−λtϕβ−1f(ξ)ϕ′f(ξ)−f(V(y,z,η)+δe−λtϕβf(ξ))+f(V(y,z,η))=−σδλe−λtVη−δλe−λtϕβf(ξ)−c∗fcβσδ2λe−2λtϕβ−1f(ξ)ϕ′f(ξ)+(−˜kVη−Vηη)|∇xv+|2+c∗fcδβe−λtϕβ−1f(ξ)[(−˜kϕ′f(ξ)−c∗fcϕ″f(ξ))|∇xv+|2]−c∗2fc2δβ(β−1)e−λtϕβ−2f(ξ)ϕ′f(ξ)2|∇xv+|2−c∗2fc2β(β−1)δe−λtϕβ−2f(ξ)ϕ′f(ξ)2[1+|∇φ(Y,Z)|2]−c∗2fc2βδe−λtϕβ−1f(ξ)ϕ″f(ξ)[1+|∇φ(Y,Z)|2]+c∗fcυβδe−λtϕβ−1f(ξ)ϕ′f(ξ)Δφ(Y,Z)−c∗fβδe−λtϕβ−1f(ξ)ϕ′f(ξ)−f(V(y,z,η)+δe−λtϕβf(ξ))+f(V(y,z,η))≥−σδλe−λtVη−δλe−λtϕβf(ξ)−c∗fcβσδ2λe−2λtϕβ−1f(ξ)ϕ′f(ξ)−c∗2fc2β(β−1)δe−λtϕβ−2f(ξ)ϕ′f(ξ)2[1+|∇φ(Y,Z)|2]−c∗2fc2βδe−λtϕβ−1f(ξ)ϕ″f(ξ)[1+|∇φ(Y,Z)|2]+c∗fcυβδe−λtϕβ−1f(ξ)ϕ′f(ξ)Δφ(Y,Z)−c∗fβδe−λtϕβ−1f(ξ)ϕ′f(ξ)−δe−λtϕβf(ξ)f′(V(y,z,η)+θδe−λtϕβf(ξ)), |
where
Since
32Λ≤ϕ′f(p)ϕf(p)≤12Λ,(βϕ′f(p)ϕf(p))2+c∗fβϕ′f(p)ϕf(p)+f′(0)<12K(βΛ),∀p>R1. | (18) |
By
limp→+∞c∗2fc2[(ϕ′f(p)ϕf(p))2−ϕ″f(p)ϕf(p)](1+|∇φ(Y,Z)|2)=0 |
uniformly in
|c∗2fc2[(ϕ′f(p)ϕf(p))2−ϕ″f(p)ϕf(p)](1+|∇φ(Y,Z)|2)|<−116K(βΛ), | (19) |
for
|f′(u1)−f′(u2)|≤K|u1−u2|ς,∀u1,u2∈[−ι,1+ι]. | (20) |
Since
|f′(V(y,z,η)+θδe−λtϕβf(ξ))−f′(0)|≤K|V(y,z,η)+θδe−λtϕβf(ξ)|ς<−116K(βΛ) | (21) |
for any
Since
|ϕ′f(p)ϕf(p)|<c|f′(1)|16c∗fm∗M∗and|βϕ″f(p)ϕf(p)|<|f′(1)|8,∀p<−R4. | (22) |
Since
V(y,z,η(t,x,s))>1−ι∗. | (23) |
Let
min−ˉR≤ξ(t,x,y,z,s)≤ˉR(−Vs(y,z,η(t,x,s)))>β1. | (24) |
Let
σλβ1−λ−γ2−2m∗M∗γ1−γ3>0,σ≥σ0. | (25) |
Note that
Case 1. For
H[V+]:=V+t−ΔV+−cV+s−f(V+)≥δe−λtϕβf(ξ)[−λ+c∗2fc2β((ϕ′f(ξ)ϕf(ξ))2−ϕ″f(ξ)ϕf(ξ))(1+(∇φ(Y,Z))2)+β2(ϕ′f(ξ)ϕf(ξ))2[1−c∗2fc2(1+(∇φ(Y,Z))2)]−β2(ϕ′f(ξ)ϕf(ξ))2−c∗fβϕ′f(ξ)ϕf(ξ)−f′(0)+c∗fcυβϕ′f(ξ)ϕf(ξ)Δφ(Y,Z)−f′(V(y,z,η)+θδe−λtϕβf(ξ))+f′(0)]≥δe−λtϕβf(ξ)[−λ+K(βΛ)16−12K(βΛ)+116K(βΛ)+116K(βΛ)]≥0. |
Case 2. For
H[V+]:=V+t−ΔV+−cV+s−f(V+)≥δe−λtϕβf(ξ)[−λ−c∗2fc2βϕ″f(ξ)ϕf(ξ)(1+(∇φ(Y,Z))2)+c∗fcυβϕ′f(ξ)ϕf(ξ)Δφ(Y,Z)−f′(V(y,z,η)+θδe−λtϕβf(ξ))]≥δe−λtϕβf(ξ)[−λ+f′(1)8+f′(1)8−f′(1)2]≥0. |
Case 3. For
H[V+]:=V+t−ΔV+−cV+s−f(V+)≥−σδλe−λtVη−δλe−λtϕβf(ξ)−c∗2fc2βδe−λtϕβf(ξ)ϕ″f(ξ)ϕf(ξ)[1+(∇φ(Y,Z))2]+c∗fcυβδe−λtϕβf(ξ)ϕ′f(ξ)ϕf(ξ)Δφ(Y,Z)−δe−λtϕβf(ξ)f′(V(y,z,η)+θδe−λtϕβf(ξ))≥δe−λt[σλβ1−λ−supξ∈R|ϕ″f(ξ)||ϕf(ξ)|−sup(Y,Z)∈R2|Δφ(Y,Z)|supξ∈R|ϕ′f(ξ)||ϕf(ξ)|−supu∈[−ι∗,1+ι∗]|f′(u)|]≥δe−λt(−σλβ1−λ−γ2−2m∗M∗γ1−γ3)≥0. |
By the above argument, we get
Lemma 3.2. Let
v−t=Δxv–˜k|∇xv−|2,x∈Rn−3,t>0, | (26) |
the function defined by
V−(t,x,y,z,s)=V(y,z,s−v−(t,x)+σδ(1−e−λt))−δe−λtϕβf(c∗fc(s+v−(t,x)+σδ(1−e−λt)−φ(υy,υz)υ)) |
is a subsolution to Eq. (4) in
Proof. Let
H[V−]=V−t−ΔV–cV–sf(V−)=−Vηv−t+σδλe−λtVη+δλe−λtϕβf(ξ)−c∗fcδβe−λtϕβ−1f(ξ)ϕ′f(ξ)v−t−σδ2c∗fce−2λtλβϕβ−1f(ξ)ϕ′f(ξ)−Vηη|∇xv−|2+VηΔxv−+c∗2fc2δβ(β−1)e−λtϕβ−2f(ξ)ϕ′f(ξ)2|∇xv−|2+c∗2fc2δβe−λtϕβ−1f(ξ)ϕ″f(ξ)|∇xv−|2+c∗fcδβe−λtϕβ−1f(ξ)ϕ′f(ξ)Δxv−−Vyy−Vzz+c∗2fc2δβ(β−1)e−λtϕβ−2f(ξ)ϕ′f(ξ)2|∇φ(Y,Z)|2+c∗2fc2δβe−λtϕβ−1f(ξ)ϕ″f(ξ)|∇φ(Y,Z)|2−c∗fcδβυe−λtϕβ−1f(ξ)ϕ′f(ξ)Δφ(Y,Z)−Vηη+c∗2fc2δβ(β−1)e−λtϕβ−2f(ξ)ϕ′f(ξ)2+c∗2fc2δβe−λtϕβ−1f(ξ)ϕ″f(ξ)−cVη+c∗fδβe−λtϕβ−1f(ξ)ϕ′f(ξ)−f(V(y,z,s,η)−δe−λtϕβf(ξ))=−σδλe−λtVη+δλe−λtϕβf(ξ)−c∗fcβσδ2λe−2λtϕβ−1f(ξ)ϕ′f(ξ)+Vη(−v−t+Δxv−)−Vηη|∇xv−|2+c∗fcδβe−λtϕβ−1f(ξ)[(−v−t+Δxv−)ϕ′f(ξ)+c∗fc|∇xv−|2ϕ″f(ξ)]−Vyy−Vzz−Vηη−cVη−f(V)+c∗2fc2δβ(β−1)e−λtϕβ−2f(ξ)ϕ′f(ξ)2[1+|∇φ(Y,Z)|2] |
+c∗2fc2δβe−λtϕβ−1f(ξ)ϕ″f(ξ)[1+|∇φ(Y,Z)|2]+c∗2fc2δβ(β−1)e−λtϕβ−2f(ξ)ϕ′f(ξ)2|∇xv−|2−c∗fcδβυe−λtϕβ−1f(ξ)ϕ′f(ξ)Δφ(Y,Z)+c∗fδβe−λtϕβ−1f(ξ)ϕ′f(ξ)−f(V(y,z,η)−δe−λtϕβf(ξ))+f(V(y,z,η))≤σδλe−λtVη+δλe−λtϕβf(ξ)−c∗fcβσδ2λe−2λtϕβ−1f(ξ)ϕ′f(ξ)+c∗2fc2δβ(β−1)e−λtϕβ−2f(ξ)ϕ′f(ξ)2[1+|∇φ(Y,Z)|2]+c∗2fc2δβe−λtϕβ−1f(ξ)ϕ″f(ξ)[1+|∇φ(Y,Z)|2]−c∗fcδβυe−λtϕβ−1f(ξ)ϕ′f(ξ)Δφ(Y,Z)+c∗fδβe−λtϕβ−1f(ξ)ϕ′f(ξ)+δe−λtϕβf(ξ)f′(V(y,z,η)−θδe−λtϕβf(ξ)), |
where
It follows from the boundedness of functions
|f′(V(y,z,η)−θδe−λtϕβf(ξ))−f′(0)|≤K|V(y,z,η)−θδe−λtϕβf(ξ)|ς<−116k(βΛ), | (27) |
for
V(y,z,η)>1−ι, | (28) |
for
Let
min−ˆR∗≤ξ(t,x,y,z,s)≤ˆR∗−Vη(y,z,η)≥β′1>0. | (29) |
Take
−σλβ′12+λ+γ2+2γ1m∗M∗+γ3<0,forσ≥σ1. | (30) |
Let
Similar to the proof of Lemma 3.1, we can get
Lemma 3.3. Assume that the initial value
limR→+∞sup|x|+|y|+|z|+|s|≥R|ϑ0(x,y,z,s)−V(y,z,s)|ϕβf(c∗fc(s−h(y,z)))=0, |
for some
limR→+∞sup|x|+|y|+|z|+|s|≥R|ϑ(T,x,y,z,s;ϑ0)−V(y,z,s)|ϕβf(c∗fc(s−h(y,z)))=0. |
Proof. The proof of Lemma 3.3 is similar to that of Lemma 3.8 in [4], so we omit it here.
We are now in the position to prove Theorem 1.1. break
Proof of Theorem 1.1. We only show the lower estimate, as the upper estimate can be given in a similar way. We denote
limR→+∞sup|x|+|y|+|z|+|s|≥R|ϑ0(x,y,z,s)−V(y,z,s)|ϕβf(c∗fc(s−h(y,z)))=0 |
for some
0<ϑ(t,x,y,z,s)<1,∀(x,y,z,s)∈Rn−3×R3 and t>0. |
From Lemma 3.3, it follows that for any fixed
sup|x|+|y|+|z|+|s|≥R1|ϑ(T,x,y,z,s)−V(y,z,s)|ϕβf(c∗fc(s−h(y,z)))≤ˆεσ. |
Thus we can choose a continuous function
ϑ(T,x,y,z,s)≥V(y,z,s−w0(x))−ˆεσϕβf(c∗fc(s+w0(x)−h(y,z))) |
for any
ϑ(T,x,y,z,s)≥V(y,z,s−w0(x))−ˆεσϕβf(c∗fc(s+w0(x)−φ(υy,υz)υ)) |
for any
{v−t=Δxv–˜k|∇v−|2,x∈Rn−3,t>0,v−(0,x)=w0(x),x∈Rn−3. |
Then it follows from Lemma 2.1 that there exists
−ˆε≤v−(t,x)≤0forallx∈Rn−3andt≥T1. |
Therefore, the comparison principle together with the subsolution constructed in Lemma 3.2 yields
ϑ(t,x,y,z,s)≥V(y,z,s−v−(t−T,x)+ˆε(1−e−λ(t−T)))−ˆεσe−λ(t−T)ϕβf(c∗fc(s+v−(t−T,x)+ˆε(1−e−λ(t−T))−φ(υy,υz)υ))≥V(y,z,s−v−(t−T,x)+ˆε(1−e−λ(t−T)))−ˆεσe−λ(t−T)ϕβf(c∗fc(s+v−(t−T,x)−φ(υy,υz)υ)) |
for
ϑ(t,x,y,z,s)−V(y,z,s)ϕβf(c∗fc(s−h(y,z)))≥V(y,z,s−v−(t−T,x)+ˆε(1−e−λ(t−T)))−V(y,z,s)ϕβf(c∗fc(s−h(y,z)))−ˆεσe−λ(t−T)ϕβf(c∗fc(s+v−(t−T,x)−φ(υy,υz)υ))ϕβf(c∗fc(s−h(y,z))). |
Let
V(y,z,s−v_−(t,x))−V(y,z,s)ϕβf(c∗fc(s−h(y,z)))=−Vs(y,z,s−θv_−(t,x))ϕβf(c∗fc(s−h(y,z)))v_−(t,x)=−Vs(y,z,s−θv_−(t,x))ϕβf(c∗fc(s−θv_−(t,x)−h(y,z)))ϕβf(c∗fc(s−θv_−(t,x)−h(y,z)))ϕβf(c∗fc(s−h(y,z)))v_−(t,x)≥−2ˆεsup(y,z,s)∈R3−Vs(y,z,s)ϕβf(c∗fc(s−h(y,z)))sup(t,x,y,z,s)∈Ωϕβf(c∗fc(s−θv_−(t,x)−h(y,z)))ϕβf(c∗fc(s−h(y,z)))≥−2ˆεA1e2γ1ˆε, |
where
ϕβf(c∗fc(s+v−(t−T,x)−φ(υy,υz)υ))ϕβf(c∗fc(s−h(y,z)))≤ϕβf(c∗fc(s−ˆε−h(y,z)−Dυ))ϕβf(c∗fc(s−h(y,z)))≤eγ1D2υeγ1ˆε. |
Combining the above argument, we have
ϑ(t,x,y,z,s)−V(y,z,s)ϕβf(c∗fc(s−h(y,z)))≥−2ˆεA1e2γ1ˆε−ˆεeγ1D2υeγ1ˆε>−ε2−ε2>−ε, |
for
In this subsection, we give the proofs of Theorem 1.2 and Proposition 1 motivated by [14,4]. We firstly construct a pair of subsolution and supersolution to Eq. (4). Let
{v±t(t,x)=Δxv±(t,x)±˜k1|∇xv±(t,x)|2,x∈Rn−3,t>0,v±(0,x)=v±0(x),x∈Rn−3, | (31) |
where
Lemma 3.4. Let
V(y,z,s−v−0(x))≤ϑ0(x,y,z,s)≤V(y,z,s−v+0(x)),∀(x,y,z,s)∈Rn−3×R3. |
Then we have
V(y,z,s−v−(t,x))≤ϑ(t,x,y,z,s)≤V(y,z,s−v+(t,x)) | (32) |
for all
Proof. Let
H[w+]:=w+t−Δw+−cw+s−f(w+)≥0, |
which yields that
Using (3), Lemma 2.2 and (31), the direct calculation yields that
H[w+]=−v+tVs−Σn−3j=1[−v+xjxjVs+(v+xj)2Vss]−Vyy−Vzz−Vss−cVs−f(V)=−v+tVs+Δxv+Vs−|∇xv+|Vss=|∇xv+|(−˜k1Vs−Vss)≥0. |
Similarly, we can show that the function
Proof of Theorem 1.2. Denote
V(y,z,s−v−(t,x))≤ϑ(t,x,y,z,s)≤V(y,z,s−v+(t,x)) |
with
ϑ(t,x,y,z,s)−V(y,z,s)ϕβf(c∗fc(s−h(y,z)))≤V(y,z,s−v+(t,x))−V(y,z,s)ϕβf(c∗fc(s−h(y,z)))=−Vs(y,z,s−θv+(t,x))ϕβf(c∗fc(s−h(y,z)))v+(t,x), |
where
−Vs(y,z,s−θv+(t,x))ϕβf(c∗fc(s−h(y,z)))=−Vs(y,z,s−θv+(t,x))ϕβf(c∗fc(s−θv+(t,x)−h(y,z)))ϕβf(c∗fc(s−θv+(t,x)−h(y,z)))ϕβf(c∗fc(s−h(y,z)))≤sup(y,z,s)∈R3−Vs(y,z,s)ϕβf(c∗fc(s−h(y,z)))sup(t,x,y,z,s)∈[0,+∞)×Rnϕβf(c∗fc(s−θv+(t,x)−h(y,z)))ϕβf(c∗fc(s−h(y,z)))≤D∗. |
Lemma 2.1 implies that there exists a constant
ϑ(t,x,y,z,s)−V(y,z,s)ϕβf(c∗fc(s−h(y,z)))≤D∗supx∈Rn−3|ϑ+0(t,x)|≤D+t−n−32. |
In a similar way, we can obtain that there exists a constant
ϑ(t,x,y,z,s)−V(y,z,s)ϕβf(c∗fc(s−h(y,z)))≥D−t−n−32. |
Let
Proof of Proposition 1. From Theorem 1.2 and (32), it suffices to prove that the solutions
ϑ(t,0,0,0,0;ϑ0)−V(0,0,0)ϕβf(0)≥V(0,0,−v−(t,0))−V(0,0,0)ϕβf(0)≥mins∈[−||v−||L∞,0]|Vs(0,0,s)ϕβf(0)⋅v−(t,0)|≥D1(1+t)−n−32, |
where
v−(t,x)=−1˜k1log(∫Rn−3Γ(t,x−η)exp(−˜k1ϑ−0(η))dη). |
Since
v−(t,x)≥−1˜k1log(1−∫ΘΓ(t,x−η)(1−exp(−˜k1ϱ))dη)≥−1˜k1log(1−|Θ|(1−exp(−˜k1ϱ))minη∈ΘΓ(t,x−η))≥|Θ|˜k1(1−exp(−˜k1ϱ))minη∈ΘΓ(t,x−η). |
And hence,
In this section, we show Theorem 1.3. That is, we prove the existence of solution to Eq. (1) which oscillates permanently with non-decaying amplitude. To prove our main result, we need construct a sequence of subsolutions and supersolutions pushing the solution forth and back in the
Lemma 4.1. [Lemmas 3.1 and 3.2 of [14]] Let
{v+0(x)≤ˉδ,x∈R,v+0(x)≤−ˉδ,|x|∈[m!+1,(m+1)!−1] |
and
{v−0(x)≥−ˉδ,x∈R,v−0(x)≥ˉδ,|x|∈[m!+1,(m+1)!−1] |
for some constant
sup|x|≤m!−1v+(T,x)≤−ˉδ+B∫|ζ|∈[0,2/√m]∪[√m,+∞)e−ζ2dζ |
and
sup|x|≤m!−1v−(T,x)≥ˉδ−B∫|ζ|∈[0,2/√m]∪[√m,+∞)e−ζ2dζ, |
respectively, where
Proof of Theorem 1.3. Let
Ωm:=[m!+1,(m+1)!−1],ˆΩm:=[0,m!]∪[(m+1)!,+∞). |
Let
v+0,j(x)={−ˉδ,|x|∈Ω2j,ˉδ,|x|∈ˆΩ2jandv−0,j(x)={ˉδ,|x|∈Ω2j+1,−ˉδ,|x|∈ˆΩ2j+1, |
respectively. By the above definitions of
v−0,j(x)≤ω(x)≤v+0,j(x)forallj≥1andx∈R. |
Let
V(y,z,s+ˉδ)≤V(y,z,s−v−j(t,x))≤ϑ(t,x,y,z,s)≤V(y,z,s−v+j(t,x))≤V(y,z,s−ˉδ) |
from the definition of
sup|x|≤(2j+1)!−1ϑ(t2j+1,x,y,z,s)−V(y,z,s−ˉδ)ϕβf(c∗fc(s−h(y,z)))≥sup|x|≤(2j+1)!−1V(y,z,s−v−j(t2j+1,x))−V(y,z,s−ˉδ)ϕβf(c∗fc(s−h(y,z)))≥−sup(y,z,s)∈R3|Vs(y,z,s−ˉδ+θ1B∫|ζ|∈[0,2/√2j+1]∪[√2j+1,+∞)e−ζ2dζ)|ϕβf(c∗fc(s−h(y,z)))×B∫|ζ|∈[0,2/√2j+1]∪[√2j+1,+∞)e−ζ2dζ, |
and
sup|x|≤(2j)!−1ϑ(t2j,x,y,z,s)−V(y,z,s+ˉδ)ϕβf(c∗fc(s−h(y,z)))≤sup|x|≤(2j)!−1V(y,z,s−v+j(t2j,x))−V(y,z,s+ˉδ)ϕβf(c∗fc(s−h(y,z)))≤sup(y,z,s)∈R3|Vs(y,z,s+ˉδ+θ2B∫|ζ|∈[0,2/√2j]∪[√2j,+∞)e−ζ2dζ)|ϕβf(c∗fc(s−h(y,z)))×B∫|ζ|∈[0,2/√2j]∪[√2j,+∞)e−ζ2dζ, |
where
limj→+∞sup(y,z,s)∈R3sup|x|≤(2j+1)!−1ϑ(t2j+1,x,y,z,s)−V(y,z,s−ˉδ)ϕβf(c∗fc(s−h(y,z)))=0 |
and
limj→+∞sup(y,z,s)∈R3sup|x|≤(2j)!−1ϑ(t2j,x,y,z,s)−V(y,z,s+ˉδ)ϕβf(c∗fc(s−h(y,z)))=0. |
Then the conclusion of Theorem 1.3 can be obtained from the above two limits. We complete the proof.
[1] |
Multidimensional nonlinear diffusions arising in population genetics. Adv. Math. (1978) 30: 33-76. ![]() |
[2] |
Stability of pyramidal traveling fronts in the degenerate monostable and combustion equations I. Discrete Contin. Dyn. Syst. (2017) 37: 2395-2430. ![]() |
[3] |
Global stability of V-shaped traveling fronts in combustion and degenerate monostable equations. Discrete Contin. Dyn. Syst. (2018) 38: 2251-2286. ![]() |
[4] |
Z.-H. Bu and Z.-C. Wang, Multidimensional stability of traveling fronts in combustion and non-KPP monostable equations, Z. Angew. Math. Phys., 69 (2018), Paper No. 12, 27 pp. doi: 10.1007/s00033-017-0906-5
![]() |
[5] |
Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation. Discrete Contin. Dyn. Syst. Ser. B (2015) 20: 1015-1029. ![]() |
[6] |
Solutions of semilinear elliptic equations in RN with conical-shaped level sets. Comm. Partial Differential Equations (2000) 25: 769-819. ![]() |
[7] |
Existence and qualitative properties of multidimensional conical bistable fronts. Discrete Contin. Dyn. Syst. (2005) 13: 1069-1096. ![]() |
[8] |
Spatial decay and stability of traveling fronts for degenerate Fisher type equations in cylinder. J. Differential Equations (2018) 265: 5066-5114. ![]() |
[9] |
Multidimensional stability of planar traveling waves. Trans. Amer. Math. Soc. (1997) 349: 257-269. ![]() |
[10] |
The evolution of reaction-diffusion waves in a class of scalar reaction-diffusion equations: algebraic decay rates. Phys. D (2002) 167: 153-182. ![]() |
[11] |
Multidimensional stability of traveling waves in a bistable reaction-diffusion equation II. Comm. Partial Differential Equations (1992) 17: 1901-1924. ![]() |
[12] |
Stability of planar waves in mono-stable reaction-diffusion equations. Proc. Amer. Math. Soc. (2011) 139: 3611-3621. ![]() |
[13] |
Large time behavior of disturbed planar fronts in the Allen-Cahn equation. J. Differential Equations (2011) 251: 3522-3557. ![]() |
[14] |
Stability of planar waves in the Allen-Cahn equation. Comm. Partial Differential Equations (2009) 34: 976-1002. ![]() |
[15] |
Existence and global stability of traveling curved fronts in the Allen-Cahn equations. J. Differential Equations (2005) 213: 204-233. ![]() |
[16] |
Multidimensional stability of V-shaped traveling fronts in the Allen-Cahn equation. Sci. China Math. (2013) 56: 1969-1982. ![]() |
[17] |
Traveling fronts of pyramidal shapes in the Allen-Cahn equations. SIAM J. Math. Anal. (2007) 39: 319-344. ![]() |
[18] |
The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations. J. Differential Equations (2009) 246: 2103-2130. ![]() |
[19] |
Nonplanar traveling fronts in reaction-diffusion equations with combustion and degenerate Fisher-KPP nonlinearities. J. Differential Equations (2016) 260: 6405-6450. ![]() |
[20] |
Multidimensional stability of traveling waves in a bistable reaction-diffusion equation I. Comm. Partial Differential Equations (1992) 17: 1889-1899. ![]() |
[21] |
Multidimensional stability of traveling fronts in monostable reaction-diffusion equations with complex perturbations. Sci. China Math. (2014) 57: 353-366. ![]() |
[22] |
Stability of planar travelling waves for bistable reaction-diffusion equations in multiple dimensions. Appl. Anal. (2014) 93: 653-664. ![]() |
1. | 卓 陈, A Review of the Existence, Uniqueness, Stability, and Asymptotic Behavior of Traveling Wave Solutions in Reaction Diffusion Equations, 2024, 14, 2160-7583, 90, 10.12677/pm.2024.146230 |