Special Issues

Structure of sympathetic Lie superalgebras

  • Received: 01 July 2020 Revised: 01 February 2021 Published: 15 March 2021
  • Primary: 17A30; Secondary: 16E40

  • Sympathetic Lie superalgebras are defined and some classical properties of sympathetic Lie superalgebras are given. Among the main results, we prove that any Lie superalgebra $ L $ contains a maximal sympathetic graded ideal and we obtain some properties about sympathetic decomposition. More specifically, we study a general sympathetic Lie superalgebra $ L $ with graded ideals $ I $, $ J $ and $ S $ such that $ L = I\oplus J $ and $ L/S $ is a sympathetic Lie superalgebra, and we obtain some properties of $ L/S $. Furthermore, under certain assumptions on $ L $ we prove that the derivation algebra $ \mathrm{Der}(L) $ is sympathetic and that if in addition $ L $ is indecomposable, then $ \mathrm{Der}(L) $ is simply sympathetic.

    Citation: Yusi Fan, Chenrui Yao, Liangyun Chen. Structure of sympathetic Lie superalgebras[J]. Electronic Research Archive, 2021, 29(5): 2945-2957. doi: 10.3934/era.2021020

    Related Papers:

  • Sympathetic Lie superalgebras are defined and some classical properties of sympathetic Lie superalgebras are given. Among the main results, we prove that any Lie superalgebra $ L $ contains a maximal sympathetic graded ideal and we obtain some properties about sympathetic decomposition. More specifically, we study a general sympathetic Lie superalgebra $ L $ with graded ideals $ I $, $ J $ and $ S $ such that $ L = I\oplus J $ and $ L/S $ is a sympathetic Lie superalgebra, and we obtain some properties of $ L/S $. Furthermore, under certain assumptions on $ L $ we prove that the derivation algebra $ \mathrm{Der}(L) $ is sympathetic and that if in addition $ L $ is indecomposable, then $ \mathrm{Der}(L) $ is simply sympathetic.



    加载中


    [1] Algèbres de Lie $\mathfrak{g}$ satisfaisant $[\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}$, $\text{Der}\mathfrak{g} = \text{ad}\mathfrak{g}$. (French) C. R. Acad. Sci. Paris Sér. I Math. (1988) 306: 523-525.
    [2] Certaines propriétés d'une classe d'algèbres de Lie qui généralisent les algèbres de Lie semi-simples. Ann. Fac. Sci. Toulouse Math. (1991) 12: 29-35.
    [3] Structure of perfect Lie algebras without center and outer derivations. Ann. Fac. Sci. Toulouse Math. (1996) 5: 203-231.
    [4] On complete Lie superalgebras. Commun. Korean Math. Soc. (1996) 11: 323-334.
    [5] N. Jacobson, Lie Algebras, Willey New York, 1962.
    [6] Some complete Lie algebras. J. Algebra (1996) 186: 807-817.
    [7] Lie superalgebras. Advances in Math. (1977) 26: 8-96.
    [8] Characteristically nilpotent algebras. Canadian J. Math. (1971) 23: 222-235.
    [9] M. Scheunert, The Theory of Lie Superalgebra, Lecture notes in mathematics 716, Springer-verlag Berlin Heidelberg New-York, 1979.
    [10] Derivation algebras of centerless perfect Lie algebras are complete. J. Algebra (2005) 285: 508-515.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1005) PDF downloads(194) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog