Special Issues

Constructions of three kinds of Bihom-superalgebras

  • The purpose of this paper is to study the constructions between Bihom-alternative superalgebras and Bihom-Malcev superalgebras and Bihom-Jordan superalgebras. First, we explain in detail that every regular Bihom-alternative superalgebra could be Bihom-Malcev-admissible superalgebra or Bihom-Jordan-admissible superalgebra. Next, the bimodules and Tθ-extensions of Bihom-alternative superalgebras are also discussed as properties of Bihom-alternative superalgebras.

    Citation: Ying Hou, Liangyun Chen. Constructions of three kinds of Bihom-superalgebras[J]. Electronic Research Archive, 2021, 29(6): 3741-3760. doi: 10.3934/era.2021059

    Related Papers:

    [1] Ying Hou, Liangyun Chen . Constructions of three kinds of Bihom-superalgebras. Electronic Research Archive, 2021, 29(6): 3741-3760. doi: 10.3934/era.2021059
    [2] Ying Hou, Liangyun Chen, Keli Zheng . Super-bimodules and $ \mathcal{O} $-operators of Bihom-Jordan superalgebras. Electronic Research Archive, 2024, 32(10): 5717-5737. doi: 10.3934/era.2024264
    [3] Yusi Fan, Chenrui Yao, Liangyun Chen . Structure of sympathetic Lie superalgebras. Electronic Research Archive, 2021, 29(5): 2945-2957. doi: 10.3934/era.2021020
    [4] Hongyan Guo . Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, 2021, 29(4): 2673-2685. doi: 10.3934/era.2021008
    [5] Maoji Ri, Shuibo Huang, Canyun Huang . Non-existence of solutions to some degenerate coercivity elliptic equations involving measures data. Electronic Research Archive, 2020, 28(1): 165-182. doi: 10.3934/era.2020011
    [6] Xuan Liu, Ting Zhang . $ H^2 $ blowup result for a Schrödinger equation with nonlinear source term. Electronic Research Archive, 2020, 28(2): 777-794. doi: 10.3934/era.2020039
    [7] Huafei Di, Yadong Shang, Jiali Yu . Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source. Electronic Research Archive, 2020, 28(1): 221-261. doi: 10.3934/era.2020015
    [8] Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza . Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29(1): 1625-1639. doi: 10.3934/era.2020083
    [9] Heesung Shin, Jiang Zeng . More bijections for Entringer and Arnold families. Electronic Research Archive, 2021, 29(2): 2167-2185. doi: 10.3934/era.2020111
    [10] Jianxing Du, Xifeng Su . On the existence of solutions for the Frenkel-Kontorova models on quasi-crystals. Electronic Research Archive, 2021, 29(6): 4177-4198. doi: 10.3934/era.2021078
  • The purpose of this paper is to study the constructions between Bihom-alternative superalgebras and Bihom-Malcev superalgebras and Bihom-Jordan superalgebras. First, we explain in detail that every regular Bihom-alternative superalgebra could be Bihom-Malcev-admissible superalgebra or Bihom-Jordan-admissible superalgebra. Next, the bimodules and Tθ-extensions of Bihom-alternative superalgebras are also discussed as properties of Bihom-alternative superalgebras.



    As for the non-associative algebras that have been gradually developed on the development path of associative rings and associative algebras, non-associative superalgebras are also important for superalgebras that delete the associativity of multiplication on the basis of associative superalgebras, and then satisfy certain identities. The basis of this paper is more typical non-associative superalgebra, namely alternative superalgebras, Malcev superalgebras and Jordan superalgebras.

    As we know, Malcev superalgebra is a generalization of Lie superalgebra. Of course, it is not Lie superalgebra. It is a class of non-associative algebra that is very useful in the geometry of smooth rings. Therefore, it has also been widely concerned in recent years [5,6,21]. Also Jordan superalgebra has a very important position in quantum mechanics. For interested readers, please refer to the literature [2,16,18,22,20]. Closely related to Malcev superalgebras and Jordan superalgebras are alternative superalgebras, which is a superalgebra whose associator is a super-alternating function [25]. In particular, all associative superalgebras are alternative. We have known that alternative superalgebras are Malcev-admissible and Jordan-admissible. More related results on alternative, Malcev and Jordan (super)algebra can be found in [7,11,14].

    In the past few years, many scholars have conducted indepth research on twisted algebras (also known as Hom-algebras or Bihom-algebras) excited by q-deformation of vector field algebras. We can find more related results in [8,9,10,12,13,15,19,23,24,26,27]. We noticed recently that quadratic Hom-Malcev superalgebras were studied in [17] and Hom-alternative, Hom-Malcev and Hom-Jordan superalgebras were studied in [1]. A Bihom-algebra is an algebra whose identity defining structure is twisted by two homomorphisms α and β. This type of algebra is an extension of Hom-algebras introduced through a category approach in [3,4].

    The main purpose of this paper is to study Bihom-type generalizations of alternative superalgebras, Malcev (-admissible) superalgebras and Jordan (-admissible) superalgebras. Outline of the paper is as follows. In Section 2, we give the definition of Bihom-alternative superalgebras, and provide the construction approach to bidirectional between Bihom-alternative superalgebras and alternative superalgebras. In Section 3, we introduce Bihom-Malcev(-admissible) superalgebras and their basic construction methods. Besides that, we show that every regular Bihom-alternative superalgebra gives rise to a Bihom-Malcev superalgebra via the Bihom-supercommutator bracket. In other words, regular Bihom-alternative superalgebras are all Bihom-Malcev admissible superalgebras, generalizing the well-known fact that Hom-alternative superalgebras (resp. alternative superalgebras) are Hom-Malcev admissible (resp. Malcev admissible superalgebras). In the meanwhile, Z2-graded Bihom-type Bruck-Kleinfeld function f is super-alternating and has been studied. In Section 4, we study bimodules of Bihom-alternative superalgebras and dicusss its Tθ-extension. In Section 5, we introduce Bihom-Jordan(-admissible) superalgebras. Then we give a construction result from Jordan-admissible superalgebras to Bihom-Jordan admissible superalgebras. In the end, we present a main theorem, which says that regular Bihom-alternative superalgebras are Bihom-Jordan admissible.

    Throughout the paper, all algebraic systems are supposed to be over a field K of chracteristic 0. Let A be a linear superspace over K that is a Z2-graded linear space with a direct sum A=A¯0A¯1. The elements of Aj,j=0,1, are said to be homogenous and of parity j. The parity of a homogeneous element x is denoted by |x|. In the sequel, we will denote by H(A) the set of all homogeneous elements of A. In this paper, we need to use the elements, all of which are not specified, are homogeneous.

    In this section, we introduce Bihom- alternative superalgebras, study their general properties and provide some construction results. A Bihom-superalgebra is a quadruple (A,μ,α,β), where μ:AAA is an even bilinear map and α,β:AA are even linear maps such that αμ=μ(αα) and βμ=μ(ββ) (multiplicativity).

    Definition 2.1. Let (A,μ,α,β) be a Bihom-superalgebra.

    (1) The Bihom-associator of A is even trilinear map ~asα,β:A3A defined by

    ~asα,β=μ(μβαμ). (1)

    For any x,y,zH(A), ~asα,β(x,y,z)=μ(μ(x,y),β(z))μ(α(x),μ(y,z)).

    (2) The Bihom-super-Jacobiator of A is even trilinear map ˜Jα,β:A3A defined as

    ˜Jα,β(x,y,z)=x,y,z(1)|x||z|μ(β2(x),μ(β(y),α(z))). (2)

    In particular, when α=β=id, as Bihom-superalgebra is to degenerate to the superalgebra, so are Bihom-associator and Bihom-super-Jacobiator degenerate to the original associator and super-Jacobiator.

    Definition 2.2. [23] A Bihom-associative superalgebra is a quadruple (A,μ,α,β), where α,β:AA are even linear maps and μ:A×AA is an even bilinear map such that αβ=βα,αμ=μα2, βμ=μβ2 and satisfying the following condition:

    ~asα,β(x,y,z)=0,forallx,y,zH(A).(Bihomassociativitycondition)

    Clearly, when α=β, we get a Hom-associative superalgebra.

    Definition 2.3. A left Bihom-alternative superalgebra (resp. right Bihom- alternative superalgebra) is a quadruple (A,μ,α,β) where α,β:AA are even linear maps and μ:A×AA is an even bilinear map such that αβ=βα,αμ=μα2,βμ=μβ2 and satisfying the left Bihom-alternative super-identity, i.e. for all x,y,zH(A),

    ~asα,β(β(x),α(y),z)+(1)|x||y|~asα,β(β(y),α(x),z)=0, (3)

    respectively, the right Bihom-alternative super-identity,

    ~asα,β(x,β(y),α(z))+(1)|y||z|~asα,β(x,β(z),α(y))=0. (4)

    A Bihom-alternative superalgebra is one which is both a left and right Bihom-alternative superalgebra.

    Observe that when α=β=id the left Bihom-alternative super-identity (resp. right Bihom-alternative super-identity ) reduces to left alternative super-identity (resp. right alternative super-identity).

    Definition 2.4. Let (A,μ,α,β) and (A,μ,α,β) be two Bihom-alternative superalgebras. An even linear map f:AA is said to be a Bihom-alternative superalgebra homomorphism if the following conditions hold

    fμ=μ(ff)(weakmorphismcondition),fα=αf,fβ=βf. (5)

    Definition 2.5. A Bihom-superalgebra (A,μ,α,β) is called

    (1) regular if α and β are algebra automorphisms.

    (2) involutive if α and β are two involutions, that is α2=β2=id.

    Proposition 1. Let (A,μ,α,β) be a Bihom-superalgebra such that αβ=βα,αμ=μα2 and βμ=μβ2. Then (A,μ,α,β) is a regular Bihom-alternative superalgebra if and only if, for all x,y,zH(A),

    ~asα,β(β2(x),αβ(y),α2(z))+(1)|x||y|~asα,β(β2(y),αβ(x),α2(z))=0 (6)

    and

    ~asα,β(β2(x),αβ(y),α2(z))+(1)|y||z|~asα,β(β2(x),αβ(z),α2(y))=0. (7)

    Proof. Straightforward by Definition 2.3.

    Remark 1. Let (A,μ,α,β) be a Bihom-superalgebra. Then A is a regular Bihom-alternative superalgebra if and only if ~asα,β(β2αβα2) is super-alternating.

    Lemma 2.6. Let (A,μ,α,β) be a Bihom-alternative superalgebra. Then for all x,y,zH(A) we have

    ~asα,β(β2(x),αβ(y),α2(z))=(1)|z||x|+|z||y|+|x||y|~asα,β(β2(z),αβ(y),α2(x)),
    ~asα,β(β2(x),αβ(y),α2(z))=(1)|z||x|+|z||y|~asα,β(β2(z),αβ(x),α2(y)).

    Proof.

    ~asα,β(β2(x),βα(y),α2(z))=(1)|z||y|~asα,β(β2(x),βα(z),α2(y))=(1)|z||y|+|z||x|~asα,β(β2(z),βα(x),α2(y))=(1)|z||y|+|z||x|+|x||y|~asα,β(β2(z),βα(y),α2(x)).

    Another equation is obvious.

    Next, we provide a way to construct Bihom-alternative superalgebras starting from an alternative superalgebra and two commuting alternative superalgebra morphisms. This approach was applied to other algebras such as Bihom-Lie algebras, Bihom-Novikov algebras and so on in [9], [10].

    Definition 2.7. Let (A,μ) be a superalgebra and α,β:AA be two even algebra morphisms satisfying αβ=βα. Define the Bihom-superalgebra induced by α and β as

    Aα,β=(A,μα,β=μ(αβ),α,β).

    Theorem 2.8. (i) Let (A,μ) be a left alternative superalgebra (resp. right alternative superalgebra) and α,β:AA be two even left alternative superalgebra morphisms (resp. right alternative superalgebra morphisms) such that αβ=βα. Then Aα,β is a left Bihom-alternative superalgebra (resp. right Bihom-alternative superalgebra).

    (ii) Suppose that (A,μ) is another left alternative superalgebra (resp. right alternative superalgebra) and α,β:AA be two commuting even left alternative superalgebra morphisms (resp. right alternative superalgebra morphisms). If f:AA is an even left alternative superalgebra morphism (resp. right alternative superalgebra morphism) that satisfies fα=αf and fβ=βf, then

    f:Aα,βAα,β

    is a left Bihom-alternative superalgebra (resp. right Bihom-alternative superalgebra) morphism.

    Proof. We show that Aα,β satisfies the left Bihom-alternative super-identity. For simplicity, we will write μ(x,y)=xy and μα,β(x,y)=xy. Then for all x,y,zH(Aα,β), we have

    ~asα,β(β(x),α(y),z)=(β(x)αβ(y))β(z)αβ(x)(α(y)z)=(αβ(x)αβ(y))β(z)αβ(x)(α2(y)αβ(z))=(α2β(x)α2β(y))β2(z)α2β(x)(α2β(y)β2(z))=~as(α2β(x),α2β(y),β2(z))=(1)|x||y|~as(α2β(y),α2β(x),β2(z))=(1)|x||y|~asα,β(β(y),α(x),z).

    So conclusion (i) is finisihed. (5) follows from

    fμα,β=fμ(αβ)=μ(ff)(αβ)=μ(αβ)(ff)=μα,β(ff).

    That is, (ii) holds.

    Remark 2. Similar to Theorem 2.8, we may also construct a new Bihom-alternative superalgebra starting with a given Bihom-alternative superalgebra and a pair of commuting Bihom-superalgebra homomorphisms.

    On the contrary, we will give an approach to get an alternative superalgebra from Bihom-alternative superalgebra in the following proposition.

    Proposition 2. Let (A,μ,α,β) be a regular Bihom-alternative superalgebra. Define a new multiplication on A by xy=μ(α1(x),β1(y)). Then (A,) is an alternative superalgebra.

    Proof. Denote μ(x,y)=xy and xy=α1(x)β1(y), for all x,yH(A). We just need to show

    ~as(x,y,z)+(1)|x||y|~as(y,x,z)=0(leftalternativesuperidentity)

    and

    ~as(x,y,z)+(1)|y||z|~as(x,z,y)=0.(rightalternativesuperidentity)

    Since α and β are bijective and A is a Bihom-alternative superalgebra, we have

    ~as(x,y,z)+(1)|x||y|~as(y,x,z)=(xy)zx(yz)+(1)|x||y|(yx)z(1)|x||y|y(xz)=(α2(x)(αβ)1(y))β1(z)α1(x)((αβ)1(y)β2(z))+(1)|x||y|(α2(y)(αβ)1(x))β1(z)(1)|x||y|α1(y)((αβ)1(x)β2(z))=~asα,β(α2(x),(αβ)1(y),β2(z))+(1)|x||y|~asα,β(α2(y),(αβ)1(x),β2(z))=~asα,β(β(β1α2(x)),α(β1α2(y)),β2(z))+(1)|x||y|~asα,β(β(β1α2(y)),α(β1α2(x)),β2(z))=0.

    Similarly, right alternative super-identity is easy to prove.

    Corollary 1. Let (A,μ,α,β) be an involutive Bihom-alternative superalgebra. Define a new multiplication on A by xy=μ(α(x),β(y)). Then (A,) is an alternative superalgebra.

    Proof. We write μ(x,y)=xy and xy=α(x)β(y), for all x,yH(A). It is easy to show its left and right alternative super-identities.

    In this section, we introduce Bihom-Malcev superalgebras (as a generalization of Bihom-Lie superalgebras) and provide a way to construct Bihom-Malcev superalgebras. Some general properties are studied. In the end, we show that Bihom-Malcev superalgebra could come into being from regular Bihom-alternative superalgebra via the Bihom-supercommutator bracket.

    Definition 3.1. [23] A Bihom-Lie superalgebra is a 4-tuple (A,[,],α,β) consisting of α,β:AA are even linear maps and [,]:A×AA is an even bilinear map, which satisfies the following conditions: for all x,y,zH(A),

    (i)αβ=βα,(ii)α([x,y])=[α(x),α(y)],β([x,y])=[β(x),β(y)],(iii)[β(x),α(y)]=(1)|x||y|[β(y),α(x)],(Bihomskewsupersymmetry)(iv)˜Jcα,β(x,y,z)=(1)|x||z|˜Jα,β(x,y,z).(BihomJacobisuperidentity)(˜Jα,β(x,y,z)=x,y,z(1)|x||z|[β2(x),[β(y),α(z)]]=0)

    Definition 3.2. A Bihom-Malcev superalgebra is a 4-tuple (A,[,],α,β) consisting of α,β:AA are even linear maps and [,]:AAA is an even bilinear map, which satisfies the following conditions: for all x,y,zH(A),

    (i)αβ=βα,(ii)α([x,y])=[α(x),α(y)],β([x,y])=[β(x),β(y)],(iii)[β(x),α(y)]=(1)|x||y|[β(y),α(x)],(Bihomskewsupersymmetry)(iv)˜Jcα,β(αβ(x),αβ(y),[β(t),α(z)])+(1)|x||y|+|t|(|x|+|y|)˜Jcα,β(αβ(t),αβ(y),[β(x),α(z)])=(1)|t||z|[˜Jcα,β(β(x),β(y),β(z)),α2β2(t)]+(1)|x|(|y|+|z|+|t|)+|t||y|[˜Jcα,β(β(t),β(y),β(z)),α2β2(x)].(BihomMalcevsuperidentity)

    If α=β=id, the Bihom-Malcev super-identity will reduce to the Malcev super-identity or equivalently,

    2[t,˜J(x,y,z)]=˜J(t,x,[y,z])+(1)|x|(|y|+|z|)˜J(t,y,[z,x])+(1)|z|(|x|+|y|)˜J(t,z,[x,y]),

    for all x,y,zH(A).

    Theorem 3.3. Let (A,[,]) be a Malcev superalgebra and α,β:AA be two algebra homomorphisms such that: αβ=βα. Then (A,[,],α,β) is a Bihom-Malcev superalgebra, where [,]:A×AA is defined by [x,y]=[α(x),β(y)], for all x,yH(A).

    Proof. Step 1, for any x,yH(A), we have

    [α(x),α(y)]=[α2(x),αβ(y)]=α([α(x),β(y)])=α([x,y]).

    Similarly, we can check that [β(x),β(y)]=β([x,y]).

    Step 2, we are going to show the Bihom-Malcev super-identity. For all x,y,zH(A),

    ˜Jcα,β(αβ(x),αβ(y),[β(t),α(z)])=(1)|x||t+z|˜Jα,β(αβ(x),αβ(y),[αβ(t),αβ(z)])=(1)|x||t+z|αβ(x,y,[t,z](1)|x||t+z|[β2(x),[β(y)[α(t),α(z)]]])=(1)|x||t+z|α2β3(x,y,[t,z](1)|x||t+z|[x,[y,[t,z]]])=α2β3(˜J(x,y,[t,z])).

    On the other hand, we have

    [˜Jcα,β(β(x),β(y),β(z)),α2β2(t)]=[(1)|x||z|(x,y,z(1)|x||z|[β2(β(x)),[β(β(y)),α(β(z))]]),α2β2(t)]=[(1)|x||z|(x,y,z(1)|x||z|αβ3[x,[y,z]]),α2β2(t)]]=[(1)|x||z|(x,y,z(1)|x||z|α2β3[x,[y,z]]),α2β3(t)]]=α2β3[˜J(x,y,z),t].

    So,

    ˜Jcα,β(αβ(x),αβ(y),[β(t),α(z)])+(1)|x||y|+|t|(|x|+|y|)˜Jcα,β(αβ(t),αβ(y),[β(x),α(z)])=α2β3(˜J(x,y,[t,z])+(1)|x||y|+|t|(|x|+|y|)˜J(t,y,[x,z]))=α2β3((1)|t||z|[˜J(x,y,z),t]+(1)|x|(|y|+|z|+|t|)+|t||y|[˜J(t,y,z),x])=(1)|t||z|[˜Jcα,β(β(x),β(y),β(z)),α2β2(t)]+(1)|x|(|y|+|z|+|t|)+|t||y|[˜Jcα,β(β(t),β(y),β(z)),α2β2(x)].

    Thus, (A,[,],α,β) is a Bihom-Malcev superalgebra.

    Remark 3. Similar to Theorem 3.3, one may construct a new Bihom-Malcev superalgebra starting with a given Bihom-Malcev superalgebra and a pair of commuting Bihom-superalgebra homomorphisms.

    Lemma 3.4. Let (A,[,],α,β) be a Bihom-superalgebra. Then we have,

    ˜Jα,β(αβ)3=αβ˜Jα,β.

    Proof. Let x,y,zH(A), we have

    ˜Jα,β(αβ(x),αβ(y),αβ(z))=x,y,z(1)|x||z|[β2(αβ(x)),[β(αβ(y)),α(αβ(z))]]=x,y,z(1)|x||z|αβ[β2(x),[β(y),α(z)]]=αβ˜Jα,β(x,y,z).

    So the Lemma 3.4 holds.

    Remark 4. Let (A,[,],α,β) be a Bihom-superalgebra. Then we have

    ˜Jcα,β(αβ)3=αβ˜Jcα,β.

    We recall the associative super-commutator in [23] in the following definition.

    Definition 3.5. Let (A,μ,α,β) be a regular Bihom-superalgebra. Define the associative super-commutator Bihom-superalgebra as the Bihom-superalgebra

    A=(A,[,]=μ(id(α1βαβ1)τ),α,β),

    where τ(x,y)=(1)|x||y|(y,x), i.e. for all x,yH(A), we have

    [x,y]=μ(x,y)(1)|x||y|μ(α1β(y),αβ1(x)).

    We call a Bihom-superalgebra A is Bihom-Malcev-admissible if A is a Bihom-Malcev superalgebra.

    Lemma 3.6. Let (A,μ,α,β) be a regular Bihom-superalgebra. Then, in the Bihom-superalgebra A, we have

    ˜Jcα,β=~asα,β(α1ββα)(id+ξ+ξ2)(δid),

    where ξ(xyz)=(1)|z||x|+|z||y|ξ(zxy) and δ(xyz)=(1)|y||z|δ(xzy).

    Proof. For x,y,zH(A),

    O˜Jcα,β(x,y,z)=(1)|x||z|(x,y,z(1)|x||z|[β2(x),[β(y),α(z)]])=(1)|x||z|(x,y,z(1)|x||z|[β2(x),β(y)α(z)(1)|y||z|β(z)α(y)])=(1)|x||z|(x,y,z(1)|x||z|[β2(x),β(y)α(z)]x,y,z(1)|z|(|x|+|y|)[β2(x),β(z)α(y)])=(1)|x||z|(x,y,z(1)|x||z|β2(x)(β(y)α(z))x,y,z(1)|x||z|(α1β2(x)β(y))αβ(z)x,y,z(1)|z|(|x|+|y|)β2(x)(β(z)α(y))+x,y,z(1)|z|(|x|+|y|)(α1β2(x)β(z))αβ(y))=(1)|x||z|(x,y,z(1)|x||z|~asα,β(α1β2(x),β(y),α(z)))+(1)|x||z|(x,y,z(1)|z|(|x|+|y|)~asα,β(α1β2(x),β(z),α(y)))=~asα,β(α1β2βα)(id+ξ+ξ2)(δid)(x,y,z).

    Proposition 3. Let (A,μ,α,β) be a regular Bihom-alternative superalgebra and A be its associative super-commutator Bihom-superalgebra. Then

    ˜Jcα,β(x,y,z)=6~asα,β(α1β2(x),β(y),α(z)),forallx,y,zH(A),

    where the Bihom-associator is taken in A and the Bihom-super-Jacobiator is considered in A.

    Proof. The result follows immediately from Lemma3.6.

    Definition 3.7. Let (A,μ,α,β) be a Bihom-superalgebra. Define the function H:A4A by:

    H(w,x,y,z)=~asα,β(β2(w)αβ(x),α2β(y),α3(z))(1)|w||x|+|w||y|+|w||z|~asα,β(β2(x)αβ(y),α2β(z),α3(w))+(1)(|y|+|z|)(|w|+|x|)~asα,β(β2(y)αβ(z),α2β(w),α3(x)).

    Lemma 3.8. In a regular Bihom-alternative superalgebra (A,μ,α,β), the identity

    H(w,x,y,z)=α2β2(w)~asα,β(αβ(x),α2(y),α3β1(z))+~asα,β(β2(w),αβ(x),α2(y))α3β(z)

    holds, for all x,y,z,wH(A).

    Proof. First, since (A,μ,α,β) is a regular Bihom-alternative superalgebra, we have

    ~asα,β(β2(x)αβ(y),α2β(z),α3(w))=~asα,β(β2(xαβ1(y)),αβ(α(z)),α2(α(w)))=(1)|w||x|+|w||y|+|w||z|~asα,β(αβ2(w),αβ(x)α2(y),α3(z)).

    In addition,

    ~asα,β(β2(y)αβ(z),α2β(w),α3(x))=~asα,β(β2(yαβ1(z)),αβ(α(w)),α2(α(x)))=(1)(|w|+|x|)(|y|+|z|)~asα,β(αβ2(w),α2β(x),α2(y)α3β1(z)).

    So,

    H(w,x,y,z)=~asα,β(β2(w)αβ(x),α2β(y),α3(z))~asα,β(β2(w)αβ(x),α2β(y),α3(z))+~asα,β(β2(w)αβ(x),α2β(y),α3(z))=α2β2(w)~asα,β(αβ(x),α2(y),α3β1(z))+~asα,β(β2(w),αβ(x),α2(y))α3β(z).

    The proof is finished.

    Definition 3.9. Let (A,μ,α,β) be a regular Bihom-superalgebra. Define the Z2-graded Bihom-Bruck-Kleinfeld function f:A4A as the even multilinear map,

    f(w,x,y,z)=~asα,β(β2(w)αβ(x),α2β(y),α3(z))(1)|w||x|+|w||y|+|w||z|~asα,β(β2(x),αβ(y),α2(z))α3β(w)(1)|w||x|α2β2(x)~asα,β(αβ(w),α2(y),α3β1(z)), (8)

    for all w,x,y,zH(A).

    Define another even muti-linear map F:A4A as

    F=[,]((~asα,β(β2αβα2))α3β)(idξ+ξ2ξ3), (9)

    where [,]=μ(id(α1βαβ1)τ) is the super-commutator bracket of μ and ξ is the super cyclic permutation

    ξ(wxyz)=(1)|z||w|+|z||x|+|z||y|zwxy,

    i.e., for all w,x,y,zH(A),

    F(w,x,y,z)=[~asα,β(β2(w),αβ(x),α2(y)),α3β(z)](1)|z||w|+|z||x|+|z||y|[~asα,β(β2(z),αβ(w),α2(x)),α3β(y)]+(1)(|y|+|z|)(|w|+|x|)[~asα,β(β2(y),αβ(z),α2(w)),α3β(x)](1)|w||x|+|w||y|+|w||z|[~asα,β(β2(x),αβ(y),α2(z)),α3β(w)].

    Lemma 3.10. Let (A,μ,α,β) be a Bihom-alternative superalgebra, the F and f described above satisfy the following equation:

    F=f(idρ+ρ2),

    where ρ=ξ3 is the super cyclic permutation ρ(wxyz)=(1)|w||x|+|w||y|+|w||z|(xyzw). Further, for all w,x,y,zH(A),

    F(w,x,y,z)=f(w,x,y,z)(1)|w||x|+|w||y|+|w||z|f(x,y,z,w)+(1)(|y|+|z|)(|w|+|x|)f(y,z,w,x).

    Proof. For each w,x,y,zH(A), we have

    [~asα,β(β2(x),αβ(y),α2(z)),α3β(w)]=~asα,β(β2(x),αβ(y),α2(z))α3β(w)(1)|w||x|+|w||y|+|w||z|α2β2(w)~asα,β(αβ(x),α2(y),α3β1(z)).

    Then, by Lemma 3.8 we get

    α2β2(w)~asα,β(αβ(x),α2(y),α3β1(z))+~asα,β(β2(x),αβ(y),α2(z))α3β(z)=~asα,β(β2(w)αβ(x),α2β(y),α3(z))(1)|w||x|+|w||y|+|w||z|~asα,β(β2(x)αβ(y),α2β(z),α3(w))+(1)(|y|+|z|)(|w|+|x|)~asα,β(β2(y)αβ(z),α2β(w),α3(x))=f(w,x,y,z)+(1)|w||x|+|w||y|+|w||z|~asα,β(β2(x),αβ(y),α2(z))α3β(w)+(1)|w||x|α2β2(x)~asα,β(αβ(w),α2(y),α3β1(z))(1)|w||x|+|w||y|+|w||z|f(x,y,z,w)(1)(|w|+|x|)(|y|+|z|)~asα,β(β2(y),αβ(z),α2(w))α3β(x)(1)|w||x|+|w||y|+|w||z|+|x||y|α2β2(y)~asα,β(αβ(x),α2(z),α3β1(w))+(1)(|y|+|z|)(|w|+|x|)f(y,z,w,x)+(1)|z||x|+|z||w|+|z||y|~asα,β(β2(z),αβ(w),α2(x))α3β(y)+(1)(|y|+|z|)(|w|+|x|)α2β2(z)~asα,β(αβ(y),α2(w),α3β1(x)).

    Moreover, since ~asα,β(β2αβα2) is super-alternating, we have

    ~asα,β(αβ(y),α2(w),α3β1(x))=αβ1(~asα,β(β2(y),αβ(w),α2(x)))=(1)|y||w|+|y||x|αβ1(~asα,β(β2(w),αβ(x),α2(y)))=(1)|y||w|+|y||x|~asα,β(αβ(w),α2(x),α3β1(y)),

    Similarly, ~asα,β(αβ(x),α2(z),α3β1(w)) and ~asα,β(αβ(w),α2(y),α3β1(z)) can also be obtained as follows:

    ~asα,β(αβ(x),α2(z),α3β1(w))=(1)|x||w|+|x||z|~asα,β(αβ(z),α2(w),α3β1(x)),
    ~asα,β(αβ(w),α2(y),α3β1(z))=(1)|w||y|+|w||z|~asα,β(αβ(y),α2(z),α3β1(w)).

    Then

    F(w,x,y,z)=f(w,x,y,z)(1)|w||x|+|w||y|+|w||z|f(x,y,z,w)+(1)(|y|+|z|)(|w|+|x|)f(y,z,w,x),

    for all w,x,y,xH(A).

    Proposition 4. Let (A,μ,α,β) be a regular Bihom-alternative superalgebra. Then the even Bihom-Bruck-Kleinfeld function f is super-alternating.

    Proof. The proof is similar to that Proposition 4.1 in Reference [1], it is easy to check it.

    Next, we will give a relationship between Bihom-alternate superalgebra and Bihom-Malcev superalgebra, and use the above preparation knowledge to prove it.

    Theorem 3.11. Every regular Bihom-alternative superalgebra is Bihom-Malcev-admissible.

    Proof. Let (A,μ,α,β) be a Bihom-alternative superalgebra and A=(A,[,],α,β) be its super-commutator Bihom-superalgebra. For any x,yH(A):

    Step 1, it's not difficult to find multiplicativity for α and β in A.

    Step 2, since the associative super-commutator bracket [,]=μ(id(α1βαβ1)τ) is Bihom-skew-supersymmetric, that is to say [β(x),α(y)]=(1)|x||y|[β(y),α(x)].

    Step 3, we need to show that the Bihom-Malcev super-identity holds in A, i.e.,

    ˜Jcα,β(αβ(x),αβ(y),[β(t),α(z)])+(1)|x||y|+|t|(|x|+|y|)˜Jcα,β(αβ(t),αβ(y),[β(x),α(z)])=(1)|t||z|[˜Jcα,β(β(x),β(y),β(z)),α2β2(t)]+(1)|x|(|y|+|z|+|t|)+|t||y|[˜Jcα,β(β(t),β(y),β(z)),α2β2(x)].

    Note first that ˜Jcα,β(x,y,z)=6~asα,β(α1β2(x),β(y),α(z)).

    In addition, [β(x),α(z)]=β(x)α(z)(1)|x||z|β(z)α(x). So,

    ˜Jcα,β(αβ(x),αβ(y),[β(t),α(z)])+(1)|x||y|+|t|(|x|+|y|)˜Jcα,β(αβ(t),αβ(y),[β(x),α(z)])=6~asα,β(β3(x),αβ2(y),αβ(t)α2(z))+6(1)|t||z|~asα,β(β3(x),αβ2(y),αβ(z)α2(t))6(1)|x||y|+|t|(|x|+|y|)~asα,β(β3(t),αβ2(y),αβ(x)α2(z))+6(1)|x|(|y|+|z|)+|t|(|x|+|y|)~asα,β(β3(t),αβ2(y),αβ(z)α2(x))=6(1)(|t|+|z|)(|x|+|y|)~asα,β(α1β3(t)β2(z),αβ2(x),α2β(y))+6(1)|t||z|+(|t|+|z|)(|x|+|y|)~asα,β(α1β3(z)β2(t),αβ2(x),α2β(y))6(1)|t||y|+|z||t|+|z||y|~asα,β(α1β3(x)β2(z),αβ2(t),α2β(y))+6(1)|x||z|+|t||y|+|z||t|+|z||y|~asα,β(α1β3(z)β2(x),αβ2(t),α2β(y))=6(1)(|t|+|z|)(|x|+|y|)α1β{(1)|t|(|x|+|y|+|z|)[~asα,β(β2(z),αβ(x),α2(y)),α3β(t)](1)|z|(|x|+|y|)[~asα,β(β2(t),αβ(x),α2(y)),α3β(z)]}+6(1)|t||y|+|z||t|+|z||y|α1β{(1)|x|(|z|+|t|+|y|)[~asα,β(β2(z),αβ(t),α2(y)),α3β(x)](1)|z|(|t|+|y|)[~asα,β(β2(x),αβ(t),α2(y)),α3β(z)]}=(1)|t||z|[˜Jcα,β(β(x),β(y),β(z)),α2β2(t)]+(1)|x|(|y|+|z|+|t|)+|t||y|[˜Jcα,β(β(t),β(y),β(z)),α2β2(x)].

    Thus, every regular Bihom-alternative superalgebra is Bihom-Malcev-admissible.

    Proposition 5. Let (A,μ,α,β) be a regular Bihom-alternative superalgebra. Then the Z2-graded Bihom-Bruck-Kleinfeld function f satisfies

    f=13F=~asα,β(([,](β2αβ))α2βα3)(id+ζ), (10)

    where F is defined as before and ζ is the super permutation

    ζ(wxyz)=(1)(|y|+|z|)(|w|+|x|)yzwx.

    Proof. By Lemma3.14, we have F=f(idρ+ρ2)=3f, which proves the first equality in (10). It remains to prove that f is equal to the second entry in (10).

    Use the definition of f and its super-alternativity,

    2f(t,x,y,z)=f(t,x,y,z)(1)|x||t|f(x,t,y,z)=~asα,β(β2(t)αβ(x),α2β(y),α3(z)(1)|t|(|x|+|y|+|z|)~asα,β(β2(x),αβ(y),α2(z))α3β(t)(1)|t||x|α2β2(x)~asα,β(αβ(t),α2(y),α3β1(z))(1)|x||t|~asα,β(β2(x)αβ(t),α2β(y),α3(z)+(1)|x|(|y|+|z|)~asα,β(β2(t),αβ(y),α2(z))α3β(x)+α2β2(t)~asα,β(αβ(x),α2(y),α3β1(z)),

    which implies that

    ~asα,β([β2(t),αβ(x)],α2β(y),α3(z))=2f(t,x,y,z)[α2β2(t),~asα,β(αβ(x),α2(y),α3β1(z))]+(1)|t|(|x|+|y|+|z|)[α2β2(x),~asα,β(αβ(y),α2(z),α3β1(t))]. (11)

    Interchanging (t,x) with (y,z) in (11) and using the super-alternativity of f, we obtain

    (1)(|t|+|x|)(|y|+|z|)~asα,β([β2(y),αβ(z)],α2β(t),α3(x))=(1)|y|(|t|+|x|+|z|)[α2β2(z),~asα,β(αβ(t),α2(x),α3β1(y))](1)(|t|+|x|)(|y|+|z|)[α2β2(y),~asα,β(αβ(z),α2(t),α3β1(x))]+2(1)(|t|+|x|)(|y|+|z|)f(y,z,t,x)=(1)|y|(|t|+|x|+|z|)[α2β2(z),~asα,β(αβ(t),α2(x),α3β1(y))](1)(|t|+|x|)(|y|+|z|)[α2β2(y),~asα,β(αβ(z),α2(t),α3β1(x))]+2f(t,x,y,z),

    so

    ~asα,β([β2(t),αβ(x)],α2β(y),α3(z))+(1)(|t|+|x|)(|y|+|z|)~asα,β([β2(y),αβ(z)],α2β(t),α3(z))=(4fF)(t,x,y,z)=f(t,x,y,z)(sinceF=3f).

    Thus f is equal to the second entry in (10).

    For convenience and without confusion, we denote Bihom-alternative superalgebra (A,μ,α,β) by (A,)

    Definition 4.1. Let (A,,α,β) be a Bihom-alternative superalgebra and V be a Z2-graded vector space. Let L,R:Agl(V) be two even linear maps (L(x)(u)=xu,R(y)v=(1)|v||y|vy) and αV,βVgl(V), αVβV=βVαV. (V,L,R,αV,βV) is called a representation or a bimodule of A, if for any x,y,zH(A) and vH(V),

    αVL(x)=L(α(x))αV,αVR(x)=R(α(x))αV, (12)
    βVL(x)=L(β(x))βV,βVR(x)=R(β(x))αV, (13)
    L(β(x)α(y))βV(v)L(αβ(x))L(α(y))v+(1)|x||y|L(β(y)α(x))βV(v)(1)|x||y|L(αβ(y))L(α(x))v=0, (14)
    (1)|z||y|R(αβ(z))R(β(y))vR(β(y)α(z))αV(v)+R(αβ(y))R(β(z))v(1)|y||z|R(β(z)α(y))αV(v)=0, (15)
    (1)|x||y|R(β(y))L(β(x))αV(v)L(αβ(x))R(y)αV(v)+(1)|x||y|R(β(y))R(α(x))βV(v)R(α(x)y)αVβV(v)=0, (16)
    (1)|x||y|R(αβ(y))L(x)βV(v)L(α(x))R(α(y))βV(v)+L(xβ(y))αVβV(v)L(α(x))L(β(y))αV(v)=0. (17)

    Let (A,,α,β) be a Bihom-alternative superalgebra, (V,L,R,αV,βV) be its a bimodule and L,R:Agl(V), α,β:AA,αV,βV:VV be the dual even maps of respectively α,β,αV,βV given by

    <L(x)u,v>=<u,L(x)v>,<R(x)u,v>=(1)|u||x|<u,R(x)v>,
    α(x)(y)=x(α(y)),β(x)(y)=x(β(y)),
    αV(u)(v)=u(αV(v)),βV(u)(v)=u(βV(v)).

    Proposition 6. Let (V,L,R,αV,βV) be a bimodule of a Bihom-alternative superalgebra (A,,α,β). Then (V,L,R,αV,βV) is a bimodule of (A,,α,β) provided that for any x,y,z,v are homogeneous,

    βVL(β(x)α(y))(v)(1)|x||y|L(α(y))L(αβ(x))v+(1)|x||y|βVL(β(y)α(x))(v)L(α(x))L(αβ(y))v=0, (18)
    R(β(y))R(αβ(z))vαVR(β(y)α(z))(v)+(1)|z||y|R(β(z))R(αβ(y))v(1)|y||z|αVR(β(z)α(y))(v)=0, (19)
    αVL(β(x))R(β(y))(v)(1)|x||y|αVR(y)L(αβ(x))(v)+βVR(α(x))R(β(y))(v)αVβVR(α(x)y)(v)=0, (20)
    βVL(x)R(αβ(y))(v)(1)|x||y|βVR(α(y))L(α(x))(v)+αVβVL(xβ(y))(v)(1)|x||y|αVL(β(y))L(α(x))(v)=0, (21)

    Proof. Straightforward by calculation.

    Theorem 4.2. Let (V,L,R,αV,βV) be a bimodule of Bihom-alternative superalgebra (A,,α,β), θ:A×AV be an even bilinear map. Define a new multiplication on AV by

    (x+u)(y+v)=xy+θ(x,y)+L(x)v+(1)|x||y|R(y)u, (22)

    and α+αV,β+βVEnd(AV) such that

    (α+αV)(x+u)=α(x)+αV(u),(β+βV)(x+u)=β(x)+βV(u), (23)

    for any x,yH(A),u,vH(V), then (AV,,α+αV,β+βV) is a Bihom-alternative superalgebra if and only if θ satisfies the following conditions: for any x1,x2,x3H(A),

    θ(β(x1)α(x2),β(x3))+(1)|x3|(|x1|+|x2|)R(β(x3))θ(β(x1),α(x2))θ(αβ(x1),α(x2)x3)L(αβ(x1))θ(α(x2),x3)+(1)|x1||x2|θ(β(x2)α(x1),β(x3))+(1)|x3|(|x1|+|x2|)+|x1||x2|R(β(x3))θ(β(x2),α(x1))(1)|x1||x2|θ(αβ(x2),α(x1)x3)(1)|x1||x2|L(αβ(x2))θ(α(x1),x3)=0, (24)
    θ(x1β(x2),αβ(x3))+(1)|x3|(|x1|+|x2|)R(αβ(x3))θ(x1,β(x2))θ(α(x1),β(x2)α(x3))L(α(x1))θ(β(x2),α(x3))+(1)|x2||x3|θ(x1β(x3),αβ(x2))+(1)|x1||x2|R(αβ(x2))θ(x1,β(x3))(1)|x2||x3|L(α(x1))θ(β(x3),α(x2))(1)|x2||x3|θ(α(x1),β(x3)α(x2))=0. (25)

    Proof. First we prove the commutativity of maps,

    (α+αV)(β+βV)(x+u)=(α+αV)(β(x)+βV(u))=αβ(x)+αVβV(u)=βα(x)+βVαV(u)=(β+βV)(α+αV)(x+u).

    By the fact that (AV,,α+αV,β+βV) is a Bihom-alternative superalgebra. BiHom left super-alternativity holds.

    ~asα,β((β+βV)(x1+v1),(α+αV)(x2+v2),x3+v3)+(1)|x1||x2|~asα,β((β+βV)(x2+v2),(α+αV)(x1+v1),x3+v3)=((β+βV)(x1+v1)(α+αV)(x2+v2))(β+βV)(x3+v3)(α+αV)(β+βV)(x1+v1)((α+αV)(x2+v2)(x3+v3))+(1)|x1||x2|((β+βV)(x2+v2)(α+αV)(x1+v1))(β+βV)(x3+v3)(1)|x1||x2|(α+αV)(β+βV)(x2+v2)((α+αV)(x1+v1)(x3+v3))=(β(x1)α(x2))β(x3)+θ(β(x1)α(x2),β(x3))+L(β(x1)α(x2))βV(v3)+(1)|x3|(|x1|+|x2|)R(β(x3))θ(β(x1),α(x2))+(1)|x3|(|x1|+|x2|)R(β(x3))L(β(x1))αV(v2)+(1)|x3|(|x1|+|x2|)+|x1||x2|R(β(x3))R(α(x2))βV(v1)αβ(x1)(α(x2)x3)θ(αβ(x1),α(x2)x3)L(αβ(x1))θ(α(x2),x3)L(αβ(x1))L(α(x2))v3(1)|x2||x3|L(αβ(x1))R(x3)αV(v2)(1)|x1|(|x2|+|x3|)R(α(x2)x3)αβ(v1)+(1)|x1||x2|(β(x2)α(x1))β(x3)+(1)|x1||x2|θ(β(x2)α(x1),β(x3))+(1)|x1||x2|L(β(x2)α(x1))βV(v3)+(1)|x3|(|x1|+|x2|)+|x1||x2|R(β(x3))θ(β(x2),α(x1))+(1)|x3|(|x1|+|x2|)+|x1||x2|R(β(x3))L(β(x2))αV(v1)+(1)|x3|(|x1|+|x2|)R(β(x3))R(α(x1))βV(v2)(1)|x1||x2|αβ(x2)(α(x1)x3)(1)|x1||x2|θ(αβ(x2),α(x1)x3)(1)|x1||x2|L(αβ(x2))θ(α(x1),x3)(1)|x1||x2|L(αβ(x2))L(α(x1))v3(1)|x1|(|x2|+|x3|)L(αβ(x2))R(x3)αV(v1)(1)|x2||x3|R(α(x1)x3)αβ(v2). (26)

    Since (V,L,R,αV,βV) is a bimodule of Bihom-alternative superalgebra (A,,α,β), by (14), we set x=x1,y=x2,v=v3, then we rewrite (14) as (a), by (16), we set x=x1,y=x3,v=v2, then we rewrite (16) as (b), and by (16), we set x=x2,y=x3,v=v1, then we rewrite (16) as (c). In additon, the fact is that ~asα,β(β(x1),α(x2),x3)+(1)|x1||x2|~asα,β(β(x2),α(x1),x3)=0.

    (26)=~asα,β(β(x1),α(x2),x3)+(1)|x1||x2|~asα,β(β(x2),α(x1),x3)+(a)+(1)|x2||x3|(b)+(1)|x1|(|x2|+|x3|)(c)+θ(β(x1)α(x2),β(x3))+(1)|x3|(|x1|+|x2|)R(β(x3))θ(β(x1),α(x2))θ(αβ(x1),α(x2)x3)L(αβ(x1))θ(α(x2),x3)+(1)|x1||x2|θ(β(x2)α(x1),β(x3))+(1)|x3|(|x1|+|x2|)+|x1||x2|R(β(x3))θ(β(x2),α(x1))(1)|x1||x2|θ(αβ(x2),α(x1)x3)(1)|x1||x2|L(αβ(x2))θ(α(x1),x3)=θ(β(x1)α(x2),β(x3))+(1)|x3|(|x1|+|x2|)R(β(x3))θ(β(x1),α(x2))θ(αβ(x1),α(x2)x3)L(αβ(x1))θ(α(x2),x3)+(1)|x1||x2|θ(β(x2)α(x1),β(x3))+(1)|x3|(|x1|+|x2|)+|x1||x2|R(β(x3))θ(β(x2),α(x1))(1)|x1||x2|θ(αβ(x2),α(x1)x3)(1)|x1||x2|L(αβ(x2))θ(α(x1),x3)=0.

    So the BiHom left super-alternativity is finished. By the same calculation, we also obtain (25) holds. Thus, (AV,,α+αV,β+βV) is a Bihom-alternative superalgebra if and only if θ satisfies Eqs.(24) and (25).

    Theorem 4.3. Let (A,,α,β) be a Bihom-alternative superalgebra, θ:A×AA, define two new operations on AA:

    (x+a)(y+b)=xy+θ(x,y)+(1)|x||y|R(x)b+L(y)a, (27)
    (α+α)(x+u)=α(x)+α(u),(β+β)(x+u)=β(x)+β(u), (28)

    for any x,yA;a,bA, then (AA,,α+α,β+β) is a regular Bihom-alternative algebra if and only if θ satisfies the following conditions:

    θ(β(x1)α(x2),β(x3))+(1)|x3|(|x1|+|x2|)L(β(x3))θ(β(x1),α(x2))θ(αβ(x1),α(x2)x3)R(αβ(x1))θ(α(x2),x3)+(1)|x1||x2|θ(β(x2)α(x1),β(x3))+(1)|x3|(|x1|+|x2|)+|x1||x2|L(β(x3))θ(β(x2),α(x1))(1)|x1||x2|θ(αβ(x2),α(x1)x3)(1)|x1||x2|R(αβ(x2))θ(α(x1),x3)=0,
    θ(x1β(x2),αβ(x3))+(1)|x3|(|x1|+|x2|)L(αβ(x3))θ(x1,β(x2))θ(α(x1),β(x2)α(x3))R(α(x1))θ(β(x2),α(x3))+(1)|x2||x3|θ(x1β(x3),αβ(x2))+(1)|x1||x2|L(αβ(x2))θ(x1,β(x3))(1)|x2||x3|R(α(x1))θ(β(x3),α(x2))(1)|x2||x3|θ(α(x1),β(x3)α(x2))=0.

    For any x1,x2,x3H(A). Under the circumstances, AA is called Tθ-extension of A, write as TθA.

    Proof. By Proposition 6, we know A is also a bimodule of A, so it is clear by Theorem4.2.

    In Section 2, we introduced the construction from alternative superalgebra to Bihom-alternative superalgebra. As an application, next we will give the construction from bimodules of alternative superalgebras to bimodules of Bihom alternative superalgebra.

    Proposition 7. Let (V,L,R) be a bimodule of an alternative superalgebra (A,). Given four even linear maps α,β:AA and αV,βV:VV such that αβ=βα,αVβV=βVαV, αVL(x)=L(α(x))αV, αVR(x)=R(α(x))αV, βVL(x)=L(β(x))βV and βVR(x)=R(β(x))βV. Then (V,˜L,˜R,αV,βV) is a bimodule of the Bihom-alternative superalgebra (A,μα,β,α,β), where ˜L=L(α(x))βV,˜R=R(β(x))αV and μα,β(x,y)=α(x)β(y).

    Proof. Let x,yH(A), vH(V) and set μα,β(x,y)=xy, that is xy=α(x)β(y). Then we have

    ˜L(β(x)α(y))βV(v)˜L(αβ(x))˜L(α(y))v+(1)|x||y|˜L(β(y)α(x))βV(v)(1)|x||y|˜L(αβ(y))˜L(α(x))v=˜L(αβ(x)αβ(y))βV(v)˜L(αβ(x))L(α2(y))βV(v)+(1)|x||y|˜L(αβ(y)αβ(x))βV(v)(1)|x||y|˜L(αβ(y))L(α2(x))βV(v)=L(α2β(x)α2β(y))β2V(v)L(α2β(x))L(α2β(y))β2V(v)+(1)|x||y|L(α2β(y)α2β(x))β2V(v)(1)|x||y|L(α2β(y))L(α2β(x))β2V(v)=0

    and

    (1)|x||y|˜R(β(y))˜L(β(x))αV(v)˜L(αβ(x))˜R(y)αV(v)+(1)|x||y|˜R(β(y))˜R(α(x))βV(v)˜R(α(x)y)αVβV(v)=(1)|x||y|˜R(β(y))L(αβ(x))αVβV(v)˜L(αβ(x))R(β(y))α2V(v)+(1)|x||y|˜R(β(y))R(αβ(x))αVβV(v)˜R(α2(x)β(y))αVβV(v)=(1)|x||y|R(β2(y))L(α2β(x))α2VβV(v)L(α2β(x))R(β2(y))α2VβV(v)+(1)|x||y|R(β2(y))R(α2β(x))α2VβV(v)R(α2β(x)β2(y))α2VβV(v)=0.

    Similarly, other identities can also be obtained.

    In this section, We also give constructions for Bihom-Jordan and Bihom-Jordan admissible superalgebras. Additionally, we figure out that regular Bihom-alternative superalgebras are Bihom-Jordan admissible.

    Definition 5.1. A BiHom superalgebra (A,μ,α,β) is called a Bihom-Jordan superalgebra if for all x,y,z,tH(A):

    (i)αβ=βα,(ii)μ(β(x),α(y))=(1)|x||y|μ(β(y),α(x)),(Bihomsupercommutativitycondition)(iii)x,y,t(1)|t|(|x|+|z|)~asα,β(μ(β2(x),αβ(y)),α2β(z),α3(t))=0.(BihomJordansuperidentity)

    In particular, it is reduced to a Jordan superalgebra when α=β=id.

    Definition 5.2. Let (A,μ,α,β) be a Bihom-superalgebra such that α and β are bijective maps. Define its plus Bihom-superalgebra as the Bihom-superalgebra A+=(A,,α,β), where

    xy=12(μ(x,y)+(1)|x||y|μ(α1β(y),αβ1(x))).

    Note that product is Bihom-supercommutative. In fact, for all x,yH(A),

    β(x)α(y)=12(β(x)α(y)+(1)|x||y|β(y)α(x))=(1)|x||y|12(β(y)α(x)+β(x)α(y))=(1)|x||y|β(y)α(x).

    Moreover, the plus Bihom-superalgebra A+=(A,,α,β) of a Bihom-Jordan-admissible superalgebra is a Bihom-Jordan superalgebra.

    Proposition 8. Let (A,μ) be a Jordan-admissible superalgebra and α,β:AA be two even superalgebra morphisms satisfying αβ=βα and they are reversible. Then the induced BiHom-superalgebra Aα,β=(A,μ=μ(αβ),α,β) is a BiHom-Jordan-admissible superalgebra.

    Proof. We need to prove that (A,,α,β) is a BiHom-Jordan superalgebra, where

    xy=12(μ(x,y)+(1)|x||y|μ(α1β(y),αβ1(x))).

    The Jordan superalgebra obtained from Jordan-admissible superalgebra (A,μ) is denoted as (A,), where =12(μ+μop) and μop(x,y)=(1)|x||y|μ(y,x).

    Also, it is easy to check that xy=α(x)β(y) and β(x)α(y)=(1)|x||y|β(y)α(x). On the other hand,

    ~asα,β(β2(x)αβ(y),α2β(z),α3(t))=α3β2~as(xy,z,t).

    So,

    x,y,t(1)|t|(|x|+|z|)~asα,β(β2(x)αβ(y),α2β(z),α3(z))=α3β2x,y,t(1)|t|(|x|+|z|)~as(xy,z,t)=0.

    Conclusion proof ends.

    Theorem 5.3. Let (A,μ) be a Jordan superalgebra and α,β:AA be two even commuting and reversible superalgebra morphisms. Then (A,μ=μ(αβ),α,β) is a Bihom-Jordan superalgebra.

    Proof. Firstly, note that μ is super-commutative since A is a Jordan superalgebra. For any x,y,z,tH(A):

    Step 1,

    μ(β(x),α(y))=μ(αβ(x),αβ(y))=(1)|x||y|μ(αβ(y),αβ(x))=(1)|x||y|μ(β(y),α(x)).

    Step 2, by direct calculation,

    ~asα,β(μ(β2(x),αβ(y)),α2β(z),α3(t))=α3β2~as(μ(x,y),z,t).

    further, we have

    x,y,t(1)|t|(|x|+|z|)~asα,β(μ(β2(x),αβ(y)),α2β(z),α3(t))=α3β2x,y,t(1)|t|(|x|+|z|)~as(μ(x,y),z,t)=0.

    Thus, (A,μ=μ(αβ),α,β) is a Bihom-Jordan superalgebra.

    Remark 5. Similar to Theorem 5.3, we may construct a new Bihom-Jordan superalgebra starting with a given Bihom-Jordan superalgebra and a pair of supercommuting Bihom-superalgebra morphisms.

    Theorem 5.4. Every regular BiHom-alternative superalgebra (A,μ,α,β) is BiHom-Jordan-admissible, that is to say (A+,,α,β) is a Bihom-Jordan superalgebra.

    Proof. As usual we write μ(x,y) as the juxtaposition xy. we only need to vertify BiHom-Jordan super-identity. For all x,y,z,tH(A),

    x,y,t8(1)|t|(|x|+|z|)~asα,β(β2(x)αβ(y),α2β(z),α3(z))=8(1)|t|(|x|+|z|)(((β2(x)αβ(y))α2β(z))α3β(t)(αβ2(x)α2β(y))(αβ(z)α3(t)))ξ+8(1)|x|(|y|+|z|)(((β2(y)αβ(t))α2β(z))α3β(x))(αβ2(y)α2β(t))(αβ(z)α3(x)))η+8(1)|y|(|t|+|z|)(((β2(t)αβ(x))α2β(z))α3β(y)(αβ2(t)α2β(x))(αβ(z)α3(y)))γ,

    Further, we have the following via calculations:

    ξ=(1)|t|(|x|+|z|){((β2(x)αβ(y))α2β(z))α3β(t)+(1)|t|(|x|+|y|+|z|)α2β2(t)((αβ(x)α2(y))α3(z))+(1)|z|(|x|+|y|)(αβ2(z)(αβ(x)α2(y)))α3β(t)+(1)|z|(|x|+|y|)+|t|(|x|+|y|+|z|)α2β2(t)(α2β(z)(α2(x)α3β1(y)))+(1)|x||y|((β2(y)αβ(x))α2β(z))α3β(t)+(1)|t|(|x|+|y|+|z|)+|x||y|α2β2(t)((αβ(y)α2(x))α3(z))+(1)|z|(|x|+|y|)+|x||y|(αβ2(z)(αβ(y)α2(x)))α3β(t)+(1)|z|(|x|+|y|)+|t|(|x|+|y|+|z|)+|x||y|α2β2(t)(α2β(z)(α2(y)α3β1(x)))(αβ2(x)α2β(y))(α2β(z)α3(t))(1)(|z|+|t|)(|x|+|y|)(αβ2(z)α2β(t))(α2β(x)α3(y))(1)|z||t|(αβ2(x)α2β(y))(α2β(t)α3(z))(1)(|z|+|t|)(|x|+|y|)+|z||t|(αβ2(t)α2β(z))(α2β(x)α3(y))(1)|x||y|(αβ2(y)α2β(x))(α2β(z)α3(t))(1)(|z|+|t|)(|x|+|y|)+|x||y|(αβ2(z)α2β(t))(α2β(y)α3(x))(1)|x||y|+|z||t|(αβ2(y)α2β(x))(α2β(t)α3(z))(1)(|z|+|t|)(|x|+|y|)+|x||y|+|z||t|(αβ2(t)α2β(z))(α2β(y)α3(x))},

    analogously, there are concrete equations of η and γ, in this time,

    x,y,t8(1)|t|(|x|+|z|)~asα,β(β2(x)αβ(y),α2β(z),α3(z))=ξ+η+γ.

    So,

    x,y,t8(1)|t|(|x|+|z|)~asα,β(β2(x)αβ(y),α2β(z),α3(z))=ξ+η+γ={(1)|t|(|x|+|z|)~asα,β(β2(x)αβ(y),α2β(z),α3(t))(1)|z|(|x|+|y|)+|t||y|~asα,β(αβ2(t),α2β(z),α2(x)α3β1(y))+(1)|x|(|y|+|z|)~asα,β(β2(y)αβ(t),α2β(z),α3(x))(1)|z|(|t|+|y|)+|t||x|~asα,β(αβ2(x),α2β(z),α2(y)α3β1(t))+(1)|y|(|t|+|z|)~asα,β(β2(t)αβ(x),α2β(z),α3(y))(1)|z|(|t|+|x|)+|y||x|~asα,β(αβ2(y),α2β(z),α2(t)α3β1(x))+{(1)|t|(|x|+|z|)+|x||y|~asα,β(β2(y)αβ(x),α2β(z),α3(t))(1)|z|(|x|+|y|)+|y|(|x|+|t|)~asα,β(αβ2(t),α2β(z),α2(y)α3β1(x))+(1)|x|(|y|+|z|)+|y||t|~asα,β(β2(t)αβ(y),α2β(z),α3(x))(1)|z|(|t|+|y|)+|t|(|x|+|y|)~asα,β(αβ2(x),α2β(z),α2(t)α3β1(y))+(1)|y|(|t|+|z|)+|t||x|~asα,β(β2(x)αβ(t),α2β(z),α3(y))(1)|z|(|t|+|x|)+|x|(|t|+|y|)~asα,β(αβ2(y),α2β(z),α2(x)α3β1(t))} (29)
    {+(1)|t||y|α2β2(t)((αβ(x)α2(y))α3(z))+(1)|t|(|x|+|z|)+|z|(|x|+|y|)(αβ2(z)(αβ(x)α2(y)))α3β(t)+(1)|y|(|t|+|x|)α2β2(t)((αβ(y)α2(x))α3(z))+(1)|t|(|x|+|z|)+|z|(|x|+|y|)+|x||y|(αβ2(z)(αβ(y)α2(x)))α3β(t)+(1)|x||t|α2β2(x)((αβ(y)α2(t))α3(z))+(1)|x|(|y|+|z|)+|z|(|t|+|y|)(αβ2(z)(αβ(y)α2(t)))α3β(x)+(1)|t|(|x|+|y|)α2β2(x)((αβ(t)α2(y))α3(z))+(1)|x|(|y|+|z|)+|z|(|t|+|y|)+|t||y|(αβ2(z)(αβ(t)α2(y)))α3β(x)+(1)|y||x|α2β2(y)((αβ(t)α2(x))α3(z))+(1)|y|(|t|+|z|)+|z|(|t|+|x|)(αβ2(z)(αβ(t)α2(x)))α3β(y)+(1)|x|(|y|+|t|)α2β2(y)((αβ(x)α2(t))α3(z))+(1)|y|(|t|+|z|)+|z|(|t|+|x|)+|t||x|(αβ2(z)(αβ(x)α2(t)))α3β(y)(1)(|z|+|t|)(|x|+|y|)(αβ2(z)α2β(t))(α2β(x)α3(y))(1)|z||t|(αβ2(x)α2β(y))(α2β(t)α3(z))(1)(|z|+|t|)(|x|+|y|)+|x||y|(αβ2(z)α2β(t))(α2β(y)α3(x))(1)|x||y|+|z||t|(αβ2(y)α2β(x))(α2β(t)α3(z))(1)(|z|+|x|)(|y|+|t|)(αβ2(z)α2β(x))(α2β(y)α3(t))(1)|z||x|(αβ2(y)α2β(t))(α2β(x)α3(z))(1)(|z|+|x|)(|y|+|t|)+|t||y|(αβ2(z)α2β(x))(α2β(t)α3(y))(1)|t||y|+|z||x|(αβ2(t)α2β(y))(α2β(x)α3(z))(1)(|z|+|y|)(|x|+|t|)(αβ2(z)α2β(y))(α2β(t)α3(x))(1)|z||y|(αβ2(t)α2β(x))(α2β(y)α3(z))(1)(|z|+|y|)(|x|+|t|)+|x||t|(αβ2(z)α2β(y))(α2β(x)α3(t))(1)|x||t|+|z||y|(αβ2(x)α2β(t))(α2β(y)α3(z))}. (30)

    Since A is a Bihom-alternative superalgebra, ~asα,β(β2αβα2) is super-alternating. (29) equals 0. So

    x,y,t8(1)|t|(|x|+|z|)~asα,β(β2(x)αβ(y),α2β(z),α3(z))=(30)=(1)|t||y|[~asα,β(β(t),αβ(x),α2(y))+(1)|x||y|~asα,β(β(t),αβ(y),α2(x)),α3β(z)]+(1)|x||t|[~asα,β(β(x),αβ(y),α2(t))+(1)|t||y|~asα,β(β(x),αβ(t),α2(y)),α3β(z)]+(1)|y||x|[~asα,β(β(y),αβ(t),α2(x))+(1)|x||t|~asα,β(β(y),αβ(x),α2(t)),α3β(z)]=0.

    Thus, it satisfies the Bihom-Jordan super-identity for A+=(A,,α,β).

    The authors would like to thank the referee for valuable comments and suggestions on this article.



    [1] Abdaoui E. K., Ammar F., Makhlouf A. (2017) Hom-alternative, Hom-Malcev and Hom-Jordan superalgebras. Bull. Malays. Math. Sci. Soc. 40: 439-472.
    [2] Cantarini N., Kac V. G. (2007) Classification of linearly compact simple Jordan and generalized Poisson superalgebras. J. Algebra 313: 100-124.
    [3] Chtioui T., Mabrouk S., Makhlouf A. (2020) BiHom-alternative, BiHom-Malcev and BiHom-Jordan algebras. Rocky Mountain J. Math. 50: 69-90.
    [4] Chtioui T., Mabrouk S., Makhlouf A. (2020) BiHom-pre-alternative algebras and BiHom-alternative quadri-algebras. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 63: 3-21.
    [5] Elduque A., Shestakov I. P. (1995) Irreducible non-Lie modules for Malcev superalgebras. J. Algebra 173: 622-637.
    [6] Filippov V. T. (1981) On a varieties of Mal'tsev algebras. Algebra i Log. 20: 300-314.
    [7] Filippov V. T. (1983) Imbedding of Mal'tsev algebras into alternative algebras. Algebra i Log. 22: 443-465.
    [8] Gohr A. (2010) On hom-algebras with surjective twisting. J. Algebra 324: 1483-1491.
    [9] G. Graziani, A. Makhlouf, C. Menini and F. Panaite, BiHom-associative Algebras, BiHom-Lie Algebras and BiHom-Bialgebras, SIGMA Symmetry Integrability Geom. Methods Appl., 11 (2015), Paper 086, 34 pp.

    10.3842/SIGMA.2015.086

    MR3415909

    [10] Guo S., Zhang X., Wang S. (2018) The construction and deformation of BiHom-Novikov algebras. J. Geom. Phys. 132: 460-472.
    [11] Kac V. G. (1977) Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras. Comm. Algebra 5: 1375-1400.
    [12] Liu Y., Chen L., Ma Y. (2013) Hom-Nijienhuis operators and T-extensions of hom-Lie superalgebras. Linear Algebra Appl. 439: 2131-2144.
    [13] Liu L., Makhlouf A., Menini C., Panaite F. (2020) Rota-Baxter operators on BiHom-associative algebras and related structures. Colloq. Math. 161: 263-294.
    [14] López-Díaz M. C., Shestakov I. P. (2002) Representations of exceptional simple alternative superalgebras of characteristic 3. Trans. Amer. Math. Soc. 354: 2745-2758.
    [15] Makhlouf A. (2010) Hom-alternative algebras and Hom-Jordan algebras. Int. Electron. J. Algebra 8: 177-190.
    [16] Martínez C., Zelmanov E. (2010) Representation theory of Jordan superalgebras. I. Trans. Amer. Math. Soc. 362: 815-846.
    [17] Nan J., Wang C., Zhang Q. (2014) Hom-Malcev superalgebras. Front. Math. China 9: 567-584.
    [18] Racine M. L., Zel'manov E. I. (2003) Simple Jordan superalgebras with semisimple even part. J. Algebra 270: 374-444.
    [19] Sheng Y. (2012) Representations of hom-Lie algebras. Algebr. Represent. Theory 15: 1081-1098.
    [20] Shestakov I. P. (1999) Alternative and Jordan superalgebras. Siberian Adv. Math. 9: 83-99.
    [21] Shestakov I. P., Elduque A. (1994) Prime non-Lie modules for Mal'tsev superalgebras. Algebra i Logika 33: 253-262.
    [22] I. P. Shestakov and S. Gonzalez, Non-associative algebra and its applications, Kluwer Academic Dordrecht, (1994), 372–378.
    [23] S. Wang and S. Guo, BiHom-Lie superalgebra structures and BiHom-Yang-Baxter equations, Adv. Appl. Clifford Algebr., 30 (2020), Paper No. 35, 18 pp.

    10.1007/s00006-020-01060-0

    MR4103390

    [24] Yau D. (2012) Hom-Maltsev, Hom-alternative, and Hom-Jordan algebras. Int. Electron. J. Algebra 11: 177-217.
    [25] E. I. Zel'manov and I. P. Shestakov, Prime alternative superalgebras and nilpotence of the radical of a free alternative algebra, Math. USSR-Izv., 37 (1991), 19–36.

    MR1073082

    [26] R. Zhang, D. Hou and C. Bai, A Hom-version of the affinizations of Balinskii-Novikov and Novikov superalgebras, J. Math. Phys., 52 (2011), 023505, 19 pp.

    10.1063/1.3546025

    MR2798403

    [27] Zhao J., Chen L., Ma L. (2016) Representations and T-extensions of hom-Jordan-Lie algebras. Comm. Algebra 44: 2786-2812.
  • This article has been cited by:

    1. Ying Hou, Liangyun Chen, Keli Zheng, Super-bimodules and $ \mathcal{O} $-operators of Bihom-Jordan superalgebras, 2024, 32, 2688-1594, 5717, 10.3934/era.2024264
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2157) PDF downloads(130) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog