Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect

  • Received: 01 December 2020 Revised: 01 February 2021 Published: 16 March 2021
  • Primary: 35A01, 35K55, 35K57, 92D25; Secondary: 35K57

  • This paper is devoted to studying the Cauchy problem corresponding to the nonlocal bistable reaction diffusion equation. It is the first attempt to use the method of comparison principle to study the well-posedness for the nonlocal bistable reaction-diffusion equation. We show that the problem has a unique solution for any non-negative bounded initial value by using Gronwall's inequality. Moreover, the boundedness of the solution is obtained by means of the auxiliary problem. Finally, in the case that the initial data with compactly supported, we analyze the asymptotic behavior of the solution.

    Citation: Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect[J]. Electronic Research Archive, 2021, 29(5): 3017-3030. doi: 10.3934/era.2021024

    Related Papers:

    [1] Tyson Loudon, Stephen Pankavich . Mathematical analysis and dynamic active subspaces for a long term model of HIV. Mathematical Biosciences and Engineering, 2017, 14(3): 709-733. doi: 10.3934/mbe.2017040
    [2] A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059
    [3] Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341
    [4] Yicang Zhou, Yiming Shao, Yuhua Ruan, Jianqing Xu, Zhien Ma, Changlin Mei, Jianhong Wu . Modeling and prediction of HIV in China: transmission rates structured by infection ages. Mathematical Biosciences and Engineering, 2008, 5(2): 403-418. doi: 10.3934/mbe.2008.5.403
    [5] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [6] Nara Bobko, Jorge P. Zubelli . A singularly perturbed HIV model with treatment and antigenic variation. Mathematical Biosciences and Engineering, 2015, 12(1): 1-21. doi: 10.3934/mbe.2015.12.1
    [7] A. M. Elaiw, N. H. AlShamrani . Analysis of an HTLV/HIV dual infection model with diffusion. Mathematical Biosciences and Engineering, 2021, 18(6): 9430-9473. doi: 10.3934/mbe.2021464
    [8] B. M. Adams, H. T. Banks, Hee-Dae Kwon, Hien T. Tran . Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches. Mathematical Biosciences and Engineering, 2004, 1(2): 223-241. doi: 10.3934/mbe.2004.1.223
    [9] Sophia Y. Rong, Ting Guo, J. Tyler Smith, Xia Wang . The role of cell-to-cell transmission in HIV infection: insights from a mathematical modeling approach. Mathematical Biosciences and Engineering, 2023, 20(7): 12093-12117. doi: 10.3934/mbe.2023538
    [10] Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa . A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences and Engineering, 2005, 2(4): 811-832. doi: 10.3934/mbe.2005.2.811
  • This paper is devoted to studying the Cauchy problem corresponding to the nonlocal bistable reaction diffusion equation. It is the first attempt to use the method of comparison principle to study the well-posedness for the nonlocal bistable reaction-diffusion equation. We show that the problem has a unique solution for any non-negative bounded initial value by using Gronwall's inequality. Moreover, the boundedness of the solution is obtained by means of the auxiliary problem. Finally, in the case that the initial data with compactly supported, we analyze the asymptotic behavior of the solution.





    [1] Traveling wave fronts for generalized Fisher equations with spatio-temporal delays. J. Differential Equations (2007) 232: 104-133.
    [2] Preface to the issue nonlocal reaction-diffusion equations. Math. Model. Nat. Phenom. (2015) 10: 1-5.
    [3] Rapid travelling waves in the nonlocal Fisher equation connect two unstable states. Appl. Math. Lett. (2012) 25: 2095-2099.
    [4] Bistable travelling waves for nonlocal reaction diffusion equations. Discrete Contin. Dyn. Syst. (2014) 34: 1775-1791.
    [5] Travelling waves for integro-differential equations in population dynamics. Discrete Contin. Dyn. Syst. Ser. B (2009) 11: 541-561.
    [6] X. Bao and W. -T. Li, Propagation phenomena for partially degenerate nonlocal dispersal models in time and space periodic habitats, Nonlinear Anal. Real World Appl., 51 (2020), 102975, 26 pp. doi: 10.1016/j. nonrwa. 2019.102975
    [7] Mathematics of Darwin's diagram. Math. Model. Nat. Phenom. (2014) 9: 5-25.
    [8] Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity. SIAM J. Math. Anal. (2008) 39: 1693-1709.
    [9] Existence of waves for a nonlocal reaction-diffusion equation. Math. Model. Nat. Phenom. (2010) 5: 80-101.
    [10] Global stability for a nonlocal reaction-diffusion population model. Nonlinear Anal. Real World Appl. (2015) 25: 127-136.
    [11] Modulated traveling fronts for a nonlocal Fisher-KPP equation: A dynamical systems approach. J. Differential Equations (2015) 258: 2257-2289.
    [12] Adaptive dynamics: Modelling Darwin's divergence principle. J. Comptes Rendus Biologies (2006) 329: 876-879.
    [13] On the nonlocal Fisher-KPP equation: Steady states, spreading speed and global bounds. Nonlinearity (2014) 27: 2735-2753.
    [14] B. -S. Han, M. -X. Chang and Y. Yang, Spatial dynamics of a nonlocal bistable reaction diffusion equation, Electron. J. Differential Equations, (2020), Paper No. 84, 23 pp.
    [15] Traveling waves for nonlocal Lotka-Volterra competition systems. Discrete Contin. Dyn. Syst. Ser. B (2020) 25: 1959-1983.
    [16] On a predator-prey reaction-diffusion model with nonlocal effects. Commun. Nonlinear Sci. Numer. Simul. (2017) 46: 49-61.
    [17] An integro-PDE model with variable motility. Nonlinear Anal. Real World Appl. (2019) 45: 186-199.
    [18] B. -S. Han, Y. Yang, W. -J. Bo and H. Tang, Global dynamics of a Lotka-Volterra competition diffusion system with nonlocal effects, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30 (2020), 2050066, 19 pp. doi: 10.1142/S0218127420500662
    [19] Wavefronts for a nonlinear nonlocal bistable reaction-diffusion equation in population dynamics. J. Differential Equations (2017) 263: 6427-6455.
    [20] Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation. C. R. Math. Acad. Sci. Paris (2011) 349: 553-557.
    [21] Traveling wavefronts in a delayed food-limited population model. SIAM J. Math. Anal. (2007) 39: 103-125.
    [22] Pulses and waves for a bistable nonlocal reaction-diffusion equation. Appl. Math. Lett. (2015) 44: 21-25.
    [23] Existence and stability of travelling wave fronts in reaction advection diffusion equations with nonlocal delay. J. Differential Equations (2007) 238: 153-200.
  • This article has been cited by:

    1. Marios M. Hadjiandreou, Raúl Conejeros, D. Ian Wilson, Planning of patient-specific drug-specific optimal HIV treatment strategies, 2009, 64, 00092509, 4024, 10.1016/j.ces.2009.06.009
    2. Hassan Zarei, Ali Vahidian Kamyad, Sohrab Effati, Maximizing of Asymptomatic Stage of Fast Progressive HIV Infected Patient Using Embedding Method, 2010, 01, 2153-0653, 48, 10.4236/ica.2010.11006
    3. Xinqi Xie, Junling Ma, P. van den Driessche, Backward bifurcation in within-host HIV models, 2021, 00255564, 108569, 10.1016/j.mbs.2021.108569
    4. Esteban A. Hernandez-Vargas, Dhagash Mehta, Richard H. Middleton, Towards Modeling HIV Long Term Behavior, 2011, 44, 14746670, 581, 10.3182/20110828-6-IT-1002.00685
    5. I Hosseini, F Mac Gabhann, Mechanistic Models Predict Efficacy of CCR5‐Deficient Stem Cell Transplants in HIV Patient Populations, 2016, 5, 2163-8306, 82, 10.1002/psp4.12059
    6. Esteban A. Hernandez-Vargas, Richard H. Middleton, Modeling the three stages in HIV infection, 2013, 320, 00225193, 33, 10.1016/j.jtbi.2012.11.028
    7. M. M. Hadjiandreou, R. Conejeros, D. Ian Wilson, 2012, Controlling AIDS progression in patients with rapid HIV dynamics, 978-1-4577-1096-4, 4078, 10.1109/ACC.2012.6314737
    8. Esteban A. Hernandez-Vargas, Richard H. Middleton, Patrizio Colaneri, Franco Blanchini, 2010, Dynamic optimization algorithms to mitigate HIV escape, 978-1-4244-7745-6, 827, 10.1109/CDC.2010.5717251
    9. Robert J. Smith, B. D. Aggarwala, Can the viral reservoir of latently infected CD4+ T cells be eradicated with antiretroviral HIV drugs?, 2009, 59, 0303-6812, 697, 10.1007/s00285-008-0245-4
    10. YUEPING DONG, WANBIAO MA, GLOBAL PROPERTIES FOR A CLASS OF LATENT HIV INFECTION DYNAMICS MODEL WITH CTL IMMUNE RESPONSE, 2012, 10, 0219-6913, 1250045, 10.1142/S0219691312500452
    11. Hassan Zarei, Ali Vahidian Kamyad, Sohrab Effati, Multiobjective Optimal Control of HIV Dynamics, 2010, 2010, 1024-123X, 1, 10.1155/2010/568315
    12. M. Arantxa Colchero, Yanink N. Caro-Vega, Gilberto Sánchez-González, Sergio Bautista-Arredondo, A literature review of reporting standards of HIV progression models, 2012, 26, 0269-9370, 1335, 10.1097/QAD.0b013e3283533ae2
    13. G. Bocharov, V. Chereshnev, I. Gainova, S. Bazhan, B. Bachmetyev, J. Argilaguet, J. Martinez, A. Meyerhans, Human Immunodeficiency Virus Infection : from Biological Observations to Mechanistic Mathematical Modelling, 2012, 7, 0973-5348, 78, 10.1051/mmnp/20127507
    14. Elizabeth Gross, Brent Davis, Kenneth L. Ho, Daniel J. Bates, Heather A. Harrington, Numerical algebraic geometry for model selection and its application to the life sciences, 2016, 13, 1742-5689, 20160256, 10.1098/rsif.2016.0256
    15. 2019, 9780128130520, 221, 10.1016/B978-0-12-813052-0.00023-3
    16. Tyson Loudon, Stephen Pankavich, Mathematical analysis and dynamic active subspaces for a long term model of HIV, 2017, 14, 1551-0018, 709, 10.3934/mbe.2017040
    17. Marcos A. Capistrán, A study of latency, reactivation and apoptosis throughout HIV pathogenesis, 2010, 52, 08957177, 1011, 10.1016/j.mcm.2010.03.022
    18. Marios M. Hadjiandreou, Raul Conejeros, D. Ian Wilson, Long-term HIV dynamics subject to continuous therapy and structured treatment interruptions, 2009, 64, 00092509, 1600, 10.1016/j.ces.2008.12.010
    19. 2019, 9780128130520, 105, 10.1016/B978-0-12-813052-0.00017-8
    20. Ali Heydari, S.N. Balakrishnan, Optimal multi-therapeutic HIV treatment using a global optimal switching scheme, 2013, 219, 00963003, 7872, 10.1016/j.amc.2013.01.070
    21. Esteban A. Hernandez-Vargas, Modeling Kick-Kill Strategies toward HIV Cure, 2017, 8, 1664-3224, 10.3389/fimmu.2017.00995
    22. Emiliano Mancini, Rick Quax, Andrea De Luca, Sarah Fidler, Wolfgang Stohr, Peter M. A. Sloot, Siddappa N. Byrareddy, A study on the dynamics of temporary HIV treatment to assess the controversial outcomes of clinical trials: An in-silico approach, 2018, 13, 1932-6203, e0200892, 10.1371/journal.pone.0200892
    23. 2019, 9780128130520, 129, 10.1016/B978-0-12-813052-0.00018-X
    24. Esteban Hernandez-Vargas, Patrizio Colaneri, Richard Middleton, Franco Blanchini, Discrete-time control for switched positive systems with application to mitigating viral escape, 2011, 21, 10498923, 1093, 10.1002/rnc.1628
    25. H. Zarei, A. V. Kamyad, M. H. Farahi, Optimal Control of HIV Dynamic Using Embedding Method, 2011, 2011, 1748-670X, 1, 10.1155/2011/674318
    26. Matthias Haering, Andreas Hördt, Michael Meyer-Hermann, Esteban A. Hernandez-Vargas, Computational Study to Determine When to Initiate and Alternate Therapy in HIV Infection, 2014, 2014, 2314-6133, 1, 10.1155/2014/472869
    27. Esteban A. Hernandez-Vargas, Richard H. Middleton, Patrizio Colaneri, Optimal and MPC Switching Strategies for Mitigating Viral Mutation and Escape, 2011, 44, 14746670, 14857, 10.3182/20110828-6-IT-1002.01137
    28. Charlotte Lew, 2022, Neural Network Modeling of HIV Acute and Chronic Phases With and Without Antiretroviral Intervention, 978-1-6654-7184-8, 47, 10.1109/TransAI54797.2022.00014
    29. Qiang-hui Xu, Ji-cai Huang, Yue-ping Dong, Yasuhiro Takeuchi, A Delayed HIV Infection Model with the Homeostatic Proliferation of CD4+ T Cells, 2022, 38, 0168-9673, 441, 10.1007/s10255-022-1088-2
    30. Konstantin E. Starkov, Anatoly N. Kanatnikov, Eradication Conditions of Infected Cell Populations in the 7-Order HIV Model with Viral Mutations and Related Results, 2021, 9, 2227-7390, 1862, 10.3390/math9161862
    31. Huseyin Tunc, Murat Sari, Seyfullah Kotil, Machine learning aided multiscale modelling of the HIV-1 infection in the presence of NRTI therapy, 2023, 11, 2167-8359, e15033, 10.7717/peerj.15033
    32. A. N. Kanatnikov, O. S. Tkacheva, Behavior of Trajectories of a Four-Dimensional Model of HIV Infection, 2023, 59, 0012-2661, 1451, 10.1134/S00122661230110022
    33. Cameron Clarke, Stephen Pankavich, Three-stage modeling of HIV infection and implications for antiretroviral therapy, 2024, 88, 0303-6812, 10.1007/s00285-024-02056-1
    34. A. N. Kanatnikov, O. S. Tkacheva, Behavior of Trajectories of a Four-Dimensional Model of HIV Infection, 2023, 59, 0374-0641, 1451, 10.31857/S037406412311002X
    35. A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Analysis of HHV-8/HIV-1 co-dynamics model with latency, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05202-2
    36. A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Stability of HHV-8 and HIV-1 co-infection model with latent reservoirs and multiple distributed delays, 2024, 9, 2473-6988, 19195, 10.3934/math.2024936
    37. Yueping Dong, Jicai Huang, Yasuhiro Takeuchi, Qianghui Xu, 2024, Chapter 2, 978-981-97-7849-2, 11, 10.1007/978-981-97-7850-8_2
    38. A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Modeling the co-infection of HTLV-2 and HIV-1 in vivo, 2024, 32, 2688-1594, 6032, 10.3934/era.2024280
    39. Xia Wang, Yue Wang, Yueping Dong, Libin Rong, Dynamics of a delayed HIV infection model with cell-to-cell transmission and homeostatic proliferation, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05845-1
    40. A.M. Elaiw, E.A. Almohaimeed, A.D. Hobiny, Stability analysis of a diffusive HTLV-2 and HIV-1 co-infection model, 2025, 116, 11100168, 232, 10.1016/j.aej.2024.11.074
    41. Jing Cai, Jun Zhang, Kai Wang, Zhixiang Dai, Zhiliang Hu, Yueping Dong, Zhihang Peng, Evaluating the long-term effects of combination antiretroviral therapy of HIV infection: a modeling study, 2025, 90, 0303-6812, 10.1007/s00285-025-02196-y
    42. Jun Zhang, Jing Cai, Yasuhiro Takeuchi, Yueping Dong, Zhihang Peng, Rich dynamics induced by homeostatic proliferation of both CD4+ T cells and macrophages in HIV infection and persistence, 2025, 2025, 2731-4235, 10.1186/s13662-025-03941-9
    43. A. M. Elaiw, E. A. Almohaimeed, Within-host dynamics of HTLV-2 and HIV-1 co-infection with delay, 2025, 19, 1751-3758, 10.1080/17513758.2025.2506536
    44. A. M. Elaiw, E. Dahy, H. Z. Zidan, A. A. Abdellatif, Stability of an HIV-1 abortive infection model with antibody immunity and delayed inflammatory cytokine production, 2025, 140, 2190-5444, 10.1140/epjp/s13360-025-06475-x
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2602) PDF downloads(226) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog