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Abstract. In this paper, multidimensional stability of pyramidal traveling

fronts are studied to the reaction-diffusion equations with degenerate Fisher-

KPP monostable and combustion nonlinearities. By constructing supersolu-
tions and subsolutions coupled with the comparison principle, we firstly prove

that under any initial perturbation (possibly large) decaying at space infinity,

the three-dimensional pyramidal traveling fronts are asymptotically stable in
weighted L∞ spaces on Rn (n ≥ 4). Secondly, we show that under general

bounded perturbations (even very small), the pyramidal traveling fronts are

not asymptotically stable by constructing a solution which oscillates perma-
nently between two three-dimensional pyramidal traveling fronts on R4.

1. Introduction. In this paper, we investigate the large time behavior of solutions
to the following Cauchy problem:{

ut(t,x) = ∆u(t,x) + f (u(t,x)) , x ∈ Rn, t > 0,

u(0,x) = u0(x), x ∈ Rn,
(1)

where n ∈ N, ut = ∂u
∂t and ∆ is the standard Laplace operator with respect to the

space variables x ∈ Rn. For some constants ς ∈ [0, 1] and ι ∈ [0, 1], the nonlinear
reaction term f ∈ C1+ς([−ι, 1 + ι],R) satisfies

(H1): f(0) = f(1) = 0, f ′(0) ≥ 0, f ′(1) < 0, f(u) ≥ 0 for u ∈ (0, 1).

Such equations arise in various phenomena in population dynamics, combustion
and chemistry ecology (see [1]), where u typically stands for the concentration of a
species or the temperature.

In what follows, we shall study the multidimensional stability of three-dimensional
pyramidal traveling fronts to Eq. (1) in Rn with n ≥ 4. In order to motivate our
study, let us recall some known results in the study of traveling fronts of Eq. (1).
In R, traveling fronts are solutions taking the form

u(t,x) = φf (p), p = x− cf t,
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where cf ≥ 0 is the propagation speed and φf is the wave profile satisfying{
φ′′f (p) + cfφ

′
f (p) + f(φf (p)) = 0, φ′f (p) < 0, ∀ p ∈ R,

φf (+∞) = 0, φf (−∞) = 1.
(2)

Such solution u(t,x) = φf (x − cf t) are called the planar traveling front since its
level set is a hyperplane. Throughout the paper, we further assume that

(H2): There exists φf (p) ∈ C2(R) with speed c∗f > 0 satisfying (2) and

lim
p→+∞

φ′f (p)

φf (p)
= Λ < Λ1 ≤ 0,

where Λ and Λ1 are two real roots of the equation µ2 + c∗fµ+ f ′(0) = 0.

The equation (1) with assumptions (H1)-(H2) is called degenerate Fisher-KPP
monostable and combustion equation. In fact, it follows from [1, 10] that the as-
sumptions (H1)-(H2) hold with c∗f being the minimal wave speed and the unique
wave speed of planar traveling front φf when the nonlinear reaction term f is of
degenerate Fisher-KPP monostable type and combustion type, respectively. See
[2, 19] for more details.

In Rn with n ≥ 2, the function φf (z − cf t) is clearly still the solution of Eq.
(1) with x = (x, y, z) ∈ Rn−2 × R × R. A very interesting question is to consider
the asymptotic stability of one-dimensional traveling front φf (z − cf t) in n (≥ 2)-
dimensional spaces. For this problem, one can refer to [9, 11, 20, 21, 22] and the
references therein to Allen-Cahn equation. It is worth to mention that Matano
et al. [14, 13] investigated the asymptotic stability of one-dimensional traveling
front under any initial spatial decaying perturbations by using sub-super solutions
method combining with the comparison principle. Motivated by [14, 13], Lv and
Wang [12] and Bu and Wang [4] established the multidimensional stability of planar
traveling fronts to Eq. (1) with Fisher-KPP nonlinearity, non-KPP monostable and
combustion nonlinearity, respectively. He and Wu [8] using spectral method studied
the stability of traveling front for degenerate Fisher type equations.

However, due to the influence of curvature and spatial dimension, there are other
types of traveling fronts in Rn with n ≥ 2 which are called non-planar travel-
ing fronts, since their level sets are not hyperplanes anymore. Readers can see
for instance Bu and Wang [2, 3], Hamel et. al. [7, 6], Ninomiya and Taniguchi
[15], Taniguchi [17, 18] and Wang and Bu [19] for the existence and stability of
two-dimensional V-shaped fronts, three-dimensional pyramidal fronts and multidi-
mensional conical shaped fronts. Noting that it is also very interesting to investigate
the multidimensional stability of nonplanar traveling fronts. See Sheng et. al. [16]
and Cheng and Yuan [5] for the multidimensional stability of two-dimensional V-
shaped fronts and three-dimensional pyramidal to Allen-Cahn equation under any
spatially decaying initial perturbations, respectively. Recently, Bu and Wang [4]
also established the stability of two-dimensional V-shaped fronts in Rn with n > 2
to degenerate Fisher-KPP monostbale and combustion equations.

In Rn with n ≥ 3, we write x = (x, y, z, s) with x ∈ Rn−3 and (y, z, s) ∈ R×R×R.
It follows from Wang and Bu [19] that the equation (1) exists a three-dimensional
pyramidal fronts with the form u(t, y, z, s) = V (y, z, ς) under the assumptions (H1)-
(H2) in R3, where ς = s − ct. For simplicity, we still write V (y, z, ς) as V (y, z, s).
Let l ∈ N with l ≥ 3 and {θj}1≤j≤l satisfy

0 ≤ θ1 < θ2 < · · · < θl < 2π and max
1≤j≤l

(θj+1 − θj) < π,
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where θl+1 := θ1 + 2π. Let m∗ =

√
c2−c∗2f
c∗f

and

h(y, z) = max
1≤j≤l

hj(y, z) = max
1≤j≤l

m∗(y cos θj + z sin θj) for (y, z) ∈ R2,

where c > c∗f . Then
{

(y, z, s) ∈ R3
∣∣s = h(y, z)

}
is a 3-dimensional pyramid. Let Γ

denote the set of all edges of a pyramid.
Theorem I (see Wang and Bu [19]) Assume that (H1)-(H2) hold. For any

c > c∗f , Eq. (1) admits a traveling front of pyramidal shape satisfying

Vyy + Vzz + Vss + cVs + f(V ) = 0, (3)

lim
γ→+∞

sup
(y,z,s)∈D(γ)

∣∣∣V (y, z, s)− φf
(
c∗f
c (s− h(y, z))

)∣∣∣
φβf

(
c∗f
c (s− h(y, z))

) = 0, ∀ β ∈
(

Λ1

Λ
, 1

)
,

where D(γ) =
{

(y, z, s) ∈ R3
∣∣dist((y, z, s),Γ) > γ

}
. Moreover, one has ∂

∂sV (y, z, s)

< 0 for (y, z, s) ∈ R3 and

φf

(
c∗f
c

(s− h(y, z))

)
< V (y, z, s) < 1, ∀ (y, z, s) ∈ R3.

It is obvious that the three-dimensional pyramidal front in Theorem I is also
the solution to Eq. (1) in Rn with n > 3. The aim of this paper is to study the
multidimensional stability of three-dimensional pyramidal fronts V (y, z, s) in Rn
with n > 3. Motivated by [14, 4], we mainly use the super-sub solutions method
combining with the comparison principle. However, since we are treating degen-
erate Fisher-KPP monostable and combustion equations in Rn with n ≥ 4, many
modifications and techniques are needed.

In the following, we use the moving coordinate with speed c toward the s di-
rection. Let s̃ = s − ct and u(t, x, y, z, s) = ϑ(t, x, y, z, s̃). For simplicity, we still
denote ϑ(t, x, y, z, s̃) by ϑ(t, x, y, z, s). Then the Eq. (1) can be rewritten as{

ϑt −∆ϑ− cϑs − f(ϑ) = 0, t > 0, (x, y, z, s) ∈ Rn−3 × R3,

ϑ(0, x, y, z, s) = ϑ0(x, y, z, s), (x, y, z, s) ∈ Rn−3 × R3.
(4)

In the sequel, the solution to Eq. (4) is written as ϑ(t, x, y, z, s;ϑ0). The main
results in the present paper are as follows.

Theorem 1.1. Assume that (H1)-(H2) hold. Suppose that the initial value ϑ0(x, y,
z, s) is of class C(Rn, [0, 1]) with n > 3 and satisfies

lim
R→+∞

sup
|x|+|y|+|z|+|s|≥R

|ϑ0(x, y, z, s)− V (y, z, s)|

φβf

(
c∗f
c (s− h(y, z))

) = 0

for some β ∈ (Λ1

Λ , 1). Then the solution ϑ(x, y, z, s;ϑ0) to Eq. (4) satisfies

lim
t→+∞

sup
(x,y,z,s)∈Rn

|ϑ(t, x, y, z, s;ϑ0)− V (y, z, s)|

φβf

(
c∗f
c (s− h(y, z))

) = 0. (5)

The above theorem shows that under the initial perturbations decaying as |x|+
|y|+ |z|+ |s| → +∞, the three-dimensional pyramidal traveling fronts are asymptot-
ically stable in weighted L∞ spaces on Rn (n ≥ 4). In particular, when the initial
perturbations further belong to L1 in a certain sense, the convergence rate for (5)
is algebraic, see the following theorem for more detail.
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Theorem 1.2. Suppose that (H1)-(H2) hold and the initial value ϑ0(x, y, z, s) to
Eq. (4) satisfies

V
(
y, z, s− ϑ−0 (x)

)
≤ ϑ0(x, y, z, s) ≤ V

(
y, z, s− ϑ+

0 (x)
)

(6)

for some smooth functions ϑ−0 , ϑ
+
0 ∈ L1(Rn−3) ∩ L∞(Rn−3) with n > 3. Then for

any β ∈
(

Λ1

Λ , 1
)
, the solution ϑ(t, x, y, z, s;ϑ0) to Eq. (4) satisfies

sup
(x,y,z,s)∈Rn

|ϑ(t, x, y, z, s;ϑ0)− V (y, z, s)|

φβf

(
c∗f
c (s− h(y, z))

) ≤ Ct−
n−3
2 , t > 0, (7)

where C > 0 is a constant depending on β, f, ||ϑ−0 ||L1(Rn−3), ||ϑ−0 ||L∞(Rn−3),

||ϑ+
0 ||L1(Rn−3) and ||ϑ+

0 ||L∞(Rn−3).

If the initial perturbations in Theorem 1.2 keep the sign, then we can obtain that
the convergence rate (7) is optimal in some sense.

Proposition 1. Let ϑ0 be as in (6) and assume that either ϑ−0 ≥ 0, ϑ−0 6≡ 0 or

ϑ+
0 ≤ 0, ϑ+

0 6≡ 0. Then for any β ∈
(

Λ1

Λ , 1
)
, there exist constants D1 > 0 and

D2 > 0 such that

D1(1 + t)−
n−3
2 ≤ sup

(x,y,z,s)∈Rn

|ϑ(t, x, y, z, s;ϑ0)− V (y, z, s)|

φβf

(
c∗f
c (s− h(y, z))

) ≤ D2t
−n−3

2 , t > 0.

Finally, by constructing a solution to Eq. (1) which oscillates permanently be-
tween two pyramidal traveling fronts, we show that the three-dimensional pyramidal
traveling fronts are not asymptotically stable under general bounded perturbations
(even very small) on R4.

Theorem 1.3. Let n = 4. Assume that (H1)-(H2) hold. Then for any β ∈
(

Λ1

Λ , 1
)

and δ̄ > 0, there exists a bounded function ω(x) ∈ C(R) with ||ω||L∞(R) = δ̄ such that
the solution u(t, x, y, z, s) to Eq. (1) with the initial value u0(x, y, z, s) = V (y, z, s−
ω(x)) satisfies

lim
m→+∞

sup
|x|≤m!−1,(y,z,s)∈R3

|u(tm, x, y, z, s)− V (y, z, s− ctm + (−1)mδ̄)|

φβf

(
c∗f
c (s− ctm − h(y, z))

) = 0,

where tm = m(m!)2

4 .

Remark 1. From the perspective of dynamical systems, the above result yields
that in the weighted L∞loc(R4), the ω-limit set of the solution u to Eq. (1) contains
at least two distinct points. And each of them is a translation of the same three-
dimensional pyramidal traveling front.

We organize this paper as follows. In Section 2, we give some preliminaries in-
cluding the properties of the pyramidal traveling fronts, some known results on the
curvature flow problem and a mollified pyramid. In Section 3, we prove that the
three-dimensional pyramidal traveling fronts are asymptotically stable in Rn (n ≥ 4)
by constructing new types of supersolutions and subsolutions coupled with compar-
ison principle. That is, we prove Theorems 1.1-1.2 and Proposition 1. In Section
4, we prove Theorem 1.3 which states the existence of solution to Eq. (1) which
oscillates permanently with non-decaying amplitude.
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2. Preliminaries. In this section, we state some known results which play an
important role in the proving of the main results. Throughout the paper, let

γ1 := sup
p∈R

∣∣∣∣φ′(p)

φ(p)

∣∣∣∣ , γ2 := sup
p∈R

∣∣∣∣φ′′(p)

φ(p)

∣∣∣∣ , γ3 := sup
u∈[−ι,1+ι]

|f ′(u)|

and fix ι∗ ∈
(
0, ι2
)

such that for any u ∈ (1− 2ι∗, 1 + ι∗),

3

2
f ′(1) < f ′(u) <

1

2
f ′(1).

We now recall some known results on the curvature flow problem. See [14] for
more details. The mean curvature flow for a graphical surface w(t, x) on Rn−3 is
given by the following Cauchy problem: wt√

1+|∇w|2
= div

(
∇w√

1+|∇w|2

)
, x ∈ Rn−3, t > 0,

w(0, x) = w0(x), x ∈ Rn−3.
(8)

Assume that on Rn−3, the first and second derivatives of w with respect to x
are bounded, then by direct calculation, there exists a constant k > 0 large enough
such that

0 = wt −
√

1 + |∇w|2 · div

(
∇w√

1 + |∇w|2

)

= wt −∆w +

n−3∑
i,j=1

wxiwxjwxixj
1 + |∇w|2

≥ wt −∆w − k|∇w|2.

It is clear that w(t, x) is a subsolution of the following Cauchy problem:{
v+
t = ∆v+ + k|∇v+|2, x ∈ Rn−3, t > 0,

v+(0, x) = w0(x), x ∈ Rn−3.

Taking the Cole-Hopf transformation w+(t, x) = exp (kv+(t, x)), we have{
w+
t = ∆w+, x ∈ Rn−3, t > 0,

w+(0, x) = exp(kw0(x)), x ∈ Rn−3.

Thus we can obtain that

v+(t, x) =
1

k
log

∣∣∣∣∫
Rn−3

Γ(t, x− η) exp(kw0(η))dη

∣∣∣∣ , (9)

where

Γ(t, η) =
1

(4πt)
n−3
2

exp

(
−|η|

2

4t

)
.

Therefore (9) gives an upper estimate for the solution w(t, x) to the Cauchy problem
(8). Similarly, the lower estimate for w(t, x) can be given by the Cauchy problem{

v−t = ∆v− − k|∇v−|2, x ∈ Rn−3, t > 0,

v−(0, x) = w0(x), x ∈ Rn−3.

That is,

v−(t, x) = −1

k
log

∣∣∣∣∫
Rn−3

Γ(t, x− η) exp(−kw0(η))dη

∣∣∣∣ . (10)
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Let k > 0 be any constant and v±(t, x) be solutions to the following Cauchy
problems {

v±t = ∆v± ± k|∇v±|2, x ∈ Rn−3, t > 0,

v±(0, x) = w0(x), x ∈ Rn−3.

The following lemma gives the large time behavior of v±(t, x), see Lemma 2.4 of
[14].

Lemma 2.1. If the initial value w0 ∈ C(Rn−3) is bounded and satisfies lim
|x|→∞

|w0(x)|

= 0, then the solutions v±(t, x) satisfy

lim
t→∞

sup
x∈Rn−3

|v±(t, x)| = 0,

respectively. If we further assume that w0 ∈ L1(Rn−3), then

sup
x∈Rn−3

|v±(t, x)| ≤ 1

k
|| exp(kw0)− 1||L1(Rn−3) · t−

n−3
2 , t > 0.

Similar to the proof of Lemma 3.2 of [16] and Lemma 2.2 of [14], we can obtain
the following key estimates about the three-dimensional pyramidal fronts and planar
fronts, respectively.

Lemma 2.2. Let V (y, z, s) be a pyramidal front to Eq. (3). Then there exists a

positive constant k̃1 (depending on f) such that

k̃1Vs(y, z, s) ≤ Vss(y, z, s) ≤ −k̃1Vs(y, z, s), ∀ (y, z, s) ∈ R3. (11)

Lemma 2.3. Let φf (p) be a planar front to Eq. (2). There exists a constant k̃2 > 0
depending only on f such that

k̃2φ
′
f (p) ≤ φ′′f (p) ≤ −k̃2φ

′
f (p), ∀ p ∈ R.

Let k̃ = max{k̃1, k̃2}. Thus we have{
k̃Vs(y, z, s) ≤ Vss(y, z, s) ≤ −k̃Vs(y, z, s), ∀ (y, z, s) ∈ R3,

k̃φ′f (p) ≤ φ′′f (p) ≤ −k̃φ′f (p), ∀ p ∈ R.
(12)

The following lemma shows some properties on three-dimensional pyramidal trav-
eling fronts V .

Lemma 2.4. ([19, Lemmas 3.3 and 3.4]) Let V (y, z, s) be a pyramidal front to Eq.
(3). One has

lim
R→+∞

sup
|s−h(y,z)|≥R

Vs(y, z, s)

φβf

(
c∗f
c (s− h(y, z))

) = 0, ∀ β ∈
(

Λ1

Λ
, 1

)
, (13)

and

inf
δ≤V (y,z,s)≤1−δ

Vs(y, z, s) < 0 for any δ ∈ (0, ι∗) . (14)

Remark 2. Obviously, (13) implies that

A1 := sup
(y,z,s)∈R3

Vs(y, z, s)

φβf

(
c∗f
c (s− h(y, z))

) < +∞,

A2 := sup
(y,z,s)∈R3,θ∈[0,1]

φβf

(
c∗f
c (s+ θ − h(y, z))

)
φβf

(
c∗f
c (s− h(y, z))

) < +∞.
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Finally, we show a mollified pyramid, which was constructed by Taniguchi [17].
Let ρ̃(r) ∈ C∞[0,∞) satisfy the following properties:

ρ̃(r) > 0, ρ̃r(r) ≤ 0 for r ≥ 0, ρ̃(r) = 1 if r > 0 is small enough,

ρ̃(r) = e−r if r > 0 is large enough, say r > R0,

2π

∫ ∞
0

rρ̃(r)dr = 1.

Clearly, the function ρ(y, z) := ρ̃
(√

y2 + z2
)

is of class C∞ and
∫
R2 ρ (y, z) dydz =

1. Without loss of generality, suppose R0 > 1. For all non-negative integers i1 and
i2 with 0 ≤ i1 + i2 ≤ 3, we have∣∣Di1

y D
i2
z ρ(y, z)

∣∣ ≤M∗ρ(y, z), ∀ (y, z) ∈ R2,

where M∗ > 0 is a constant. Define a mollified pyramid
{

(y, z, s) ∈ R3 | s = ϕ(y, z)
}

as ϕ(y, z) := ρ ∗ h associated with a pyramid
{

(y, z, s) ∈ R3 | s = h(y, z)
}

. That is,

ϕ(y, z) =

∫
R2

ρ (y − y′, z − z′)h (y′, z′) dy′dz′

=

∫
R2

ρ (y′, z′)h (y − y′, z − z′) dy′dz′. (15)

Let

S(y, z) :=
c√

1 + |∇ϕ(y, z)|2
− c∗f , (16)

where ∇ϕ(y, z) := (ϕy(y, z), ϕz(y, z)) and |∇ϕ(y, z)| =
√
ϕ2
y(y, z) + ϕ2

z(y, z). Then

we have the following two lemmas, see [17, 18].

Lemma 2.5. Let ϕ and S be as in (15) and (16), respectively. For any fixed
integers i1 ≥ 0 and i2 ≥ 0, one has

sup
(y,z)∈R2

∣∣Di1
y D

i2
z ϕ(y, z)

∣∣ < K1 for some constant K1 > 0,

h(y, z) < ϕ(y, z) ≤ h(y, z) + 2πm∗

∫ ∞
0

r2ρ̃(r)dr,

|∇ϕ(y, z)| < m∗, 0 < S(y, z) ≤ c− c∗f , ∀ (y, z) ∈ R2

and

lim
λ→∞

sup
{
S(y, z)

∣∣(y, z) ∈ R2,dist ((y, z),Γ) ≥ λ
}

= 0,

lim
λ→∞

sup
{
ϕ(y, z)− h(y, z)

∣∣(y, z) ∈ R2,dist ((y, z),Γ) ≥ λ
}

= 0.

Lemma 2.6. There exist two positive constants ν1 and ν2 such that

0 < ν1 = inf
(y,z)∈R2

ϕ(y, z)− h(y, z)

S(y, z)
≤ sup

(y,z)∈R2

ϕ(y, z)− h(y, z)

S(y, z)
= ν2 <∞.

In addition, for integers i1 ≥ 0 and i2 ≥ 0 with 2 ≤ i1 + i2 ≤ 3, there exists a
constant K2 > 0 such that

sup
(y,z)∈R2

∣∣∣∣∣Di1
y D

i2
z ϕ(y, z)

S(y, z)

∣∣∣∣∣ < K2
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and

|ϕyy(y, z)| , |ϕzz(y, z)| ≤ m∗M∗, ∀ (y, z) ∈ R2.

3. Stability under spatially decaying initial perturbations. In this section,
we give the proof of asymptotic stability of three-dimensional pyramidal fronts
V (y, z, s) in Rn with n ≥ 4 under perturbation that decay at space infinity by
constructing supersolutions and subsolutions coupled with comparison principle.
That is, we prove Theorems 1.1-1.2 and Proposition 1. In the following, the symbols
∆x and ∇x denote the n − 3-dimensional Laplacian and gradient operators with
respect to x, respectively. Let K(µ) := µ2+c∗fµ+f ′(0). Clearly, we have K(βΛ) < 0

for any β ∈
(

Λ1

Λ , 1
)
. Take λ := min

{
− 1

16K(βΛ),− 1
16f
′(1), 1

}
.

3.1. Proof of Theorem 1.1.

Lemma 3.1. Let k̃ > 0 be defined as in (12). Then for β ∈
(

Λ1

Λ , 1
)

and υ ∈ (0, 1)

with υ < min
{

c
48c∗fΛm∗M∗

K(βΛ), 1
}

, there exist some constants δ0 > 0 and σ0 > 0

such that for any δ ∈ (0, δ0] and σ ≥ σ0, and any function v+(t, x) satisfying

v+
t = ∆xv

+ + k̃|∇xv+|2, x ∈ Rn−3, t > 0, (17)

the function defined by

V +(t, x, y, z, s) =V (y, z, s− v+(t, x)− σδ(1− e−λt))

+ δe−λtφβf

(
c∗f
c

(
s− v+(t, x)− σδ(1− e−λt)− ϕ(υy, υz)

υ

))
is a supersolution to Eq. (4) in (0,+∞)× Rn.

Proof. Let ξ(t, x, y, z, s) :=
c∗f
c

(
s− v+(t, x)− σδ(1− e−λt)− ϕ(υy,υz)

υ

)
, Y := υy,

Z := υz and η(t, x, s) := s− v+(t, x)− σδ(1− e−λt). Using (3), (12) and (17), the
direct calculation implies that

H[V +] :

=V +
t −∆V + − cV +

s − f(V +)

=− Vηv+
t − σδλe−λtVη − δλe−λtφ

β
f (ξ)−

c∗f
c
δβe−λtφβ−1

f (ξ)φ′f (ξ)v+
t

−
c∗f
c
βσδ2λe−2λtφβ−1

f (ξ)φ′f (ξ)− Vηη|∇xv+|2 + Vη∆xv
+

−
c∗2f
c2
δβ(β − 1)e−λtφβ−2

f (ξ)φ′f (ξ)2|∇xv+|2 −
c∗2f
c2
δβe−λtφβ−1

f (ξ)φ′′f (ξ)|∇xv+|2

+
c∗f
c
δβe−λtφβ−1

f (ξ)φ′f (ξ)∆xv
+ − Vyy −

c∗2f
c2
β(β − 1)δe−λtφβ−2

f (ξ)φ′f (ξ)2ϕ2
Y (Y,Z)

−
c∗2f
c2
βδe−λtφβ−1

f (ξ)φ′′f (ξ)ϕ2
Y (Y, Z) +

c∗f
c
υβδe−λtφβ−1

f (ξ)φ′f (ξ)ϕY Y (Y, Z)

− Vzz −
c∗2f
c2
β(β − 1)δe−λtφβ−2

f (ξ)φ′f (ξ)ϕ2
Z(Y, Z)

−
c∗2f
c2
βδe−λtφβ−1

f (ξ)φ′′f (ξ)ϕ2
Z(Y, Z) +

c∗f
c
υβδe−λtφβ−1

f (ξ)φ′f (ξ)ϕZZ(Y,Z)
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− Vss − β(β − 1)δe−λtφβ−2
f (ξ)φ′f (ξ)2

c∗2f
c2
− βδe−λtφβ−1

f (ξ)φ′′f (ξ)
c∗2f
c2

− cVs − c∗fβδe−λtφ
β−1
f (ξ)φ′f (ξ)− f

(
V (y, z, η) + δe−λtφβf (ξ)

)
=− σδλe−λtVη − δλe−λtφβf (ξ)−

c∗f
c
βσδ2λe−2λtφβ−1

f (ξ)φ′f (ξ)

+ Vη
(
−v+

t + ∆xv
+
)
− Vηη|∇xv+|2

+
c∗f
c
δβe−λtφβ−1

f (ξ)

[
(−v+

t + ∆xv
+)φ′f (ξ)−

c∗f
c
|∇xv+|2φ′′f (ξ)

]
−
c∗2f
c2
δβ(β − 1)e−λtφβ−2

f (ξ)φ′f (ξ)2|∇xv+|2

−
c∗2f
c2
β(β − 1)δe−λtφβ−2

f (ξ)φ′f (ξ)2
[
1 + |∇ϕ(Y,Z)|2

]
−
c∗2f
c2
βδe−λtφβ−1

f (ξ)φ′′f (ξ)
[
1 + |∇ϕ(Y,Z)|2

]
+
c∗f
c
υβδe−λtφβ−1

f (ξ)φ′f (ξ)∆ϕ(Y, Z)

− c∗fβδe−λtφ
β−1
f (ξ)φ′f (ξ)− f

(
V (y, z, η) + δe−λtφβf (ξ)

)
+ f (V (y, z, η))

=− σδλe−λtVη − δλe−λtφβf (ξ)−
c∗f
c
βσδ2λe−2λtφβ−1

f (ξ)φ′f (ξ)

+ (−k̃Vη − Vηη)|∇xv+|2

+
c∗f
c
δβe−λtφβ−1

f (ξ)

[(
−k̃φ′f (ξ)−

c∗f
c
φ′′f (ξ)

)
|∇xv+|2

]
−
c∗2f
c2
δβ(β − 1)e−λtφβ−2

f (ξ)φ′f (ξ)2|∇xv+|2

−
c∗2f
c2
β(β − 1)δe−λtφβ−2

f (ξ)φ′f (ξ)2
[
1 + |∇ϕ(Y,Z)|2

]
−
c∗2f
c2
βδe−λtφβ−1

f (ξ)φ′′f (ξ)
[
1 + |∇ϕ(Y,Z)|2

]
+
c∗f
c
υβδe−λtφβ−1

f (ξ)φ′f (ξ)∆ϕ(Y, Z)

− c∗fβδe−λtφ
β−1
f (ξ)φ′f (ξ)− f

(
V (y, z, η) + δe−λtφβf (ξ)

)
+ f (V (y, z, η))

≥− σδλe−λtVη − δλe−λtφβf (ξ)−
c∗f
c
βσδ2λe−2λtφβ−1

f (ξ)φ′f (ξ)

−
c∗2f
c2
β(β − 1)δe−λtφβ−2

f (ξ)φ′f (ξ)2
[
1 + |∇ϕ(Y,Z)|2

]
−
c∗2f
c2
βδe−λtφβ−1

f (ξ)φ′′f (ξ)
[
1 + |∇ϕ(Y,Z)|2

]
+
c∗f
c
υβδe−λtφβ−1

f (ξ)φ′f (ξ)∆ϕ(Y, Z)

− c∗fβδe−λtφ
β−1
f (ξ)φ′f (ξ)− δe−λtφβf (ξ)f ′

(
V (y, z, η) + θδe−λtφβf (ξ)

)
,

where ξ = ξ(t, x, y, z, s), η = η(t, x, s) and θ = θ(t, x, y, z, s) ∈ (0, 1).

Since lim
p→+∞

φ′f (p)

φf (p) = Λ, then there exists a constant R1 > 0 large enough such

that

3

2
Λ ≤

φ′f (p)

φf (p)
≤ 1

2
Λ,

(
β
φ′f (p)

φf (p)

)2

+c∗fβ
φ′f (p)

φf (p)
+f ′(0) <

1

2
K(βΛ), ∀ p > R1. (18)
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By lim
p→+∞

φ′f (p)

φf (p) = Λ, lim
p→+∞

φ′′f (p)

φf (p) = Λ2 and |∇ϕ(Y,Z)| < m∗, one has

lim
p→+∞

c∗2f
c2

[(
φ′f (p)

φf (p)

)2

−
φ′′f (p)

φf (p)

] (
1 + |∇ϕ(Y, Z)|2

)
= 0

uniformly in (Y, Z) ∈ R2. Thus there exists a constant R2 > 0 large enough such
that ∣∣∣∣∣c∗2fc2

[(
φ′f (p)

φf (p)

)2

−
φ′′f (p)

φf (p)

] (
1 + |∇ϕ(Y, Z)|2

)∣∣∣∣∣ < − 1

16
K(βΛ), (19)

for p > R2 and (Y,Z) ∈ R2. The assumption (H1) implies that there exists a
constant K > 0 such that

|f ′(u1)− f ′(u2)| ≤ K |u1 − u2|ς , ∀ u1, u2 ∈ [−ι, 1 + ι]. (20)

Since |s − h(y, z)| → +∞ gives dist ((y, z, s),Γ) → +∞, then by Theorem I and

the fact that h(y, z) < ϕ(υy,υz)
υ ≤ h(y, z) +

2πm∗
∫∞
0
r2ρ̃(r)dr

υ , there exists a constant
R3 > 0 large enough such that for all δ < ι∗,∣∣∣f ′(V (y, z, η) + θδe−λtφβf (ξ)) − f ′(0)

∣∣∣ ≤ K
∣∣∣V (y, z, η) + θδe−λtφβf (ξ)

∣∣∣ς < − 1

16
K(βΛ)

(21)

for any (x, y, z, s) ∈ Rn and t ≥ 0 with ξ(t, x, y, z, s) > R3.
Since lim

p→−∞
φf (p) = 1, lim

p→−∞
φ′f (p) = 0 and lim

p→−∞
φ′′f (p) = 0, then there exists

a constant R4 > 0 large enough such that∣∣∣∣φ′f (p)

φf (p)

∣∣∣∣ < c|f ′(1)|
16c∗fm∗M∗

and

∣∣∣∣βφ′′f (p)

φf (p)

∣∣∣∣ < |f ′(1)|
8

, ∀ p < −R4. (22)

Since |s − h(y, z)| → +∞ gives dist ((y, z, s),Γ) → +∞, then it follows from The-

orem I and the fact that h(y, z) < ϕ(υy,υz)
υ ≤ h(y, z) +

2πm∗
∫∞
0
r2ρ̃(r)dr

υ that there
exists a R5 > 0 large enough such that for any (x, y, z, s) ∈ Rn and t > 0 with
ξ(t, x, y, z, s) < −R5,

V (y, z, η(t, x, s)) > 1− ι∗. (23)

Let R := max{R1, R2, R3, R4, R5} and R̄ := R+
2πm∗

∫∞
0
r2ρ̃(r)dr

υ . It follows from
(14) that there exists a constant β1 > 0 such that

min
−R̄≤ξ(t,x,y,z,s)≤R̄

(−Vs (y, z, η(t, x, s))) > β1. (24)

Let δ0 := ι∗. Take σ0 > 0 large enough such that

σλβ1 − λ− γ2 − 2m∗M∗γ1 − γ3 > 0, σ ≥ σ0. (25)

Note that
c∗2f
c2

(
1 + |∇ϕ(Y,Z)|2

)
≤ 1 for any (Y, Z) ∈ R2.
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Case 1. For (t, x, y, z, s) ∈ [0,+∞) × Rn−3 × R3 with ξ(t, x, y, z, s) > R. Using
−Vη > 0, −φ′f (ξ) > 0, (18)–(21) with δ ∈ (0, δ0) and σ ≥ σ0, we have

H[V +] :=V +
t −∆V + − cV +

s − f(V +)

≥δe−λtφβf (ξ)

[
− λ+

c∗2f
c2
β

((
φ′f (ξ)

φf (ξ)

)2

−
φ′′f (ξ)

φf (ξ)

)(
1 + (∇ϕ(Y, Z))2

)
+ β2

(
φ′f (ξ)

φf (ξ)

)2
[

1−
c∗2f
c2
(
1 + (∇ϕ(Y,Z))2

)]

− β2

(
φ′f (ξ)

φf (ξ)

)2

− c∗fβ
φ′f (ξ)

φf (ξ)
− f ′(0) +

c∗f
c
υβ

φ′f (ξ)

φf (ξ)
∆ϕ(Y, Z)

− f ′
(
V (y, z, η) + θδe−λtφβf (ξ)

)
+ f ′(0)

]
≥δe−λtφβf (ξ)

[
−λ+

K(βΛ)

16
− 1

2
K(βΛ) +

1

16
K(βΛ) +

1

16
K(βΛ)

]
≥0.

Case 2. For (t, x, y, z, s) ∈ [0,+∞) × Rn−3 × R3 with ξ(t, x, y, z, s) < −R, using
−Vη > 0, −φ′f (ξ) > 0, (22) and (23) with δ ∈ (0, δ0) and σ ≥ σ0, we have

H[V +] :=V +
t −∆V + − cV +

s − f(V +)

≥δe−λtφβf (ξ)

[
− λ−

c∗2f
c2
β
φ′′f (ξ)

φf (ξ)

(
1 + (∇ϕ(Y, Z))2

)
+
c∗f
c
υβ

φ′f (ξ)

φf (ξ)
∆ϕ(Y, Z)

− f ′
(
V (y, z, η) + θδe−λtφβf (ξ)

)]
≥δe−λtφβf (ξ)

[
−λ+

f ′(1)

8
+
f ′(1)

8
− f ′(1)

2

]
≥0.

Case 3. For (t, x, y, z, s) ∈ [0,+∞) × Rn−3 × R3 with −R ≤ ξ(t, x, y, z, s) ≤ R,
using −φ′f (ξ) > 0, (24) and (25) with δ ∈ (0, δ0) and σ ≥ σ0, we have

H[V +] :

=V +
t −∆V + − cV +

s − f(V +)

≥− σδλe−λtVη − δλe−λtφβf (ξ)−
c∗2f
c2
βδe−λtφβf (ξ)

φ′′f (ξ)

φf (ξ)

[
1 + (∇ϕ(Y,Z))2

]
+
c∗f
c
υβδe−λtφβf (ξ)

φ′f (ξ)

φf (ξ)
∆ϕ(Y,Z)− δe−λtφβf (ξ)f ′

(
V (y, z, η) + θδe−λtφβf (ξ)

)
≥δe−λt

[
σλβ1 − λ− sup

ξ∈R

|φ′′f (ξ)|
|φf (ξ)|

− sup
(Y,Z)∈R2

|∆ϕ(Y,Z)| sup
ξ∈R

|φ′f (ξ)|
|φf (ξ)|

− sup
u∈[−ι∗,1+ι∗]

|f ′(u)|
]

≥δe−λt (−σλβ1 − λ− γ2 − 2m∗M∗γ1 − γ3)

≥0.
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By the above argument, we getH[V +] ≥ 0 for (t, x, y, z, s) ∈ [0,+∞)×Rn−3×R3.
Namely, the function V +(t, x, y, z, s) is a supersolution to Eq. (4) in [0,+∞) ×
Rn.

Lemma 3.2. Let k̃ > 0 be defined as in (12). Then for β ∈
(

Λ1

Λ , 1
)

and υ ∈ (0, 1)

with υ < min
{

cK(βΛ)
48Λc∗fm∗M∗

, 1
}

, there exist some constants δ1 > 0 and σ1 > 0 such

that, for any δ ∈ (0, δ1] and σ ≥ σ1, and any bounded functions v−(t, x) satisfying

v−t = ∆xv
− − k̃|∇xv−|2, x ∈ Rn−3, t > 0, (26)

the function defined by

V −(t, x, y, z, s) =V (y, z, s− v−(t, x) + σδ(1− e−λt))

− δe−λtφβf

(
c∗f
c

(
s+ v−(t, x) + σδ(1− e−λt)− ϕ(υy, υz)

υ

))
is a subsolution to Eq. (4) in (0,+∞)× Rn.

Proof. Let ξ(t, x, y, z, s) = s + v−(t, x) + σδ(1 − e−λt) − ϕ(υy,υz)
υ , η(t, x, s) = s −

v−(t, x) + σδ(1 − e−λt) and Y = vy, Z = vz. Using (3), (12) and (26), the direct
calculation yields that

H[V −]

=V −t −∆V − − cV −s − f(V −)

=− Vηv−t + σδλe−λtVη + δλe−λtφβf (ξ)−
c∗f
c
δβe−λtφβ−1

f (ξ)φ′f (ξ)v−t

− σδ2
c∗f
c
e−2λtλβφβ−1

f (ξ)φ′f (ξ)− Vηη|∇xv−|2 + Vη∆xv
−

+
c∗2f
c2
δβ(β − 1)e−λtφβ−2

f (ξ)φ′f (ξ)2|∇xv−|2 +
c∗2f
c2
δβe−λtφβ−1

f (ξ)φ′′f (ξ)|∇xv−|2

+
c∗f
c
δβe−λtφβ−1

f (ξ)φ′f (ξ)∆xv
− − Vyy − Vzz

+
c∗2f
c2
δβ(β − 1)e−λtφβ−2

f (ξ)φ′f (ξ)2 |∇ϕ(Y,Z)|2

+
c∗2f
c2
δβe−λtφβ−1

f (ξ)φ′′f (ξ) |∇ϕ(Y,Z)|2 −
c∗f
c
δβυe−λtφβ−1

f (ξ)φ′f (ξ)∆ϕ(Y,Z)

− Vηη +
c∗2f
c2
δβ(β − 1)e−λtφβ−2

f (ξ)φ′f (ξ)2 +
c∗2f
c2
δβe−λtφβ−1

f (ξ)φ′′f (ξ)

− cVη + c∗fδβe
−λtφβ−1

f (ξ)φ′f (ξ)− f
(
V (y, z, s, η)− δe−λtφβf (ξ)

)
=− σδλe−λtVη + δλe−λtφβf (ξ)−

c∗f
c
βσδ2λe−2λtφβ−1

f (ξ)φ′f (ξ)

+ Vη
(
−v−t + ∆xv

−)− Vηη|∇xv−|2
+
c∗f
c
δβe−λtφβ−1

f (ξ)

[
(−v−t + ∆xv

−)φ′f (ξ) +
c∗f
c
|∇xv−|2φ′′f (ξ)

]
− Vyy − Vzz − Vηη − cVη − f(V )

+
c∗2f
c2
δβ(β − 1)e−λtφβ−2

f (ξ)φ′f (ξ)2
[
1 + |∇ϕ(Y,Z)|2

]
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+
c∗2f
c2
δβe−λtφβ−1

f (ξ)φ′′f (ξ)
[
1 + |∇ϕ(Y,Z)|2

]
+
c∗2f
c2
δβ(β − 1)e−λtφβ−2

f (ξ)φ′f (ξ)2|∇xv−|2

−
c∗f
c
δβυe−λtφβ−1

f (ξ)φ′f (ξ)∆ϕ(Y, Z) + c∗fδβe
−λtφβ−1

f (ξ)φ′f (ξ)

− f
(
V (y, z, η)− δe−λtφβf (ξ)

)
+ f (V (y, z, η))

≤σδλe−λtVη + δλe−λtφβf (ξ)−
c∗f
c
βσδ2λe−2λtφβ−1

f (ξ)φ′f (ξ)

+
c∗2f
c2
δβ(β − 1)e−λtφβ−2

f (ξ)φ′f (ξ)2
[
1 + |∇ϕ(Y,Z)|2

]
+
c∗2f
c2
δβe−λtφβ−1

f (ξ)φ′′f (ξ)
[
1 + |∇ϕ(Y,Z)|2

]
−
c∗f
c
δβυe−λtφβ−1

f (ξ)φ′f (ξ)∆ϕ(Y, Z) + c∗fδβe
−λtφβ−1

f (ξ)φ′f (ξ)

+ δe−λtφβf (ξ)f ′
(
V (y, z, η)− θδe−λtφβf (ξ)

)
,

where ξ = ξ(t, x, y, z, s), η = η(t, x, s) and θ = θ(t, x, y, z, s) ∈ (0, 1).
It follows from the boundedness of functions v−(t, x) that there exists a constant

M̄ > 0 such that ||v−||L∞((0,+∞)×Rn−3) ≤ M̄ . And thus, Theorem I, (20) and

h(y, z) ≤ ϕ(υy,υz)
υ ≤ h(y, z) +

2πm∗
∫ +∞
0

r2ρ̃(r)dr

υ imply that there exists R̃3 > 0 large
enough such that for all δ < ι∗,∣∣∣f ′ (V (y, z, η) − θδe−λtφβf (ξ)

)
− f ′(0)

∣∣∣ ≤ K
∣∣∣V (y, z, η) − θδe−λtφβf (ξ)

∣∣∣ς < − 1

16
k(βΛ),

(27)

for (t, x, y, z, s) ∈ [0,+∞) × Rn−3 × R3 with ξ(t, x, y, z, s) > R̃3 + 2M̄ . Theorem I

and the fact that h(y, z) ≤ ϕ(υy,υz)
υ ≤ h(y, z) +

2πm∗
∫ +∞
0

r2ρ̃(r)dr

υ imply that there

exists R̃4 > 0 large enough such that

V (y, z, η) > 1− ι, (28)

for (t, x, y, z, s) ∈ [0,+∞)× Rn−3 × R3 with ξ(t, x, y, z, s) < −R̃4 − 2M̄ .

Let R1, R2 and R4 be defined as in (18), (19) and (22). Put R̂ := max{R1, R2, R4,

R̃3 + 2M̄, R̃4 + 2M̄} and R̂∗ := R̂ +
2πm∗

∫ +∞
0

r2ρ̃(r)dr

υ , then (14) yields that there
exists a constant β′1 > 0 such that

min
−R̂∗≤ξ(t,x,y,z,s)≤R̂∗

−Vη(y, z, η) ≥ β′1 > 0. (29)

Take σ1 > 0 large enough such that

− σλβ′1
2

+ λ+ γ2 + 2γ1m∗M∗ + γ3 < 0, for σ ≥ σ1. (30)

Let δ1 := min
{
ι∗,

β′1
2γ1

,− k(βΛ)
16σλγ1

, |f
′(1)|

8σλγ1

}
for σ ≥ σ1.

Similar to the proof of Lemma 3.1, we can get H[V −] ≤ 0 on (t, x, y, z, s) ∈
[0,+∞)× Rn−3 × R3. That is, the function V −(t, x, y, z, s) is a subsolution of Eq.
(4) on (t, x, y, z, s) ∈ [0,+∞)× Rn−3 × R3.
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Lemma 3.3. Assume that the initial value ϑ0 ∈ C (Rn, [0, 1]) with n > 3 satisfies

lim
R→+∞

sup
|x|+|y|+|z|+|s|≥R

|ϑ0(x, y, z, s)− V (y, z, s)|

φβf

(
c∗f
c (s− h(y, z))

) = 0,

for some β ∈
(

Λ1

Λ , 1
)
. Then for any fixed T > 0, we have

lim
R→+∞

sup
|x|+|y|+|z|+|s|≥R

|ϑ(T, x, y, z, s;ϑ0)− V (y, z, s)|

φβf

(
c∗f
c (s− h(y, z))

) = 0.

Proof. The proof of Lemma 3.3 is similar to that of Lemma 3.8 in [4], so we omit
it here.

We are now in the position to prove Theorem 1.1.

Proof of Theorem 1.1. We only show the lower estimate, as the upper estimate can
be given in a similar way. We denote ϑ(t, x, y, z, s;ϑ0) by ϑ(t, x, y, z, s) for simplicity.

Take constants k̃ > 0 as in (12), δ∗ := min{δ0, δ1} and σ ≥ max{σ0, σ1, 1}, where
σ0, δ0 and σ1, δ1 are defined as in Lemmas 3.1 and 3.2, respectively. For any ε > 0,

set ε̂ = min
{

log 2
2γ1

, ε
8A1

, ε
2
√

2eγ1D/2υ

}
such that ε̂

σ ∈ (0, δ∗) , where A1 is defined as

in Remark 2, D := 2πm∗
∫ +∞

0
r2ρ̃(r)dr and υ defined as in Lemmas 3.1 and 3.2.

Since the initial value v0 ∈ C(Rn, [0, 1]) with n > 3 satisfies

lim
R→+∞

sup
|x|+|y|+|z|+|s|≥R

|ϑ0(x, y, z, s)− V (y, z, s)|

φβf

(
c∗f
c (s− h(y, z))

) = 0

for some β ∈
(

Λ1

Λ , 1
)
, then the strong maximum principle yields that

0 < ϑ(t, x, y, z, s) < 1, ∀ (x, y, z, s) ∈ Rn−3 × R3 and t > 0.

From Lemma 3.3, it follows that for any fixed T > 0, there exists a constant R1 > 0
large enough that

sup
|x|+|y|+|z|+|s|≥R1

|ϑ(T, x, y, z, s)− V (y, z, s)|

φβf

(
c∗f
c (s− h(y, z))

) ≤ ε̂

σ
.

Thus we can choose a continuous function w0(x) ≤ 0 satisfying lim
|x|→∞

w0(x) = 0

and

ϑ(T, x, y, z, s) ≥ V (y, z, s− w0(x))− ε̂

σ
φβf

(
c∗f
c

(s+ w0(x)− h(y, z))

)
for any (x, y, z, s) ∈ Rn−3 × R3, and hence,

ϑ(T, x, y, z, s) ≥ V (y, z, s− w0(x))− ε̂

σ
φβf

(
c∗f
c

(
s+ w0(x)− ϕ(υy, υz)

υ

))
for any (x, y, z, s) ∈ Rn−3 × R3 from h(y, z) ≤ ϕ(y, z) and −φ′f (p) > 0, where υ is

defined as in Lemma 3.2. Let v−(t, x) be the solution of Cauchy problem{
v−t = ∆xv

− − k̃|∇v−|2, x ∈ Rn−3, t > 0,

v−(0, x) = w0(x), x ∈ Rn−3.

Then it follows from Lemma 2.1 that there exists T1 > 0 large enough such that

−ε̂ ≤ v−(t, x) ≤ 0 for all x ∈ Rn−3 and t ≥ T1.



MULTIDIMENSIONAL STABILITY 3735

Therefore, the comparison principle together with the subsolution constructed in
Lemma 3.2 yields

ϑ(t, x, y, z, s)

≥V
(
y, z, s− v−(t− T, x) + ε̂(1− e−λ(t−T ))

)
− ε̂

σ
e−λ(t−T )φβf

(
c∗f
c

(
s+ v−(t− T, x) + ε̂(1− e−λ(t−T ))− ϕ(υy, υz)

υ

))
≥V

(
y, z, s− v−(t− T, x) + ε̂(1− e−λ(t−T ))

)
− ε̂

σ
e−λ(t−T )φβf

(
c∗f
c

(
s+ v−(t− T, x)− ϕ(υy, υz)

υ

))
for t ≥ T + T1 and (x, y, z, s) ∈ Rn−3 × R3. Thus

ϑ(t, x, y, z, s)− V (y, z, s)

φβf

(
c∗f
c (s− h(y, z))

) ≥V (y, z, s− v−(t− T, x) + ε̂(1− e−λ(t−T )))− V (y, z, s)

φβf

(
c∗f
c (s− h(y, z))

)
− ε̂

σ
e−λ(t−T )

φβf

(
c∗f
c

(
s+ v−(t− T, x)− ϕ(υy,υz)

υ

))
φβf

(
c∗f
c (s− h(y, z))

) .

Let v−(t, x) := v−(t− T, x)− ε̂(1− e−λ(t−T )). One has that −2ε̂ ≤ v−(t, x) ≤ 0 for

x ∈ Rn−3 and t ≥ T + T1. γ1 := sup
p∈R

∣∣∣φ′f (p)

φf (p)

∣∣∣ yields that φf (p + p̃)eγ1p is increasing

in p̃ ∈ R for each p ∈ R. Thus we have

V (y, z, s− v−(t, x))− V (y, z, s)

φβf

(
c∗f
c (s− h(y, z))

) =
−Vs(y, z, s− θv−(t, x))

φβf

(
c∗f
c (s− h(y, z))

) v−(t, x)

=
−Vs(y, z, s− θv−(t, x))

φβf

(
c∗f
c (s− θv−(t, x)− h(y, z))

) φβf
(
c∗f
c (s− θv−(t, x)− h(y, z))

)
φβf

(
c∗f
c (s− h(y, z))

) v−(t, x)

≥− 2ε̂ sup
(y,z,s)∈R3

−Vs(y, z, s)

φβf

(
c∗f
c (s− h(y, z))

) sup
(t,x,y,z,s)∈Ω

φβf

(
c∗f
c (s− θv−(t, x)− h(y, z))

)
φβf

(
c∗f
c (s− h(y, z))

)
≥− 2ε̂A1e

2γ1ε̂,

where θ ∈ (0, 1) and Ω := [T+T1,+∞)×Rn. From the fact that h(y, z) ≤ ϕ(y, z) ≤
h(y, z) +D for all (y, z) ∈ R2, it follows that

φβf

(
c∗f
c (s+ v−(t− T, x)− ϕ(υy,υz)

υ )
)

φβf

(
c∗f
c (s− h(y, z))

) ≤
φβf

(
c∗f
c (s− ε̂− h(y, z)− D

υ )
)

φβf

(
c∗f
c (s− h(y, z))

) ≤ eγ1 D2υ eγ1ε̂.

Combining the above argument, we have

ϑ(t, x, y, z, s)− V (y, z, s)

φβf

(
c∗f
c (s− h(y, z))

) ≥ −2ε̂A1e
2γ1ε̂ − ε̂eγ1 D2υ eγ1ε̂ > −ε

2
− ε

2
> −ε,

for t ≥ T + T1 and (x, y, z, s) ∈ Rn−3 × R3. This completes the proof of Theorem
1.1.
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3.2. Proofs of Theorem 1.2 and Proposition 1. In this subsection, we give the
proofs of Theorem 1.2 and Proposition 1 motivated by [14, 4]. We firstly construct
a pair of subsolution and supersolution to Eq. (4). Let v±(t, x) be the solutions to
the following Cauchy problem:{

v±t (t, x) = ∆xv
±(t, x)± k̃1|∇xv±(t, x)|2, x ∈ Rn−3, t > 0,

v±(0, x) = v±0 (x), x ∈ Rn−3,
(31)

where k̃1 is the positive constant defined as in Lemma 2.2.

Lemma 3.4. Let V (y, z, s) be a pyramidal front to Eq. (3) and ϑ(t, x, y, z, s;ϑ0) be
the solution to Eq. (4). Assume that the initial value ϑ0(x, y, z, s) satisfies

V (y, z, s− v−0 (x)) ≤ ϑ0(x, y, z, s) ≤ V (y, z, s− v+
0 (x)), ∀ (x, y, z, s) ∈ Rn−3 × R3.

Then we have

V (y, z, s− v−(t, x)) ≤ ϑ(t, x, y, z, s) ≤ V (y, z, s− v+(t, x)) (32)

for all t ≥ 0 and (x, y, z, s) ∈ Rn−3 × R3.

Proof. Let w+(t, x, y, z, s) = V (y, z, s − v+(t, x)). Now we show that the function
w+(t, x, y, z, s) satisfies

H[w+] := w+
t −∆w+ − cw+

s − f(w+) ≥ 0,

which yields that w+(t, x, y, z, s) is a supersolution to Eq. (4).
Using (3), Lemma 2.2 and (31), the direct calculation yields that

H[w+] =− v+
t Vs − Σn−3

j=1

[
−v+

xjxjVs + (v+
xj )

2Vss

]
− Vyy − Vzz − Vss − cVs − f(V )

=− v+
t Vs + ∆xv

+Vs − |∇xv+|Vss
=|∇xv+|(−k̃1Vs − Vss) ≥ 0.

Similarly, we can show that the function V (y, z, s−v−(t, x)) is a subsolution to Eq.
(4). Therefore it follows from the assumptions on initial value ϑ0(x, y, z, s) and the
comparison principle that the inequalities (32) hold.

Proof of Theorem 1.2. Denote ϑ(t, x, y, z, s;ϑ0) by ϑ(t, x, y, z, s) for simplicity. For
any t ≥ 0 and (x, y, z, s) ∈ Rn−2 × R3, it follows from Lemma 3.4 that we have

V (y, z, s− v−(t, x)) ≤ ϑ(t, x, y, z, s) ≤ V (y, z, s− v+(t, x))

with v+
0 (x) = ϑ+

0 (x) and v−0 (x) = ϑ−0 (x) in (31). Thus for any β ∈
(

Λ1

Λ , 1
)
, we have

ϑ(t, x, y, z, s)− V (y, z, s)

φβf

(
c∗f
c (s− h(y, z))

) ≤V (y, z, s− v+(t, x))− V (y, z, s)

φβf

(
c∗f
c (s− h(y, z))

)
=
−Vs(y, z, s− θv+(t, x))

φβf

(
c∗f
c (s− h(y, z))

) v+(t, x),

where θ ∈ (0, 1). Since the smooth functions ϑ+
0 ∈ L1(Rn−3) ∩ L∞(Rn−3) with

n > 3, then (9) implies that v+(t, x) are bounded uniformly in t ≥ 0 and (x, y, z, s) ∈
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Rn−2×R3. From (15), it follows that there exists a positive constant D∗ depending
on β such that

−Vs(y, z, s− θv+(t, x))

φβf

(
c∗
f

c
(s− h(y, z))

)
=

−Vs(y, z, s− θv+(t, x))

φβf

(
c∗
f

c
(s− θv+(t, x) − h(y, z))

) φβf
(
c∗f
c

(s− θv+(t, x) − h(y, z))
)

φβf

(
c∗
f

c
(s− h(y, z))

)
≤ sup

(y,z,s)∈R3

−Vs(y, z, s)

φβf

(
c∗
f

c
(s− h(y, z))

) sup
(t,x,y,z,s)∈[0,+∞)×Rn

φβf

(
c∗f
c

(s− θv+(t, x) − h(y, z))
)

φβf

(
c∗
f

c
(s− h(y, z))

)
≤D∗.

Lemma 2.1 implies that there exists a constant D+ > 0 (depending on β, f , ||ϑ+
0 ||L1

and ||ϑ+
0 ||L∞) such that

ϑ(t, x, y, z, s)− V (y, z, s)

φβf

(
c∗f
c (s− h(y, z))

) ≤D∗ sup
x∈Rn−3

|ϑ+
0 (t, x)| ≤ D+t−

n−3
2 .

In a similar way, we can obtain that there exists a constant D− > 0 (depending on
β, f , ||ϑ−0 ||L1 and ||ϑ−0 ||L∞) such that

ϑ(t, x, y, z, s)− V (y, z, s)

φβf

(
c∗f
c (s− h(y, z))

) ≥ D−t−
n−3
2 .

Let C := max{D−, D+}. We complete the proof.

Proof of Proposition 1. From Theorem 1.2 and (32), it suffices to prove that the

solutions v±(t, x) to Eq. (31) with v±0 (x) = ϑ±0 (x) satisfy v+(t, 0) ≤ D2t
−n−3

2 and

v−(t, 0) ≥ D1(1 + t)−
n−3
2 for some constants Di > 0, i = 1, 2. In fact, from the first

inequality of (32), it follows that for t ≥ 0,

ϑ(t,0, 0, 0, 0;ϑ0)− V (0, 0, 0)

φβf (0)
≥V (0, 0,−v−(t, 0))− V (0, 0, 0)

φβf (0)

≥ min
s∈[−||v−||L∞ ,0]

∣∣∣∣∣Vs(0, 0, s)φβf (0)
· v−(t, 0)

∣∣∣∣∣
≥D1(1 + t)−

n−3
2 ,

where 0 = (0, · · · , 0)︸ ︷︷ ︸
n−3

. From (10), the explicit expression of the solution v−(t, x) to

(31) is given by

v−(t, x) = − 1

k̃1

log

(∫
Rn−3

Γ(t, x− η) exp(−k̃1ϑ
−
0 (η))dη

)
.
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Since ϑ−0 ≥ 0 and ϑ−0 6≡ 0, then there exist a positive constant % > 0 and a open set
Θ 6= ∅ in Rn−3 such that ϑ−0 ≥ % in Θ. Therefore

v−(t, x) ≥− 1

k̃1

log

(
1−

∫
Θ

Γ(t, x− η)(1− exp(−k̃1%))dη

)
≥− 1

k̃1

log

(
1− |Θ|(1− exp(−k̃1%)) min

η∈Θ
Γ(t, x− η)

)
≥|Θ|
k̃1

(1− exp(−k̃1%)) min
η∈Θ

Γ(t, x− η).

And hence, v−(t, 0) ≥ D1(1 + t)−
n−3
2 for t ≥ 0. Similarly, we can prove that

v+(t, 0) ≤ D2t
−n−3

2 for t ≥ 0. We complete the proof.

4. Existence of oscillating solution. In this section, we show Theorem 1.3. That
is, we prove the existence of solution to Eq. (1) which oscillates permanently with
non-decaying amplitude. To prove our main result, we need construct a sequence
of subsolutions and supersolutions pushing the solution forth and back in the s-
direction by combining Lemma 3.4 and the following auxiliary lemma.

Lemma 4.1. [Lemmas 3.1 and 3.2 of [14]] Let k̃1 be defined as in Lemma 2.2 and
v±(t, x) be solutions to the Eq. (31) with n = 4. Suppose that initial values v±0 (x)
are all bounded on R and satisfy{

v+
0 (x) ≤ δ̄, x ∈ R,
v+

0 (x) ≤ −δ̄, |x| ∈ [m! + 1, (m+ 1)!− 1]

and {
v−0 (x) ≥ −δ̄, x ∈ R,
v−0 (x) ≥ δ̄, |x| ∈ [m! + 1, (m+ 1)!− 1]

for some constant δ̄ > 0 and some integer m ≥ 2, respectively. Then there exists a
constant B > 0 which depends on δ̄ and k̃1 such that

sup
|x|≤m!−1

v+(T, x) ≤ −δ̄ +B

∫
|ζ|∈[0,2/

√
m]∪[

√
m,+∞)

e−ζ
2

dζ

and

sup
|x|≤m!−1

v−(T, x) ≥ δ̄ −B
∫
|ζ|∈[0,2/

√
m]∪[

√
m,+∞)

e−ζ
2

dζ,

respectively, where T = m(m!)2

4 .

Proof of Theorem 1.3. Let

Ωm := [m! + 1, (m+ 1)!− 1], Ω̂m := [0,m!] ∪ [(m+ 1)!,+∞).

Let {v±j (t, x)}j=1,2,··· be two sequences of solutions to the Cauchy problem (31) with

smooth initial values v±0,j(x) satisfying |v±0,j(x)| ≤ δ̄ in x ∈ R,

v+
0,j(x) =

{
−δ̄, |x| ∈ Ω2j ,

δ̄, |x| ∈ Ω̂2j

and v−0,j(x) =

{
δ̄, |x| ∈ Ω2j+1,

−δ̄, |x| ∈ Ω̂2j+1,
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respectively. By the above definitions of v±0,j(x), we can choose a function ω ∈
C∞(R) such that

v−0,j(x) ≤ ω(x) ≤ v+
0,j(x) for all j ≥ 1 and x ∈ R.

Let ϑ(t, x, y, z, s) be the solution to Eq. (4) with initial value ϑ(0, x, y, z, s) =
V (y, z, s− ω(x)). Then we have

V (y, z, s+ δ̄) ≤ V (y, z, s− v−j (t, x)) ≤ ϑ(t, x, y, z, s) ≤ V (y, z, s− v+j (t, x)) ≤ V (y, z, s− δ̄)

from the definition of ϑ̂(x) and Lemma 3.4. Thus it follows from Lemma 4.1 that
we have

sup
|x|≤(2j+1)!−1

ϑ(t2j+1, x, y, z, s)− V (y, z, s− δ̄)

φβf

(
c∗f
c (s− h(y, z))

)
≥ sup
|x|≤(2j+1)!−1

V (y, z, s− v−j (t2j+1, x))− V (y, z, s− δ̄)

φβf

(
c∗f
c (s− h(y, z))

)

≥− sup
(y,z,s)∈R3

∣∣∣∣∣Vs
(
y, z, s− δ̄ + θ1B

∫
|ζ|∈[0,2/

√
2j+1]∪[

√
2j+1,+∞)

e−ζ
2

dζ

)∣∣∣∣∣
φβf

(
c∗f
c (s− h(y, z))

)
×B

∫
|ζ|∈[0,2/

√
2j+1]∪[

√
2j+1,+∞)

e−ζ
2

dζ,

and

sup
|x|≤(2j)!−1

ϑ(t2j , x, y, z, s)− V (y, z, s+ δ̄)

φβf

(
c∗f
c (s− h(y, z))

)
≤ sup
|x|≤(2j)!−1

V (y, z, s− v+
j (t2j , x))− V (y, z, s+ δ̄)

φβf

(
c∗f
c (s− h(y, z))

)

≤ sup
(y,z,s)∈R3

∣∣∣∣∣Vs
(
y, z, s+ δ̄ + θ2B

∫
|ζ|∈[0,2/

√
2j]∪[

√
2j,+∞)

e−ζ
2

dζ

)∣∣∣∣∣
φβf

(
c∗f
c (s− h(y, z))

)
×B

∫
|ζ|∈[0,2/

√
2j]∪[

√
2j,+∞)

e−ζ
2

dζ,

where θ1, θ2 ∈ (0, 1), t2j = (2j)((2j)!)2

4 and t2j+1 = (2j+1)((2j+1)!)2

4 . By (13), the
above two inequalities yield that

lim
j→+∞

sup
(y,z,s)∈R3

sup
|x|≤(2j+1)!−1

ϑ(t2j+1, x, y, z, s)− V (y, z, s− δ̄)

φβf

(
c∗f
c (s− h(y, z))

) = 0

and

lim
j→+∞

sup
(y,z,s)∈R3

sup
|x|≤(2j)!−1

ϑ(t2j , x, y, z, s)− V (y, z, s+ δ̄)

φβf

(
c∗f
c (s− h(y, z))

) = 0.
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Then the conclusion of Theorem 1.3 can be obtained from the above two limits. We
complete the proof.
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