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ABSTRACT. In this paper, multidimensional stability of pyramidal traveling
fronts are studied to the reaction-diffusion equations with degenerate Fisher-
KPP monostable and combustion nonlinearities. By constructing supersolu-
tions and subsolutions coupled with the comparison principle, we firstly prove
that under any initial perturbation (possibly large) decaying at space infinity,
the three-dimensional pyramidal traveling fronts are asymptotically stable in
weighted L spaces on R™ (n > 4). Secondly, we show that under general
bounded perturbations (even very small), the pyramidal traveling fronts are
not asymptotically stable by constructing a solution which oscillates perma-
nently between two three-dimensional pyramidal traveling fronts on R%.

1. Introduction. In this paper, we investigate the large time behavior of solutions
to the following Cauchy problem:

ue(t,x) = Au(t,x) + f (u(t,x)), xe€R" t>0, (1)
u(0,x) = up(x), x€R™,
where n € N, u; = % and A is the standard Laplace operator with respect to the
space variables x € R™. For some constants ¢ € [0,1] and ¢ € [0, 1], the nonlinear
reaction term f € C17<([—¢,1 + 1], R) satisfies

(H1): f(0)=f(1)=0, f'(0) =0, f'(1) <0, f(u) =0 for ue€ (0,1).

Such equations arise in various phenomena in population dynamics, combustion
and chemistry ecology (see [1]), where u typically stands for the concentration of a
species or the temperature.

In what follows, we shall study the multidimensional stability of three-dimensional
pyramidal traveling fronts to Eq. (1) in R™ with n > 4. In order to motivate our
study, let us recall some known results in the study of traveling fronts of Eq. (1).
In R, traveling fronts are solutions taking the form

u(t,x) = ¢¢(p), p=x— cyt,
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where ¢y > 0 is the propagation speed and ¢y is the wave profile satisfying

{¢;<p) +cr¢(p) + f(6r(P) =0, ¢}(p) <0, ¥pER,
¢f(4+00) =0, ¢p(—00) =1.

Such solution u(t,x) = ¢y(x — cyt) are called the planar traveling front since its
level set is a hyperplane. Throughout the paper, we further assume that

H2): There exists ¢;(p) € C?(R) with speed c* > 0 satisfying (2) and
f f

¢%(p)
pﬁl+oomiA<Al SO,

where A and A; are two real roots of the equation u? + cip+ f(0) =0.

The equation (1) with assumptions (H1)-(H2) is called degenerate Fisher-KPP
monostable and combustion equation. In fact, it follows from [1, 10] that the as-
sumptions (H1)-(H2) hold with ¢} being the minimal wave speed and the unique
wave speed of planar traveling front ¢y when the nonlinear reaction term f is of
degenerate Fisher-KPP monostable type and combustion type, respectively. See
[2, 19] for more details.

In R™ with n > 2, the function ¢;(z — cyt) is clearly still the solution of Eq.
(1) with x = (2,9,2) € R"™2 x R x R. A very interesting question is to consider
the asymptotic stability of one-dimensional traveling front ¢f(z — ¢ft) in n (> 2)-
dimensional spaces. For this problem, one can refer to [9, 11, 20, 21, 22] and the
references therein to Allen-Cahn equation. It is worth to mention that Matano
et al. [14, 13] investigated the asymptotic stability of one-dimensional traveling
front under any initial spatial decaying perturbations by using sub-super solutions
method combining with the comparison principle. Motivated by [14, 13], Lv and
Wang [12] and Bu and Wang [4] established the multidimensional stability of planar
traveling fronts to Eq. (1) with Fisher-KPP nonlinearity, non-KPP monostable and
combustion nonlinearity, respectively. He and Wu [8] using spectral method studied
the stability of traveling front for degenerate Fisher type equations.

However, due to the influence of curvature and spatial dimension, there are other
types of traveling fronts in R™ with n > 2 which are called non-planar travel-
ing fronts, since their level sets are not hyperplanes anymore. Readers can see
for instance Bu and Wang [2, 3], Hamel et. al. [7, 6], Ninomiya and Taniguchi
[15], Taniguchi [17, 18] and Wang and Bu [19] for the existence and stability of
two-dimensional V-shaped fronts, three-dimensional pyramidal fronts and multidi-
mensional conical shaped fronts. Noting that it is also very interesting to investigate
the multidimensional stability of nonplanar traveling fronts. See Sheng et. al. [16]
and Cheng and Yuan [5] for the multidimensional stability of two-dimensional V-
shaped fronts and three-dimensional pyramidal to Allen-Cahn equation under any
spatially decaying initial perturbations, respectively. Recently, Bu and Wang [4]
also established the stability of two-dimensional V-shaped fronts in R™ with n > 2
to degenerate Fisher-KPP monostbale and combustion equations.

In R™ with n > 3, we write x = (z,, 2, s) with € R"3 and (y, 2, 5) € RxRxR.
It follows from Wang and Bu [19] that the equation (1) exists a three-dimensional
pyramidal fronts with the form u(t, y, z, s) = V(y, 2,<) under the assumptions (H1)-
(H2) in R3, where ¢ = s — ct. For simplicity, we still write V (y, z,5) as V(y, z, ).
Let | € N with [ > 3 and {0,}, . ;, satisfy

(2)

0<6, <92<"'<01 < 27 and max ((9j+1—9]‘)<71',
1<5<i
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2 __ ‘*'2
where 0,41 := 01 + 27. Let m, = Cc* " and
7

_ _ _ _ - 2
h(y, z) = lrgjaécl hj(y, z) lrg?%cl my(ycosb; + zsinb;) for (y,z) € R?,
where ¢ > ¢}. Then {(y, z,8) € R3|s = h(y, z)} is a 3-dimensional pyramid. Let T’
denote the set of all edges of a pyramid.

Theorem I (see Wang and Bu [19]) Assume that (H1)-(H2) hold. For any
¢ > ¢}, Eq. (1) admits a traveling front of pyramidal shape satisfying

Viyy + Ver + Vs + Vo + f(V) =0, (3)
Vi 28) = 05 (L (s hly, 2)))| A
lim sup = =0,Vpe <, 1) ,
Y0 (y,2,5)€D(v) (b? (% (s — h(y, z))) A

where D(y) = {(y, 2, s) € R*|dist((y, z,5),T') > v}. Moreover, one has LV (y,2,s)
<0 for (y,z,8) € R® and

O (Ccf (s — h(y,Z))) <V(y,2,5) <1,V (y,2,5) € R,

It is obvious that the three-dimensional pyramidal front in Theorem I is also
the solution to Eq. (1) in R™ with n > 3. The aim of this paper is to study the
multidimensional stability of three-dimensional pyramidal fronts V(y, z,s) in R"
with n > 3. Motivated by [14, 4], we mainly use the super-sub solutions method
combining with the comparison principle. However, since we are treating degen-
erate Fisher-KPP monostable and combustion equations in R™ with n > 4, many
modifications and techniques are needed.

In the following, we use the moving coordinate with speed c¢ toward the s di-
rection. Let § = s — ¢t and u(t,z,y, z,s) = ¥(¢, z,vy,2,§). For simplicity, we still
denote ¥(t,x,y, z,8) by 9(t,z,y, z,s). Then the Eq. (1) can be rewritten as

9 — A9 —cdg — f(I9) =0, t >0, (1,y,2,8) € R"3 x R3, ()
9(0,z,y, z,5) = do(z,v, 2,9), (1,9,2,5) € R"™3 x R3.

In the sequel, the solution to Eq. (4) is written as ¥(¢,z,y, 2, 5;9). The main

results in the present paper are as follows.

Theorem 1.1. Assume that (H1)-(H2) hold. Suppose that the initial value 9o (z,y,
z,8) is of class C(R™,[0,1]) with n > 3 and satisfies
lim sup |190(30,y6,*2a5) _ V(y,Z7S>| =0
R0 a4y 4|z 41s|2R  ¢f (% (s — h(y, z)))

for some B € (4t,1). Then the solution ¥(z,y,z,s;90) to Eq. (4) satisfies
thm sup |19(t7x57y’j¢78;190) *V(y,2,5)|
=400 (44,2, 5)ER™ ¢f (Tf (5 — h(y, Z)))

The above theorem shows that under the initial perturbations decaying as |z| +
ly|+1z|+|s| — 400, the three-dimensional pyramidal traveling fronts are asymptot-
ically stable in weighted L* spaces on R™ (n > 4). In particular, when the initial
perturbations further belong to L! in a certain sense, the convergence rate for (5)

is algebraic, see the following theorem for more detail.

=0. (5)
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Theorem 1.2. Suppose that (H1)-(H2) hold and the initial value 9o(x,y, z,s) to
Eq. (4) satisfies

\% (y, Z,8— 190_(36)) <9Yo(z,y,2,5) <V (y, 2,8 — 193'(3:)) (6)

for some smooth functions ¥y, 9§ € L*(R"=3) N L>®°(R"~3) with n > 3. Then for
any B € (%, 1), the solution V¥(t,x,y, z,s;99) to Fq. (4) satisfies

|19(t7 x,Y,z,S; ?90) B V(yv Z, S)|
sup 57
oz o] (2 (s - h(y,2)))

<Ct"7T, t>0, (7)

where C' > 0 is a constant depending on B, f, [[Vq |1 @n-3), [[Vq [|lLe@n-3),
198 1|1 -5y and [[0F || oo (gn-3)-

If the initial perturbations in Theorem 1.2 keep the sign, then we can obtain that
the convergence rate (7) is optimal in some sense.

Proposition 1. Let ¥y be as in (6) and assume that either 9; > 0, 95 # 0 or
193' <0, 198' % 0. Then for any B € (%,1), there exist constants D1 > 0 and
Dy > 0 such that

Dl(l—i—t)_nTiS < sup |19(t,l',y,2,8;190) —V(y,z,s)|

- < Dot™ "7, t> 0.
(w,y,2,5)ER™ qb? (% (s — h(y, z)))

Finally, by constructing a solution to Eq. (1) which oscillates permanently be-
tween two pyramidal traveling fronts, we show that the three-dimensional pyramidal
traveling fronts are not asymptotically stable under general bounded perturbations
(even very small) on R%.

Theorem 1.3. Let n = 4. Assume that (H1)-(H2) hold. Then for any 8 € (%, 1)
and § > 0, there ezists a bounded function w(z) € C(R) with ||wl| L ®) = & such that
the solution u(t,x,y, z,s) to Eq. (1) with the initial value up(x,y,z,8) = V(y, 2,8 —
w(x)) satisfies

|u(tWL7$7y7 2, 5) B V(y7 2,8 — Ctm + (_l)mg)‘

lim sup o =0,
m—r+o00 |z|<m!—1,(y,z,s)ER3 ¢? (% (S — ctyy, — h(y, Z)))
where t,, = m(m})?

Remark 1. From the perspective of dynamical systems, the above result yields
that in the weighted LS (R?), the w-limit set of the solution u to Eq. (1) contains
at least two distinct points. And each of them is a translation of the same three-

dimensional pyramidal traveling front.

We organize this paper as follows. In Section 2, we give some preliminaries in-
cluding the properties of the pyramidal traveling fronts, some known results on the
curvature flow problem and a mollified pyramid. In Section 3, we prove that the
three-dimensional pyramidal traveling fronts are asymptotically stable in R (n > 4)
by constructing new types of supersolutions and subsolutions coupled with compar-
ison principle. That is, we prove Theorems 1.1-1.2 and Proposition 1. In Section
4, we prove Theorem 1.3 which states the existence of solution to Eq. (1) which
oscillates permanently with non-decaying amplitude.
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2. Preliminaries. In this section, we state some known results which play an
important role in the proving of the main results. Throughout the paper, let

¢'(p) ¢"(p)
o(p) o(p)

and fix t* € (O, g) such that for any u € (1 — 2.*, 1+ ¢*),
3 1
2P < Sw) < 510,
We now recall some known results on the curvature flow problem. See [14] for

more details. The mean curvature flow for a graphical surface w(t,z) on R*~3 is
given by the following Cauchy problem:

W — div (V“’) , xeR™3 t>0,

, 3= sup |f'(u)
u€[—t,141]

Y1 := sup
PeER

;72 = sup
pPeER

V14| Vwl|? V14| Vwl|?
w(0,z) = wo(z), z€R"3.

(8)

Assume that on R" 3, the first and second derivatives of w with respect to z
are bounded, then by direct calculation, there exists a constant k£ > 0 large enough
such that

o
Il

Vw
wy — A/ 1+ |Vw|? - div | —
' [Vl ¥ <\/1+|Vw|2>

> wy — Aw — k|Vw|2.
It is clear that w(t, ) is a subsolution of the following Cauchy problem:

v = Avt + k|Vot|]?2, 2eR"3 ¢ >0,
vH(0,2) = wo(z), z€R"3.

Taking the Cole-Hopf transformation w™ (¢, z) = exp (kv™ (¢, z)), we have

w =Awt, zeR"3 ¢>0,
wt(0,2) = exp(kwg(x)), x € R"3,

Thus we can obtain that

vt x) = %log

[ pa = mexpliwotn)an.

1 |772)
I'(t,n) = ——ex —— .
( 77) (4 t)n23 P( It

Therefore (9) gives an upper estimate for the solution w(¢, ) to the Cauchy problem
(8). Similarly, the lower estimate for w(t,x) can be given by the Cauchy problem

{vt_ =AvT —klVv |2, zeR"3 t>0,

where

v=(0,2) = wo(x), z€R"3.
That is,
1
v (t,x) = % log

/]Rn_3 I'(t,x — n) exp(—kwo(n))dn| . (10)
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Let k& > 0 be any constant and v*(¢,2) be solutions to the following Cauchy
problems

vf = AvE £ k|VoE)2, zeR" 3 t>0,
vE(0,2) = wo(z), x€R"3.

The following lemma gives the large time behavior of v

[14].

Lemma 2.1. If the initial value wy € C(R™"™3) is bounded and satisfies | llim |wo ()]
xT|— o0

*(t,7), see Lemma 2.4 of

=0, then the solutions v*(t,x) satisfy

lim sup |vE(t,z)| =0,
100 ;cRn—3

respectively. If we further assume that wy € L*(R"3), then
1 n—:
sup vt (t,z)| < %H exp(kwo) — 1]| 1 (rn—3) >0,
rERn—3

Similar to the proof of Lemma 3.2 of [16] and Lemma 2.2 of [14], we can obtain
the following key estimates about the three-dimensional pyramidal fronts and planar
fronts, respectively.

Lemma 2.2. Let V(y,z,s) be a pyramidal front to Eq. (3). Then there exists a
positive constant ki (depending on f) such that

/;ile(y’Z,S) S Vss(yazas) S —I};le(y,z,s), v (y,Z,S) € RS' (11)

Lemma 2.3. Let ¢¢(p) be a planar front to Eq. (2). There exists a constant ko >0
depending only on f such that

ks (p) < &4(p) < —kadty(p), ¥ pER.
Let k = max{%l, 12:2} Thus we have
kVi(y,z,8) < Vas(y, 2,8) < —kVi(y, 2,5), VY (y,2,5) € R3,
{%}(p) < ¢}(p) < —kd}(p), VpeR

The following lemma shows some properties on three-dimensional pyramidal trav-
eling fronts V.

Lemma 2.4. ([19, Lemmas 3.3 and 3.4]) Let V(y, z,s) be a pyramidal front to Eq.
(3). One has

lim sup C}/s(y,AS) =0, Vpe (Al, 1> ) (13)
R—+400 |5 _p(y,2)|>R (;s? <7f (s — h(y, Z))) A

(12)

and

. f Vs 2 <0 56 07 * ) 14
5§V(y}25)§1_5 (¥, 2:5) for any (0,0") (14)

Remark 2. Obviously, (13) implies that

A= su 5 C*VS(%Z’S) < 400,
(v,2,9)€R? @, %(s—h(y,z)))
o7 (L (s+6-h(y.2))
Ay = sup < 400

(v.2.5)eR30€001] @]
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Finally, we show a mollified pyramid, which was constructed by Taniguchi [17].
Let p(r) € C*|0, 0c0) satisfy the following properties:
p(r) >0, py(r) <0for r >0, p(r) =11if r > 0 is small enough,
plr) =e”

r

if » > 0 is large enough, say r > Ry,
277/ rp(r)dr = 1.
0

Clearly, the function p(y, z) := ﬁ(\/yQ + 22) is of class C°° and [p, p (y, 2) dydz =

1. Without loss of generality, suppose Ry > 1. For all non-negative integers i; and
io with 0 < i1 +io < 3, we have

Dy D2p(y, )| < Map(y,2), ¥ (y.2) € R?,

where M, > 0is a constant. Define a mollified pyramid {(y, z,s) € R* | s = ¢(y, 2) }
as ¢(y, z) := p* h associated with a pyramid {(y, z,s) € R* | s = h(y,z)}. That is,

©(y, 2) =/ ply—y,z=2")h(y, 2)dy'dZ
RZ

:/ p(y, 2 Vh(y—y, z—2")dy'dz. (15)
R?
Let
c £3
S(y,z) = =~ Cf, (16)
1+ [Ve(y, 2)|

where Vo(y. 2) = (py(y.2). 9:(v. 2)) and [Vo(y. 2)] = \/3(s.2) + £2(.2). Then
we have the following two lemmas, see [17, 18].

Lemma 2.5. Let ¢ and S be as in (15) and (16), respectively. For any fized
integers 11 > 0 and io > 0, one has

sup |D;1Dizgo(y,z)| < Ky for some constant K; > 0,
(y,2)€R?

hy,2) < pl0:2) < by ) + 2m, [ 2p(r)d,
0
IVo(y, 2)| <m., 0<S(y,2) <c—cp, V (y,2) € R?

and

lim sup {S(y,2)|(y,z) € R? dist ((y,2),I') > A} =0,
A—o0
lim sup {@(ya Z) - h’(y7 Z)|(yv Z) € RQ? dist ((yv Z),F) > )\} =0.
A—00
Lemma 2.6. There exist two positive constants v, and vy such that
—h —h
0<wv; = inf #(y,2) — hly, 2) ?) (v,2) < sup —tp(y, ?) (v, 2)
(y,2)ER? S(y,Z) (y,2)€R? S(yVZ)

In addition, for integers i1 > 0 and io > 0 with 2 < i1 + iy < 3, there exists a
constant Ko > 0 such that

= vy < 00.

Dy D2¢(y, )

K
St |~

sup
(y,2)€ER?
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and

|50yy(yvz)|v |SQZZ(yaZ)| <mi My, V (yvz) € R2.

3. Stability under spatially decaying initial perturbations. In this section,
we give the proof of asymptotic stability of three-dimensional pyramidal fronts
V(y,z,s) in R™ with n > 4 under perturbation that decay at space infinity by
constructing supersolutions and subsolutions coupled with comparison principle.
That is, we prove Theorems 1.1-1.2 and Proposition 1. In the following, the symbols
A, and V, denote the n — 3-dimensional Laplacian and gradient operators with
respect to x, respectively. Let K(u) := ,u2+c*/H-f’( ) Clearly, we have K(BA) < 0

for any S € (%,1) Take \ := mm{ K(BA), 1}
3.1. Proof of Theorem 1.1.
Lemma 3.1. Let k > 0 be defined as in (12). Then for 3 € (5,1) and v € (0,1)

with v < min {mK(ﬂA), 1}, there exist some constants dg > 0 and og > 0

such that for any & € (0,80] and o > 0o, and any function v*(t,x) satisfying
vf = Aot +EVot 2, zeRY3, >0, (17)
the function defined by
V+(ta €, Y, z, 3) :V(y) %8 — U+(t7 x) - 06(1 - eikt))
+ 567/“(,25? ( s—vt(t,z) —o6(1 —e M) — 7@(1}% UZ)))

c v
is a supersolution to Eq. (4) in (0,400) x R™.

~

Proof. Let £(t,x,y,2,5) 1= r (s vH(t,x) — o6(1 — e M) — 7“"(“%”))7 Y = vy,
(

*(t,x) — a6(1 — e=*). Using (3), (12) and (17), the

Z :=wvz and n(t,x,s) :=s—v
direct calculation implies that

H[VT]:
V- AV - oV (V)

= Vi =B, = 3o - Loge o] oyt
- %ﬁaé%‘%ﬁ‘l(&w}(@ — Vi Voot [+ VAot
- ?2255(5 — DTNl (©)*IVar T - }22 589 (©) Va0t ?
* %556’%?_1(5)%(6)%@* ~ Vi — cffﬁ(ﬁ — 1)de Mo (€)d ()6 (Y, Z)
- C:’f&k_“‘??l(é)sbﬂiwzy(x Z)+ %vﬁée—%ﬁ?”(§>¢>’f<£)soyy<y, Z)
Voo = i’fﬁ(ﬂ — 1)5e M) () ez (Y, 2)

*2 *
= L30T O0€)0} (Y. 2) + LuBse o] (€0 (p (V. 2)



MULTIDIMENSIONAL STABILITY 3729

*2 *2

Vs = B(B = 10672049 L — e 0] (©)97(6) S

C

— oV, — cjB0e Mo} €8 (€) = £ (Vi zm) + 36 (9))

c’ _
= — ooAe MV, — dre Mgl (€) — ?fﬁ062)\6_2’\t¢? RGN
+ Vi (= + Agvt) = Vi [ Voot

+ Lope gl ¢) [(—vr + A0 T) B (€) — Cj|w”¢’;<5)}

*2
= L6B(8 — 1) 0] (€64 () V[

*2
r

B8 = 1)0e Mo (€85 (€) [1+ V(Y. 2) ]
- f’fﬁée—%?‘l(f)qs’;(f) [1+|Ve(Y, 2)]] + %vﬁée‘%?_l(é)qb}(émcp(l/, Z)
= ;B0 GTH €83 (6) — 1 (Vi 2m) +0e M6 (€)) + F (Vg 2m))
=—are MV, — dxe Mgl (€) - %f
+ (—kVy) = Vi) | Vvt ?

+ Daseai )| (~ope) - Loj©)) 19,07

Bod®xe™ Mo ()¢ (€)

*2

— SL5B(5 — e 0204V P
*2

- %W — 1)3e M (€))7 [1+ [Ve(Y, Z)]
0}2

5 Boe N (€)@7(©) [L+ V(Y. 2)P] + %vﬂée*%f?‘l@)cﬁ}(s)m@(x Z)
— ;80T E)OHE) — 1 (Vs 2,m) + 8¢ ™60()) + £ (V(y, 2,m)

> — oo™ MV, — dre Mol () — %ﬁaéﬁe—”%?*l(&w}(s)

C

L BB~ 1)6e ] 72(€)¢ (€)% [1 + [Ve(Y, Z2) ]

C
*2 *
= L 3oe MO () [1+ Ve (Y 2)12] + LoBse Mo ()6 (€) Aw(Y, 2)

— c3Boe MY (E)(€) — de M () f (V(y, z,m) + 05 ¢ (5)) :

where £ = £(t,x,y, 2,8), n =n(t,z,s) and § = 0(t,z,y, 2,s) € (0,1).

Since lim 2P — A, then there exists a constant R; > 0 large enough such
p—+oo ¢r(p)
that

2

G\, %P 1
A, <ﬂ¢f(p)> ey iy T (O < GK(BA), Vp > Ri. (18)

DO =
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By lim 91®) _ A lim ® — A2 and [Vo(Y, Z)| < m., one has

potee 65 0 oA B ) T
e P
lim £ |(-f ) - Y, Z)?) =
p—l>IJIrloo c? l(fi)f(p) o¢(p) (1—|—|Vg0( 7 )|) !

uniformly in (Y, Z) € R%. Thus there exists a constant Ry > 0 large enough such
that

*2
Cr

<¢}(p))2 _ 95(p)

55 () 55 () (1+|Ve(Y, Z)])

< f%K(ﬁA), (19)

c2

for p > Ry and (Y, Z) € R?. The assumption (H1) implies that there exists a
constant K > 0 such that

If (u1) = f'(u2)| < Klup —usl|®, Y ui, ug € [—1,1+1]. (20)

Since |s — h(y,z)| — +oo gives dist ((y, z,5),I') = 400, then by Theorem I and

oo 2~
the fact that h(y,z) < W < h(y,z)+ M, there exists a constant
R3 > 0 large enough such that for all § < *,

’ — / _ S
| (Vg 2m) + 056 07(€) = 1/(0)] < K |V(y,2.m) + 08 65(€)]| < =15 K(BA)
for any (z,y,z,s) € R™ and t > 0 with £(¢,x,y, z,8) > Rs.
Since lim ¢;(p) =1, lim ¢%(p) =0and lim ¢%(p) =0, then there exists
p——00 p——00 p——00
a constant R4 > 0 large enough such that
¢4 (p)

and ‘5¢f(p)‘ <

()]
8 i

Vp<—Ry. (22)

G| 7 )
¢5(p) 16¢}m. M.

Since |s — h(y, z)| — +oo gives dist ((y, 2,5),I') = +oo, then it follows from The-
oo 2 ~
orem I and the fact that h(y,z) < 28402 < p(y 2) + M}w that there

v

exists a Rs > 0 large enough such that for any (z,y,z,s) € R® and ¢t > 0 with
g(ta z,Y,z, S) < _R5a

V(y,z,n(t,x,8)) >1—1". (23)

o .2~
2rme Jo” 7P gt follows from

Let R := Inax{Rl, Rs, R3, Ry, R5} and R := R+
(14) that there exists a constant 51 > 0 such that

_ min _ (_VS (yﬁz7n(t7x78))) > Bl' (24)
—R<&(t,z,y,2,8)<R

Let g := ¢*. Take og > 0 large enough such that

0')\61 — = Yo — 2m*M*'yl —v3 >0, 0> 0. (25)

*2
Note that 5 (1 + |Ve(Y, Z)|?) < 1 for any (Y, Z) € R
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Case 1. For (t,z y,z,s) [0, +00) x R"™3 x R3 with £(t,z,y,2,5) > R. Using
=V >0, =¢:(§) >0, (18)—(21) with § € (0,d9) and o > 09, we have

H[V+] = t — AVt — CV+ - f(VJr)
2 "
f 4 <<¢f(f)> _ ¢f(€)> (1+ (Ve(Y, Z))?)

R CIR 55©) "5
e (i;g) - 1+ (Ve 2)?)
Bt T
= 1 (Vi + 056519) + £0)]
28 Ng0)|[-a+ TR - LR(BN) + (K (M) + K (5N)

>0.

Case 2. For (t,z y,z s) € [0,+00) x R"™3 x R3 with £(t,z,y, 2,8) < —R, using
=Vy >0, =¢4(£) > 0, (22) and (23) with ¢ € (0,00) and o > 09, we have
HVT] =V, = AV — eV = f(VT)
*2 //(5)
>5e—)\t B |:_ 2\ — Ci f

-1 (Vs + 05 (0) |

fa o ra
8 T8 2 }

¢ (€)
¢5(€)

(14 (Ve(V.2)2) + LopZ S Ay 2

>de M (€) [)\ +
>0.
Case 3. For (t,z,y,2,8) € [0,400) x R"™3 x R3 with —R < £(t,2,9,2,5) < R,
using —¢(§) > 0, (24) and (25) with 6 € (0,d) and o > 09, we have
H[VT]:
=V," = AVT =V - f(VT)

—At —Xt 48 C?z —At ¢H(§)
> —ade” MV = dheT ML (8) — 2 Bde qi)f(f)(ZS © 1+ (Ve(Y, 2))?]
¢ #,(9) )
+LuBoe 36 L vy, 2) - de 60 1 (V. zm) + 05 0](6))
. #()]
S At A oy f
e A AR )
— sup [ Ap(v,2)]sup L ]
(Y,Z)eR? EEJR |¢f( )| u€[—u*,141%]

>0e M (—oMNBL — A — Y2 — 2m, M,y1 — 73)
>0.
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By the above argument, we get H[V ] > 0 for (¢, 2,9, 2,s) € [0, +00) x R 3 xR3.
Namely, the function V*(¢,z,y,2,s) is a supersolution to Eq. (4) in [0,+00) X
R™. O

Lemma 3.2. Let k > 0 be defined as in (12). Then for 3 € (5,1) and v € (0,1)
cK(BA)

with v < min{mv 1}, there exist some constants 61 > 0 and o1 > 0 such
that, for any § € (0,01] and o > o1, and any bounded functions v~ (t,z) satisfying

vy = A" —E|Vu |2, zeR™E >0, (26)
the function defined by

Vo (t,x,y,2,8) =V (y, 2,5 — v~ (t,z) + od(1 — e M))

(t,
At¢ﬁ( i (s+v (t x)+05(1—6At)_W>>

is a subsolution to Fq. (4) in (0,400) x R™.

Proof. Let &(t,x,y,2,8) = s + v~ (t,x) + od(1 — e M) — M, n(t,z,s) = s —
v (t,z) +00(1 —e M) and Y = vy, Z = vz. Using (3), (12) and (26), the direct
calculation yields that

HV]
=V AV -V - (V)

== Vyui +00Ae NV +0xe ™ Mep(6) — %ﬂef*%?*(fsxﬁ}(&)v{
- aézée‘”twqb?_l(ﬁ)qb}(f) — Vi Vo™ [P + Vy Ay~
*2 *2
+ L6B(8 = 1)e M0 Vv P 4+ L8876 (€0 Vv
+ Lo o] O (OB — Vi — Ve
*2
+ L8B(8 — De 0] (€86 V(Y. 2)P
*2
+ Lo 07 O04(€) IV, 20 — Lapoe 07 (0 Ap(Y. 2)
*2 *2
= Vi + G888~ Ve 9] 26O + ape )T (€)8(6)
= Vi + 6508 ] T (85 (©) = 1 (Vs 25,m) — 0 M6}(6))
= — 00NV, + dre M (€) — %@owe*%?‘%s)qb}(f)
V(=07 4 A7) = Vi | Vv~ 2
+ Loge Nl (¢) {(—vt + Ag07)6(6) + (Zwmv%’;(f)}
- ‘/yy - sz - va - CVT] - f(V)

*2
+ %55(6 —1)e @i E)@(E)* [1+ [ Ve(Y, 2)1°]



MULTIDIMENSIONAL STABILITY 3733

*2
+ Lb5e 0] (€)87(€) [1 + V(Y 2)]
*2
+ L6B(5 — 1)e Mo €)0 (O Vav P
— Logue Mgl () Ap(Y, Z) + e N (€)0)(€)
— 1 (V. zm) = 8¢76]()) + £ (V. 2,m)
<ooA MV, + oA TN (€) %6062Ae*%§‘1<§)¢}(£>
*2
+ L66(8 — 1)e M40 [1 + IVe(Y, 2)]
*2
+ Lb8e M) €)81(€) [1+ V(Y 2]
— Logue o1 €0} O AR(Y, Z2) + 3B N0 ()6(€)
e M) (Vi 2m) — 00676
where f = g(tvmvya 2, 8)7 n= n(tv‘ra S) and 0 = a(tvxvyv Z, 8) € (03 1)

_ It follows from the boundedness of functions v~ (¢, z) that there exists a constant
M > 0 such that [[v7|[zec((0,400)xrn-3) < M. And thus, Theorem I, (20) and

ma [T r25(r)dr
Wy, 2) < £ < p(y, z) 4 2o Lo ST PO

enough such that for all § < ¢*,

imply that there exists R3 > 0 large

/ - ’ — S 1
1 (V2 = 03e6]()) = £/(0)] < K |V(y,2.m) — 03 0()]| < —1ok(8M),
3 B (27)
for (t,z,y,z,8) € [0,+00) x R"3 x R with £(¢,x,v,2,8) > Rz + 2M. Theorem I
400 2~
and the fact that h(y,z) < W < h(y,z) + M
exists Ry > 0 large enough such that

V(ya 2777) >1- Ly (28)

imply that there

for (t,z,y,2,5) € [0, +00) x R"3 x R3 with £(t,z,y,z,5) < —Ry — 2M.

Let Ry, Ro and Ry be defined as in (18), (19) and (22). Put R := max{R1, Ra, R4,
~ - - S A o0 2 5(r)dr .
Rs;+2M,Rys +2M} and R, := R+ M7 then (14) yields that there
exists a constant 8] > 0 such that

_ min  —Vyly,z,m) > By > 0. (29)
—R.<E(t2,y,5,5) <R.

Take o1 > 0 large enough such that

oA
2
Let 61 := min {L*, 2%1 ,— 1%?/\1\31, gj;f\?ll} for o > 0.
Similar to the proof of Lemma 3.1, we can get H[V~] < 0 on (¢t,z,y,2,8) €
[0, +00) x R"™3 x R3. That is, the function V= (¢, z,y, z, s) is a subsolution of Eq.
(4) on (t,z,y,2,8) €0, 4+00) x R*™3 x R3. O

+ A+ 72+ 2ym M, +v3 <0, foro>o;. (30)
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Lemma 3.3. Assume that the initial value ¥y € C (R™,[0,1]) with n > 3 satisfies

lim sup |190($ay72a5) —V(y,Z,S)| :07

R0 altly 4|z 4s|2R ) (—f(s ~ h(y, z)))

for some B € (%7 1)' Then for any fized T > 0, we have
T -90) —
lim sup ‘ ( Y, 2, S5 0) V(y,z,s)|

° —0.
RS0 gyl a4+ s2R ¢ (%f(s ~ h(y, z)))

Proof. The proof of Lemma 3.3 is similar to that of Lemma 3.8 in [4], so we omit
it here. O

We are now in the position to prove Theorem 1.1.

Proof of Theorem 1.1. We only show the lower estimate, as the upper estimate can
be given in a similar way. We denote 9(¢t, z, y, z, s; ¥o) by 9(¢, x, y, z, s) for simplicity.
Take constants k > 0 as in (12), 0, := min{dy,d;} and ¢ > max{cg, 01,1}, where
00, 0o and o1, d; are defined as in Lemmas 3.1 and 3.2, respectively. For any € > 0,

R . log 2 2 .
set € = mln{ ‘2’51 B m} such that £ € (0,d.) , where A; is defined as

in Remark 2, D := 27wm, f0+oo r2p(r)dr and v defined as in Lemmas 3.1 and 3.2.
Since the initial value vy € C'(R",[0,1]) with n > 3 satisfies

lim sup Wo(w,y,2.5) = Vi 29)| _

R0 ol tfy+el+sI2R ¢ (i (s — h(y, z)))

for some (3 € (%, 1), then the strong maximum principle yields that
0<dIt,x,yzs) <1, V(r,yzs) cR"xR>andt>0.
From Lemma 3.3, it follows that for any fixed T > 0, there exists a constant R > 0
large enough that
HT -V
wp T V)
ey sl 2R g (%(s - h(y,z)))

Thus we can choose a continuous function wp(xz) < 0 satisfying | llim wo(xz) = 0
xr|— 00

é
< =
g

and
en(S
19(T,i)’],y, 2, S) > V(y7 2,8 — wo(’l})) - g(rbf ?(S + ’ZUO(JZ) - h(y7 Z))
for any (,y,z,5) € R"2 x R3, and hence,

é cy VY, VZ
ﬁ(Ta T, Y, z, S) > V(ya 2,8 — ’LUO(CL')) - 791)? <f (8 + wO(:E) - QO(y)))
o c v
for any (x,7,2,5) € R"3 x R from h(y,z) < ¢(y, z) and —¢%(p) > 0, where v is
defined as in Lemma 3.2. Let v~ (¢, ) be the solution of Cauchy problem
vy = A" —k[Vu 2, zeR"3 >0,
v (0,2) = wo(z), x€R"3,
Then it follows from Lemma 2.1 that there exists 77 > 0 large enough such that
—<v (t,x) <0 forallze R™" 3 and ¢t > T).
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Therefore, the comparison principle together with the subsolution constructed in
Lemma 3.2 yields

ﬁ(t7 1’7 y’ Z7 s)

>V( cs—v (t—T,z) 4+ (1 —e 2T
v
(1 _ e—A(t—T

)))
- ge’*(t*%ﬁ? <C(f (s FoT(t = Toa) + (1 — e M)y - w(“y’“’z)))
)))

>V (y,z s—v (t—T,z)+
EAe_)‘(t_T)(b’? (C} (s +ov (t—T,z) — W))
c

o v
fort > T +T; and (x,y,2,s) € R"™3 x R3. Thus
O, 2,y,2,8) = V(y,2,8) _V(y, 2,8 —v (t=T,z) + (1 —e D)) —V(y,2,5)

- > —=
o] (% (s = h(y.2))) o] (% (s = h(y.2)))
X B (<t —(4_ _ pluywz)
B Ee—k(t—T)¢f ( c (S—H) (t =T, 2) v ))
o o] (F(s—h(y.2))
Let v~ (t,x) ;= v~ (t = T,x) — £(1 — e *(=T)). One has that —2¢ < v~ (t,z) < 0 for
reR"Bandt>T+T. v := SUP ‘ ¢f( p) ’ yields that ¢¢(p + p)e™P is increasing

in p € R for each p € R. Thus We have
Vi2s — v (b)) ~V(29) - Valyzs = 0o (ba))
o7 (s = nly,2))) o] (s = hly.2)))
 Vpas—bu(ta) 9 ( (s = Ou™(t,2) — h(y, z)))
0] (-t~ hy2)) 6 (L hiy2)

Vily.%9) o (s =00 (1,2) = h(v.2)))

sup

(3,7,5) CR? ¢ﬁ ( (s — h(y,z))) (t,2,y,2,5)€Q qb? (?(s — h(y,z)))

> — 28A €28,

v (t,x)

> —2¢ sup

where 6 € (0,1) and Q := [T +T71, +00) x R™. From the fact that h(y, z) < ¢(y,2) <
h(y,z) + D for all (y, z) € R?, it follows that

qzﬁf (%f(s—kv (t—T,z)— vaz))) <¢? (%(s—é—h(y,z)—%
o] (L(s = hy.2))) T (s hiy2))
Combining the above argument, we have
19(t,;3,yc,*z,s) —V(y,2:9) > 2842 — gz eME > —% — %
0] (L5 —hy,2)

for t > T+ Ty and (2,y,2,s) € R"™3 x R%. This completes the proof of Theorem
1.1. O

) b
) < eNawene,

> —¢,
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3.2. Proofs of Theorem 1.2 and Proposition 1. In this subsection, we give the
proofs of Theorem 1.2 and Proposition 1 motivated by [14, 4]. We firstly construct
a pair of subsolution and supersolution to Eq. (4). Let v*(¢,z) be the solutions to
the following Cauchy problem:

{vti(t,x) = AgvE(t @) £ 5 [Vovt (8 2)2, 2 e R™3, £>0, (31)

vE(0,2) = vi(z), zeR"3,
where k; is the positive constant defined as in Lemma 2.2.

Lemma 3.4. Let V(y, z,s) be a pyramidal front to Eq. (3) and 9(t, z,y, 2z, s;90) be
the solution to Eq. (4). Assume that the initial value Vo(z,y, 2, ) satisfies

V(y, 2,8 —vy (2)) < Do(2,y,2,8) <V(y, 2,8 —vd (z), VY (2,9,2,5) € R" x R
Then we have

V(y,z,s — v~ (t,x)) <I(t,z,y,2,8) < V(y,z,5s —vT(t,)) (32)
for allt >0 and (z,y,z,8) € R" 3 x R3.

Proof. Let wt(t,z,y,2,8) = V(y,2,8 — vV (t,z)). Now we show that the function
wt(t,z,y, 2, s) satisfies

Hw"] == w — Awt — cw] — f(w) >0,

which yields that w™ (¢, x,y, z, s) is a supersolution to Eq. (4).
Using (3), Lemma 2.2 and (31), the direct calculation yields that

Hlw*] = = o Vo = D000 [uf 0, Ve (0F)2Vas | = Vi = Vs = Vas = Vs = £(V)
= — 0 Vi + AutV — | Voot Vi
:‘vxv |(_k1Vs - Vss) > 0.

Similarly, we can show that the function V(y, z,s — v~ (¢, x)) is a subsolution to Eq.
(4). Therefore it follows from the assumptions on initial value ¥o(z,y, 2, s) and the
comparison principle that the inequalities (32) hold. O

Proof of Theorem 1.2. Denote ¥(t,x,y, z, s;%) by d(t,x,y, 2, s) for simplicity. For
any t > 0 and (7,9, 2,5) € R""2 x R3, it follows from Lemma 3.4 that we have

V(y,z,s —v (t,z)) < It z,y,2,8) < V(y,z,5s —vT(t,2))
with v (z) = 9 (z) and vy (z) = 95 () in (31). Thus for any 3 € (%, 1), we have
I, x,y,2,8) — Vy, z,8) <V(y,z s—vT(t,z)) —V(y,z,8)
o (Ts—hw2)) — of (L —hw2)
Vs (y, 2,8 — Ovt(t,
07 (L5 = h(y,2)

where § € (0,1). Since the smooth functions 93 € L*(R"~%) N L>(R"~?) with
n > 3, then (9) implies that v (¢, z) are bounded uniformly in ¢ > 0 and (z,¥, 2, s) €

7)) vt (t, ),
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R"~2 x R3. From (15), it follows that there exists a positive constant D, depending
on (8 such that

—Vs (y,*z, s — vt (t,z))
o7 (L(s = ny,2))

C Vipms—otay 9 (Tt e) ~ hy.2))

0] (Z(s—bvrto) — h(y,2)) o7 (Lls = hiy.2)

(

B (<
7‘/3 g} ¢f (7
< sup (v, 2:5) sup

w20e% ¢ff (L (s = h(y,2))) Wamemaelorooxm ¢l (s h(y,2)))
<D..

Lemma 2.1 implies that there exists a constant D* > 0 (depending on 3, f, |97 ||
and ||9§||r=) such that

n

19(t7;73i%Z78) - V(y,2,9) <D. swp 9% (to)| < DHEE
07 (L5 — by, )

In a similar way, we can obtain that there exists a constant D~ > 0 (depending on
B, f, 1199 ||zr and |9y ||e=) such that

I, x,y,2,8) — V(y, z,8) > D=2
o] (%(s—h(y.2)))

Let C := max{D~, DT}. We complete the proof. O

Proof of Proposition 1. From Theorem 1.2 and (32), it suffices to prove that the
solutions v* (¢, z) to Eq. (31) with v (z) = 95 (z) satisfy v*(¢,0) < Dot~ and
v~ (¢,0) > D1(1 +t)’nT_3 for some constants D; > 0, ¢ = 1,2. In fact, from the first
inequality of (32), it follows that for ¢ > 0,

ﬁ(ta 0; 07 07 07 190) B V(O7 Oa O) V(O7 07 —U (ta O)) — V(O7 Oa 0)

2
94(0) 67(0)
V5(0,0
> in M v (t,0)
s€l=llv= o0l | ¢ (0)
n—3
>Di(1+t)" =,
where 0 = (0,---,0). From (10), the explicit expression of the solution v~ (¢,z) to
—_——
n—3

(31) is given by

o) =~ tog ([ Tt —m)exp(-Eig ()an).

1
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Since ¥, > 0 and ¥, # 0, then there exist a positive constant ¢ > 0 and a open set
© # () in R"3 such that ¥, > ¢ in ©. Therefore

o) = 2 og (1= [ T =)L expl-Fr0)an )

1

1 -
>— =1 1—-10|(1 - -k inI'(t,z —
>~ 2tog (12160101 - exp(-Fag) min Tt~ )

> 191

1—exp(—k inT'(t,z — ).
kl( exp( 1@))5]%13 (t,x—mn)

And hence, v=(¢,0) > Dy(1 + t)’%3 for ¢ > 0. Similarly, we can prove that
v (t,0) < Dot="2 for t > 0. We complete the proof. O

4. Existence of oscillating solution. In this section, we show Theorem 1.3. That
is, we prove the existence of solution to Eq. (1) which oscillates permanently with
non-decaying amplitude. To prove our main result, we need construct a sequence
of subsolutions and supersolutions pushing the solution forth and back in the s-
direction by combining Lemma 3.4 and the following auxiliary lemma.

Lemma 4.1. [Lemmas 3.1 and 3.2 of [14]] Let ky be defined as in Lemma 2.2 and
vE(t,x) be solutions to the Eq. (31) with n = 4. Suppose that initial values v (x)
are all bounded on R and satisfy

{va'(x) <4, z€R,

v (2) <=4, |zl €[m!+1,(m+1)!—1]
and

vy (2) > -0, wz€R,

vy (2) >0, |zl €[m!+1,(m+1)! 1]

for some constant 6 > 0 and some integer m > 2, respectively. Then there exists a
constant B > 0 which depends on § and k1 such that

sup v (T,z) < -6+ B/ 67<2d§
|| <m!—1 I¢I€[0,2/v/m]U[v/m,+o0)
and
sup v (T,z) >6 — B/ e*C2dC,
|z|<m!—1 I¢€[0,2/ vm]uly/m,+o0)

m(m!)?
-

respectively, where T =
Proof of Theorem 1.3. Let
Q= [m! +1,(m+ 1) —1], Q= [0,m!]U[(m+ 1), +00).

Let {vjlL (t,x)}j=1,2,... be two sequences of solutions to the Cauchy problem (31) with

smooth initial values ’U(:fj (z) satisfying |v3fj ()] <0 inx € R,

-5 Qo 5 Qo
iyl = 450 TSR e = {0 1S B
6, |.’,E‘ S ng 75, |I| S ng+1,
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respectively. By the above definitions of vgfj(az), we can choose a function w €
C*(R) such that

Vg () Sw(z) < vafj(:v) for all j > 1 and z € R.
Let ¥(t,z,y,2,s) be the solution to Eq. (4) with initial value ¥(0,2,y,z2,s) =
V(y,z,s —w(z)). Then we have
V(y)zvs + 5) S V(y,z,s - 'l)j_ (t7 w)) S 79(15,17% Z,S) S V(ya 2,8 — ”L)‘;-F(t, :17)) S V(y,z, s — S)

from the definition of 5(95) and Lemma 3.4. Thus it follows from Lemma 4.1 that
we have

ﬁ(t2j+171’7ya Z, 8) B V(yv Z,8 — 5)

sup —
|2 <(2j+1)!—1 ¢§f <—g(s — h(y, z)))
V(y, 2,5 — v (tajy1, %)) = V(y, 2,5 — 0)
> sup =
o <(2j+1)1—1 ¢’ (%(5 — h(y, z)))
Vs <y72,8—5—|—91B e‘Cde>‘
> [¢]€[0,2/+v/25+1]U[v25+1,+00)
> —  sup

(3.2.5) B9 o7 (D (s~ hly,2))
2
x B / e=C de,
I<|€[0,2/+/27+1]U[\/25+1,4o0)
and
sup W(ta;, a;, y,cz, $)=V(y,z,s+ 5)
alsepi-1 ¢ (%(s _ h(y,z)))
V(y,Z,S 7U+ t2j7x)) - V(y7235+5)

(s = by )

< sup
|| < (25)1-1 o

Vs (y,z,s+5—|—023

eC2d§>‘
< I¢|€[0,2/v/Z)U[VET, +o0)
< sup N
ORBES o7 (L(s - iy, 2)))
2
x B / e ¢ dc,
1¢1€10,2/ VEFU[VET  +00)

where 01, 92 S (0,1), tgj = M and t2j+1 = w By (13), the
above two inequalities yield that

19(7523'+17I73/a 2 5) — V(yv 2,8 — 5)

lim sup sup - =0
J=+0 (y,2,5)€R3 |z|<(25+1)!—1 ¢>§f (Tf(s — h(y, z)))
and
lim sup sup 19(7523‘7%2%275) —V(y,z,s—i—é) = 0.

j—4o0 (y,2,8)ER3 |z|<(25)!—1 d)? (?(s — h(y’ z)))
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Then the conclusion of Theorem 1.3 can be obtained from the above two limits. We
complete the proof. O
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