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Abstract. This paper is devoted to studying the Cauchy problem correspond-
ing to the nonlocal bistable reaction diffusion equation. It is the first attempt
to use the method of comparison principle to study the well-posedness for the
nonlocal bistable reaction-diffusion equation. We show that the problem has a
unique solution for any non-negative bounded initial value by using Gronwall’s
inequality. Moreover, the boundedness of the solution is obtained by means of
the auxiliary problem. Finally, in the case that the initial data with compactly
supported, we analyze the asymptotic behavior of the solution.

1. Introduction. In this paper, we will consider the following Cauchy problem{
∂u
∂t = ∂2u

∂x2 + ku2(1− ϕ ∗ u)− bu, (x, t) ∈ R× (0,∞),

u(x, 0) = u0(x), x ∈ R,
(1)

where
(ϕ ∗ u)(x, t) :=

∫
R
ϕ(x− y)u(y, t)dy,

and ϕ(x) satisfies the following assumptions

ϕ(x) ≥ 0, ϕ(0) > 0, ϕ(x) = ϕ(−x),
∫
R
ϕ(x)dx = 1,

∫
R
x2ϕ(x)dx <∞.

The model (1) is described as the population dynamics with nonlocal consumption
of resources. Where u(x, t) represents the density of population at the position x
and time t. The coefficients k, b are positive. The term ku2(1−ϕ∗u) is interpreted
as the reproduction of the population, which is proportional to the square of density
u, and to available resources 1 − ϕ ∗ u. The convolution term ϕ ∗ u represents the
nonlocal consumption of resources, specific is that the consumption of resources at
the space point x is determined by the individuals located at y ∈ (−∞,∞). The
last term −bu represents mortality of the population. Moreover, the nonlocal model
(1) can be used to describe the emergence and evolution of biological species and
the process of speciation [7, 12].
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When ϕ(x) tends to be a δ-function, the model (1) can be changed to the classical
reaction-diffusion equation

∂u

∂t
=
∂2u

∂x2
+ ku2(1− u)− bu, (2)

if k > 4b, the equation (2) has three zeros

u+ = 0, u0 =
k −

√
k2 − 4kb

2k
, u− =

k +
√
k2 − 4kb

2k
,

there are two stable steady-states u− and u+, u0 is unstable point, which implies
that the model (2) is bistable. The traveling wave solution, asymptotic speed of
propagation and Cauchy problem of the equation (2) have been studied extensively,
see [22]. Since the consumption of resources with nonlocal makes more reasonable
for describing the behavior of various biological phenomena. Apreutesei et al. [5]
introduced the nonlocal consumption of resources into equation (2), that is the
equation (1), they explored the Fredholm operator and used it to prove the existence
of travelling waves in case that the integral is sufficiently small. For more results of
(1) can refer to [2, 7, 22]. When the support of the function ϕ is not small, Demin
and Volpert [9] and Alfaro et al. [4] proved the existence of traveling wave solution
when the nonlinearities with the form of u(ϕ∗u)(1−u)−αu and u(u−θ)(1−ϕ∗u),
respectively. Moreover, Li et al. [19] and Han et al. [14] obtained the general
results for the problem (1) when the nonlocal term without limit by using monotone
iteration method and Leray-Schauder degree theory, respectively. But it is only
partially solved and much work in this area remains open questions. It is worth
noting that two points should be pointed out through the above researches, one
is that the difficulties caused by different nonlocal locations are different, and the
other is that the difficulties caused by different nonlocal strength are also different.
Therefore, the methods of studying the problem are quite different.

Actually, most of the research on the nonlocal reaction-diffusion equation is fo-
cused on monostable case (the dynamic behavior of the solution is relatively simple),
such as Hamel and Ryzhik [13], Ai [1], Faye and Holzer [11] and others have done a
vest of researches, and have obtained plenty of meaningful results in the traveling
wave solution [3, 20, 21], the asymptotic propagation speed of the solution [1, 6, 13],
the spatial dynamic behavior of the solution corresponding to the Cauchy problem
[8], the bifurcation [11].

Especially in recent decades, there are many results about the spatial dynamics
behavior of the Cauchy problem [10, 15, 16, 17, 18, 19, 23]. Deng and Wu [10]
analyzed the global stability for Cauchy problem{

ut −△u = u
[
f(u)− α

∫
Rn g(x− y)u(y, t)dy

]
,

u(x, 0) = u0(x),

and shown the existence and uniqueness of the solution by establishing compar-
ison principle and constructing monotone sequences. Han and Yang [17] further
considered the nonlocal reaction-diffusion-mutation model

ut = θuxx + duxx + u{1 + αu− βu2 − (1 + α− β)

×
∫
R
∫
Θ
k(x− y, θ − θ′)u(y, θ′, t)dθ′dy},

u(x, θ, 0) = u0(x, θ),
∂u
∂θ (x, θ, t) = 0,
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and obtained the well-posedness of solutions, including the existence, uniqueness
and global stability. From the above researches, it can be seen that the study of
the spatial dynamics of the solution has a great enlightenment and guidance on
understanding the nonlocal effect. To date, however, the research on the Cauchy
problem of the nonlocal bistable reaction-diffusion equation is still blank. So a very
natural question, what is the solution of the nonlocal bistable reaction-diffusion
equation corresponding to the Cauchy problem?

Inspired by [4, 5, 10, 17], we will try to solve (or partially solve) the global
dynamics of the solution of problem (1) in this paper. The main difficulty is that
due to the introduction of nonlocal term, the maximum principle of problem (1)
is not valid and the maximum modulus estimate of solution cannot be obtained.
For such a difficulty, we will define suitable super- and sub-solutions and construct
monotonic iterative sequences to obtain the existence of the solution. Furthermore,
the uniqueness is given by using fundamental solution and Gronwall’s inequality.
Finally, we obtain the uniform boundedness of the solution by means of auxiliary
function.

This paper is organized as follows. In section 2, some preparations including the
notion of super- and sub-solutions, as well as the comparison principle will be given.
Then we consider the existence and uniqueness of the global solution of the Cauchy
problem (1) in Section 3. The results of the asymptotic behavior of solution will be
obtained in Section 4.

2. Preliminaries. In this section, we will do the preparation works. First, we will
review the notion of the super- and sub-solutions of the problem (1), and then give
the order of the super- and sub-solutions. For convenience, we define IT = R×(0, T )
and BT = R × [0, T ). We now make the following definition, which will be used
frequently in our paper.

Definition 2.1. Assume u(x, t), u(x, t) ∈ C2,1(IT ) ∩ CB(BT ), where CB is a
bounded continuous space. They are called super- and sub-solutions of Cauchy
problem (1), respectively, if u(x, t) and u(x, t) satisfy{

ut ≥ uxx + ku2
(
1−

∫
R ϕ(x− y)u(y)dy

)
− bu, (x, t) ∈ IT ,

u(x, 0) ≥ u0(x), x ∈ R,
(3)

and {
ut ≤ uxx + ku2

(
1−

∫
R ϕ(x− y)u(y)dy

)
− bu, (x, t) ∈ IT ,

u(x, 0) ≤ u0(x), x ∈ R.
(4)

Under the definition of super- and sub-solutions, the following result is obtained.

Lemma 2.2. Suppose that u(x, t) and u(x, t) are super- and sub-solutions of problem
(1), respectively, where u(x, t) and u(x, t) are nonnegative bounded functions. Then,

u(x, t) ≥ u(x, t), (x, t) ∈ BT .

Proof. Let u(x, t) = u(x, t)− u(x, t). Then for any (x, t) ∈ IT , we have

ut − uxx ≥ ku2(1− ϕ ∗ u)− bu− ku2(1− ϕ ∗ u) + bu
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= −bu+ ku2(1− ϕ ∗ u)− ku2(1− ϕ ∗ u)
= −bu+ ku (u+ u)− ku2(ϕ ∗ u) + ku2(ϕ ∗ u)
= −bu+ ku(u+ u)− ku(u+ u)(ϕ ∗ u) + ku2(ϕ ∗ u)
= u (−b+ k(u+ u)− k(u+ u)(ϕ ∗ u)) + ku2(ϕ ∗ u).

This yields that{
ut − uxx + d1(x, t)u ≥ ku2(ϕ ∗ u), (x, t) ∈ IT ,

u(x, 0) ≥ 0, x ∈ R,
(5)

where
d1(x, t) := − (−b+ k(u+ u)− k(u+ u)(ϕ ∗ u)) .

Take σ > 0 large enough such that

d2(x, t) := σ − (−b+ k(u+ u)− k(u+ u)(ϕ ∗ u)) ≥ 0, ∀(x, t) ∈ IT .

Denote ũ = e−σtu, from (5) we can see that{
ũt − ũxx + d2(x, t)ũ ≥ ku2 (ϕ ∗ ũ) , (x, t) ∈ IT ,

ũ(x, 0) ≥ 0, x ∈ R.

Since the functions u, u are nonnegative bounded in BT , then, there exists M > 0
such that

0 ≤ u, u ≤M for (x, t) ∈ BT .

Further, we know that d2(x, t) is nonnegative bounded in BT . To complete our
proof, it suffices to show that

ũ ≥ 0 in IT0 ,

where T0 = min
{
T, s

kM2

}
and s is positive which will be determined by (6). For

contradiction we assume that ũ < 0 at some points in IT0
, then, we get

ũinf = inf
(x,t)∈IT0

ũ(x, t) < 0,

since ũ is bounded, then there exists a positive constant s and a point (x∗, t∗) ∈ IT0
,

such that
ũ (x∗, t∗) ≤ 0,

and
ũ (x∗, t∗) ≤ sũinf . (6)

We now define
w =

ũ

1 + x2 + ζt
,

where ζ is a positive constant. Then, we obtain

(ζ − 2)w − 4xwx +
(
1 + x2 + ζt

)
(wt − wxx) + d2

(
1 + x2 + ζt

)
w

≥ ku2(ϕ ∗ ũ),

thus, 
(
1 + x2 + ζt

)
(wt − wxx + d2w) + (ζ − 2)w − 4xwx

≥ ku2 (ϕ ∗ ũ) , (x, t) ∈ IT ,

w(x, 0) ≥ 0, x ∈ R.
(7)
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By the definition of w(x, t) that lim|x|→+∞ w(x, t) = 0 and together with (7), hence
there exists a point

(
x̃, t̃

)
∈ IT0 , such that w reaches the negative minimum wmin,

one has,

wmin = min
(x,t)∈IT0

ũ(x, t)

1 + x2 + ζt
≤ ũ(x∗, t∗)

1 + (x∗)2 + ζt∗
.

Combining with (6), we have

wmin ≤ sũinf
1 + (x∗)2 + ζt∗

,

equivalent to

ũinf ≥
(
1 + (x∗)2 + ζt∗

)
wmin

s
. (8)

Due to wt ≤ 0, wx = 0 and wxx ≥ 0 at
(
x̃, t̃

)
, together with (7), we get

d2
(
1 + x̃2 + ζt̃

)
wmin + (ζ − 2)wmin ≥ ku2ũinf .

Furthermore, we deduce that

(ζ − 2)wmin ≥ ku2ũinf ,

together with (8), one has

(ζ − 2)wmin ≥ ku2
(
1 + (x∗)2 + ζt∗

)
wmin

s
,

then,

(ζ − 2) ≤ ku2

s

(
1 + (x∗)2 + ζt∗

)
,

further, (
1− ku2

s
t∗
)
ζ ≤ ku2

s

(
1 + (x∗)2

)
+ 2,

clearly (
1− kM2

s
T0

)
ζ ≤ku

2

s

(
1 + (x∗)2

)
+ 2, (9)

since x∗ is independent of ζ, if choosing ζ large enough that the inequality (9)
doesn’t hold, which is a contradiction, this yields

ũ(x, t) ≥ 0 in BT0
.

If T > T0, we repeat the above process with the initial time t = T0, thus

ũ(x, t) ≥ 0 in BT .

This implies that u ≥ 0, that is, u(x, t) ≥ u(x, t) in BT . This completes the
proof.
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3. Well-posedness of the solution about (1.1). In this section, we study the
well-posedness of problem (1). The existence and uniqueness of global solution is
based on the comparison principle. Firstly, we investigate the existence of solution
for the problem (1) by constructing two monotone sequences. Later, we prove
the uniqueness of the solution for the problem (1) by using Gronwall’s inequality
and fundamental-solution. Finally, we will study the uniform boundedness of the
solution for the problem (1).

Theorem 3.1. Suppose that u, u are nonnegative functions and u, u are super-
and sub-solutions of problem (1) in IT , respectively. Then the problem (1) has a
solution u(x, t) in IT and satisfies

u(x, t) ≤ u(x, t) ≤ u(x, t) for (x, t) ∈ BT .

Proof. Since u, u are nonnegative and bounded functions, then there exists N > 0
such that

0 ≤ u(x, t), u(x, t) ≤ N in BT .

Moreover, we choose L > 0 large enough, such that

L >
{
b− 2θk, b− 2θ̃k, b− θ̂k

}
,

where θ, θ̃, θ̂ will be determined later.
Denote u(0) = u and u(0) = u, there are two sequences

{
u(m)

}∞
m=0

and{
u(m)

}∞
m=0

through the following iteration format for m = 1, 2, · · · ,
u
(m)
t − u

(m)
xx + Lu(m) = k

(
u(m−1)

)2

− k
(
u(m)

)2 (
ϕ ∗ u(m−1)

)
− bu(m−1)

+Lu(m−1), (x, t) ∈ IT ,

u(m)(x, 0) = u0(x), x ∈ R,
(10)

and
u
(m)
t − u(m)

xx + Lu(m) = k
(
u(m−1)

)2

− k
(
u(m)

)2 (
ϕ ∗ u(m−1)

)
− bu(m−1)

+Lu(m−1), (x, t) ∈ IT ,

u(m)(x, 0) = u0(x), x ∈ R.
(11)

First of all, we claim that

u ≤ u(1) ≤ u(1) ≤ u in BT . (12)

Let û = u(1) − u, then from (4) and (11), we have
ût − ûxx ≥ −k

(
u(1)

)2
(ϕ ∗ u) + ku2(ϕ ∗ u) + L

(
u− u(1)

)
= −

(
k
(
u(1) + u

)
(ϕ ∗ u) + L

)
û, (x, t) ∈ IT ,

û(x, 0) ≥ 0, x ∈ R,

by applying the comparison principle, we know that û ≥ 0, namely, u(1) ≥ u in BT .
Similarly, let ũ = u− u(1), from (3) and (10) we obtain

ũt − ũxx ≥ −ku2(ϕ ∗ u) + k
(
u(1)

)2
(ϕ ∗ u)− L

(
u− u(1)

)
= −

(
k(u+ u(1))(ϕ ∗ u) + L

)
ũ, (x, t) ∈ IT ,

ũ(x, 0) ≥ 0, x ∈ R.
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Using the comparison principle, one has ũ ≥ 0, which means u ≥ u(1) in BT . Finally,
we prove u(1) ≥ u(1), let ũ = u(1) − u(1), then from (10) and (11), ũ satisfies

ũt − ũxx = ku2 − ku2 − k
(
u(1)

)2

(ϕ ∗ u) + k
(
u(1)

)2

(ϕ ∗ u)− bu+ bu− L
(
u(1) − u

)
+ L

(
u(1) − u

)
= −k

(
u(1)

)2

(ϕ ∗ u) + k
(
u(1)

)2

(ϕ ∗ u) + k
(
u(1)

)2

(ϕ ∗ u)− k
(
u(1)

)2

(ϕ ∗ u)

− b(u− u)− L
(
u(1) − u(1)

)
+ L (u− u) + k(u+ u)(u− u)

= −
(
k
(
u(1) + u(1)

)
(ϕ ∗ u) + L

)
ũ+ k

(
u(1)

)2

(ϕ ∗ (u− u))

+ (−b+ L+ 2θk) (u− u)

≥ −
(
k
(
u(1) + u(1)

)
(ϕ ∗ u) + L

)
ũ,

where θ ∈ (u, u), then we have{
ũt − ũxx ≥ −

(
k
(
u(1) + u(1)

)
(ϕ ∗ u) + L

)
ũ, (x, t) ∈ IT ,

ũ(x, 0) ≥ 0, x ∈ R.

We obtain ũ ≥ 0 by means of the comparison principle, that is, u(1) ≥ u(1) in BT .
Thus, u ≤ u(1) ≤ u(1) ≤ u in BT .

Next, we prove that u(1) and u(1) is a pair of super- and sub-solutions for problem
(1). From (10) u(1) satisfies

u
(1)
t − u(1)

xx = ku2 − k
(
u(1)

)2

(ϕ ∗ u)− bu− L
(
u(1) − u

)
≥ ku2 − k

(
u(1)

)2 (
ϕ ∗ u(1)

)
− bu− L

(
u(1) − u

)
= k

(
u(1)

)2

− k
(
u(1)

)2 (
ϕ ∗ u(1)

)
− bu(1) − k

(
u(1)

)2

+ bu(1) + ku2 − bu

− L
(
u(1) − u

)
= k

(
u(1)

)2

− k
(
u(1)

)2 (
ϕ ∗ u(1)

)
− bu(1) +

(
2θ̃k − b+ L

)(
u− u(1)

)
≥ k

(
u(1)

)2

− k
(
u(1)

)2 (
ϕ ∗ u(1)

)
− bu(1), (13)

where θ̃ ∈
(
u(1), u

)
. On the other hand, from (11) u(1) satisfies

u(1)
t − v(1)xx = ku2 − k

(
u(1)

)2

(ϕ ∗ u)− bu− L
(
u(1) − u

)
≤ ku2 − k

(
u(1)

)2 (
ϕ ∗ u(1)

)
− bu− L

(
u(1) − u

)
= k

(
u(1)

)2

− k
(
u(1)

)2 (
ϕ ∗ u(1)

)
− bu(1) − k

(
u(1)

)2

+ bu(1) + ku2 − bu

− L
(
u(1) − u

)
= k

(
u(1)

)2

− k
(
u(1)

)2 (
ϕ ∗ u(1)

)
− bu(1) −

(
2θ̂k − b+ L

)(
u(1) − u

)
≤ k

(
u(1)

)2

− k
(
u(1)

)2 (
ϕ ∗ u(1)

)
− bu(1), (14)

where θ̂ ∈
(
u, u(1)

)
. Thanks to the Definition 2.1, together with (13) and (14), we

obtain that u(1) and u(1) are super- and sub-solutions of (1) respectively.
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We assume u(m) and u(m) are super- and sub-solutions of the problem (1) re-
spectively. By repeating above processes, one has

u(m) ≤ u(m+1) ≤ u(m+1) ≤ u(m) in BT ,

and
v(m) ≤ v(m+1) ≤ v(m+1) ≤ v(m) in BT .

Likewise, u(m+1) and u(m+1) are super- and sub-solutions of (1) respectively. Thus,
combine with (12), we have that, for m = 0, 1, 2, · · · ,

u ≤ u(1) ≤ u(2) ≤ · · · ≤ u(m) ≤ u(m) ≤ · · · ≤ u(2) ≤ u(1) ≤ u in BT .

Therefore, there exist u and u such that
lim

m→+∞
u(m) = u and lim

m→+∞
u(m) = u.

Additionally, It is clearly that u and u are super- and sub-solutions of (1), respec-
tively, and there is u = u, thus u is the bounded solution of (1). This completes
the proof.

Thanks to Theorem 3.1, we further have the following result immediately.

Lemma 3.2. For any nonnegative bounded initial u0(x), the solution of the problem
(1) exists.

Proof. From Theorem 3.1, if u and u are super- and sub-solutions respectively, one
has u(x, 0) ≥ u0(x) ≥ u(x, 0). From the Definition 2.1, one may choose 0 as the
sub-solution of problem (1). Next, we construct the super-solution as follows.

Since u0(x) is nonnegative bounded function, then, we choose M > 0 sufficiently
enough such that

max {∥u0(x)∥L∞ , 1} ≤M, ∀x ∈ R.
We know that 0 and M is a pair of the super- and sub-solutions. Therefore, we
obtain our conclusion from Theorem 3.1. This completes the proof.

Moreover, the uniqueness of the solutions about the problem (1) will be given as
follows.

Theorem 3.3. The problem (1) admits a unique bounded solution for (x, t) ∈ BT .

Proof. According to Theorem 3.1, there exist solutions for the problem (1). To get
our conclusion, we suppose that u1 and u2 are bounded solutions of (1) in IT . By
direct computations, ui (i=1, 2) satisfies

ui(x, t) =

∫
R
Φ(x− y)u0(y)dy +

∫ t

0

∫
R
Φ(x− y, t− s)

[
ku2i (y, s)

(
1

−
∫
R
ϕ(y − z)ui(z, s)dz − bui(y, s)

)]
dyds,

where Φ(x, t) is the fundamental solution of the heat equation. Let ũ = u1 − u2,
one has

ũ(x, t) =

∫ t

0

∫
R
Φ(x− y, t− s)

[
ũ(y, s)(2kθ̌ − 2kθ̌(ϕ ∗ u2)− b)

]
dyds

−
∫ t

0

∫
R
Φ(x− y, t− s)ku21(y, s)(ϕ ∗ ũ)dyds. (15)

where θ̌ ∈ (u1, u2).
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From Lemma 3.2, we know that u1, u2 are all nonnegative and bounded functions
in BT . Therefore, there exists N > 0 such that

0 ≤ u1, u2 ≤ N in BT .

Define
M1 := 2kθ̌ − 2kθ̌N − b, M2 := kN2.

Furthermore, from (15), we deduce

∥ũ(., t)∥L∞(R) ≤
∫ t

0

M1∥ũ(., s)∥L∞(R)ds+

∫ t

0

M2∥ũ(., s)∥L∞(R)ds

= (M1 +M2)

∫ t

0

∥ũ(., s)∥L∞(R)ds for t ∈ (0, T ).

By Gronwall’s inequality, we obtain
∥ũ∥L∞ = 0 for t ∈ (0, T ).

Since ũ is continuous, we have ũ ≡ 0, that is, u1 ≡ u2 in IT . This completes the
proof.

Finally, we prove the uniform boundedness of the solution of problem (1).

Theorem 3.4. The nonnegative solution of the problem (1) is uniformly bounded,
i.e. there exists a positive constant M > 0, such that

0 ≤ u(x, t) ≤M for (x, t) ∈ R× R+.

Proof. Since u satisfies
ut = uxx + ku2(1− ϕ ∗ u)− bu

≤ uxx + ku2 − bu, (x, t) ∈ BT ,

u(x, 0) = u0(x), x ∈ R,

we can get u less than the solution of the ODE problem{
dz
dt = kz2 − bz,

z(0) = ∥u0∥L∞ .

By a simple computation, we have

z ≤ max

{
∥u0∥L∞ ,

b

k
+ C

}
,

where C is a constant, then, there exists a positive constant M > 0 such that
u(x, t) ≤ M . From the conclusion which implies that the solution of problem (1)
blow-up is impossible. This completes the proof.

4. The asymptotic behavior of Cauchy problem (1). In this section, we estab-
lish the following result for the solution of the Cauchy problem (1) with compactly
supported initial data.

Theorem 4.1. Let u be the solution of the Cauchy problem (1) with a non-negative
initial condition u0(x) ∈ L∞(R), such that u0(x) ̸≡ 0, then

lim inf
t→+∞

(
min

|x|<2
√
kMt

u(x, t)

)
> 0. (16)
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Further, if u0(x) is compactly supported, then

lim
t→+∞

(
max

|x|≥2
√
kMt

u(x, t)

)
= 0. (17)

where M is an upper bound of u.

Proof. We first consider (17), since u0(x) is compactly supported. Hence, there
exists R > 0 such that u0(x) = 0 for |x| ≥ R. Since u(x, t) ≥ 0 for all t ≥ 0 and
x ∈ R, one has

ku2(1− ϕ ∗ u)− bu ≤ ku2 − bu, (x, t) ∈ R× (0,∞).

Let v denote the solution of the following Cauchy problem{
vt = vxx + kv2 − bv,

v(x, 0) = u0(x).

It follows from the comparison principle that 0 ≤ u(x, t) ≤ v(x, t) for all t > 0 and
x ∈ R. By an elementary calculation, we have

0 ≤ u(x, t) ≤ bu0(x)

ku0(x)− (ku0(x)− b)
.

Choose c > 0 such that c ≥ 2
√
kM . For t ≥ R

c and |x| ≥ ct, one has

0 ≤ u(x, t) ≤ b∥u0(x)∥
k∥u0(x)∥ − (k∥u0(x)∥ − b)

= 0,

which immediately yields (17).
We now verify (16). Since u is non-negative, for contradiction we assume that

there exists c̃1 ≥ 0 and two sequences (tn)n∈N in (0,+∞) and (xn)n∈N in R such
that

0 ≤ c̃1 < 2
√
kM,

and {
|xn| ≤ c̃1tn, for all n ∈ N,
tn → +∞ and u(xn, tn) → 0 as n→ +∞.

We introduce
cn :=

xn
tn

∈ [−c̃1, c̃1]. (18)

Up to extraction of a subsequence, one can assume that cn → c∞ ∈ [−c̃1, c̃1] as n→
+∞.

For every n ∈ N and (x, t) ∈ R× (−tn,∞), we define the shifted function
un(x, t) = u(x+ xn, t+ tn).

From Theorem 3.4, we know that
(
∥un∥L∞(R×(−tn,+∞))

)
n∈N is bounded. Therefore,

from the standard parabolic estimate which implies that the function un converge
in C2,1

loc (R× R), Up to extraction of a subsequence, to a classical bounded solution
u∞ of

(u∞)t = (u∞)xx + ku2∞(1− ϕ ∗ u∞)− bu∞

= (u∞)xx + ku∞

(
u∞ − u∞(ϕ ∗ u∞)− b

k

)
in R× R,
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such that u∞ ≥ 0 and u∞(0, 0) = 0. By viewing
(
u∞ − u∞(ϕ ∗ u∞)− b

k

)
as

a coefficient in L∞(R × R), thanks to the strong parabolic maximum principle
and uniqueness of the solutions of the Cauchy problem which implies u∞(x, t) =
0 for all (x, t) ∈ R × R (since the limit u∞ is unique, one can deduce that the
sequence (un)n∈N converges to 0 in C2,1

loc (R× R)). One can define the functions ũn
in R× (−tn,+∞) by

ũn(x, t) = un(x+ cnt, t)

= u(x+ cn(t+ tn), t+ tn),

and ũn(x, t) converge to 0 locally and uniformly in R× R, due to the fact that the
boundedness of cn defined in (18). Hence the non-negative functions ϕ∗ ũn also con-
verge to 0 locally uniformly in R×R since the sequence

(
∥ũn∥L∞(R×(−tn,+∞))

)
n∈N

is bounded.
We now fix some parameters which are independent of n. First, we choose δ > 0

satisfying

k

(
M − b

k
−Mδ

)
≥ c2

4
+ δ, (19)

where M is the upper bound of u and v, also let R > 0 such that
π2

4R2
≤ δ. (20)

Since u(., 1) is continuous from parabolic regularity and is positive in R from the
strong parabolic maximum principle, one can take η > 0 such that

u(., 1) ≥ η > 0 for all |x| ≤ R+ c.

Without loss of generality, we assume that tn > 1 for every n ∈ N. Since ϕ∗ũn →
0 locally uniformly in R× R as n→ +∞, we may define

t∗n = inf
{
t ∈ [−tn + 1, 0];ϕ ∗ ũn ≤ δ in [−R,R]× [t, 0]

}
, n ≥ N,

where δ and R are as in (19) and (20), and assume that t∗n < 0. Furthermore, for
every n ≥ N , by the continuity of ϕ ∗ ũn in R × (−tn,∞), we then conclude that
the infimum is the minimum in the definition of t∗n and

0 ≤ ϕ ∗ ũn ≤ δ in [−R,R]× [t∗n, 0]. (21)
On the other hand, we have

ũn(x,−tn + 1) = u(x+ cn, 1) ≥ η for all |x| ≤ R,

for all n ∈ N. According to the above analysis ϕ ∗ ũn in R × (−tn,+∞) and by
minimality of t∗n, for each n ≥ N , we have the following dichotomy:{

either t∗n > −tn + 1 and max[−R,R](ϕ ∗ un)(., t∗n) ≥ δ,

or t∗n = −tn + 1 and min[−R,R] un(., t
∗
n) ≥ η.

(22)

Next, we assert that there exists ρ > 0 such that
min

[−R,R]
ũn(., t

∗
n) ≥ ρ > 0 for all n ≥ N. (23)

This assertion is clearly if the second assertion of (22) always holds. Notice that
min

[−R,R]
ũn(., t

∗
n) > 0 for each fixed n ≥ N.
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For contradiction, we assume that (23) is not hold, then up to extraction of a
subsequence, there exists a sequence of (yn)n≥N in [−R,R] such that

ũn(yn, t
∗
n) → 0 and

yn →y∞ ∈ [−R,R] as n→ +∞.

We use the transformation defined by
wn(x, t) = ũn(x, t+ t∗n),

for all n ≥ N and (x, t) ∈ R× (−tn − t∗n,+∞). Observe that ũn satisfies

(ũn)t = (ũn)xx + cn(ũn)x + kũn

(
ũn − ũn(ϕ ∗ ũn)−

b

k

)
in R× (−tn,+∞), (24)

then the functions wn also satisfies (24) in R×(−tn−t∗n,+∞). Note that −tn−tn∗ ≤
−1 for all n ≥ N , that cn → c∞ as n → +∞, that the functions wn are all non-
negative and that the sequence

(
∥wn∥L∞(R×(−tn−t∗n,+∞))

)
n≥N

is bounded. Using
the standard parabolic estimates, we obtain wn converge in C2,1

loc (R×(−1,+∞)), up
to extraction of a subsequence, to a classical bounded solution w∞ of the following
equation
(w∞)t = (w∞)xx + c∞(w∞)x + kw2

∞(1− ϕ ∗ w∞)− bw∞

= (w∞)xx + c∞(w∞)x + kw∞

(
w∞ − w∞(ϕ ∗ w∞)− b

k

)
in R× (−1,+∞),

such that
w∞(x, t) ≥ 0 for all (x, t) ∈ R× (−1,+∞),

and
w∞(y∞, 0) = 0.

Thanks to the strong maximum principle and the uniqueness of the solution for the
Cauchy problem, we see that

w∞(x, t) = 0 for all (x, t) ∈ R× (−1,+∞),

one has that wn → 0 as n → +∞ (at least) are uniform in R × (−1,+∞), it is
clearly that

ϕ ∗ wn → 0 as n→ +∞,

locally uniform in R × (−1,+∞) by boundedness of the sequence(
∥wn∥L∞(R×(−1,+∞))

)
n≥N

. We then have

ũn(., t
∗
n) → 0 and (ϕ ∗ ũn)(., t∗n) → 0,

locally uniform in R as n → +∞. This is a contradiction to (22) due to the fact
that both δ and η are positive. Therefore, (23) holds.

Now, in view of (21), (23) and (24), we have the following situation: for each
n ≥ N , one has −tn +1 ≤ t∗n < 0 and in the box [−R,R]× [t∗n, 0], the non-negative
function ũn satisfies

(ũn)t = (ũn)xx + cn(ũn)x + kũ2n(1− ϕ ∗ ũn)− bũn

≥ (ũn)xx + cn(ũn)x + kũn
(
M −Mδ − b

k

)
in [−R,R]× [t∗n, 0],

ũn(±R, t) ≥ 0 for all t ∈ [t∗n, 0],

ũn(x, t
∗
n) ≥ ρ for all x ∈ [−R,R].

(25)
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On the other hand, for every n ≥ N , the function ψn defined in [−R,R] by

ψn(x) = ρe−cnx/2−cR/2 cos
(πx
2R

)
.

Then one has 0 ≤ ψn ≤ ρ in [−R,R] from ψn(±R) = 0 and

ψ′′
n+cnψ

′
n + k

(
M −Mδ − b

k

)
ψn

=

(
k

(
M −Mδ − b

k

)
− c2n

4
− π2

4R2

)
ψn

≥ 0 in [−R,R].

Notice that the time-independent function ψn is a sub-solution for the problem (25).
It follows from the parabolic maximum principle that

ũn(x, t) ≥ ψn(x) for all (x, t) ∈ [−R,R]× [t∗n, 0],

for all n ≥ N . In particular
u(xn, tn) = ũn(0, 0) ≥ ψn(0)

= ρe−cR/2 for all n ≥ N.

However, the assumption means that
u(xn, tn) → 0 as n→ +∞.

Since ρe−cR/2 > 0 from the positivity of ρ in (23) which reaches a contradiction.
This completes the proof.

Acknowledgments. The authors would like to thank reviewers for their precious
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