On a general homogeneous three-dimensional system of difference equations

  • Received: 01 October 2020 Revised: 01 January 2021 Published: 15 March 2021
  • Primary: 39A05, 39A10, 39A21, 39A23, 39A30

  • In this work, we study the behavior of the solutions of following three-dimensional system of difference equations

    xn+1=f(yn,yn1),yn+1=g(zn,zn1),zn+1=h(xn,xn1)

    where nN0, the initial values x1, x0, y1, y0 z1, z0 are positive real numbers, the functions f,g,h:(0,+)2(0,+) are continuous and homogeneous of degree zero. By proving some general convergence theorems, we have established conditions for the global stability of the corresponding unique equilibrium point. We give necessary and sufficient conditions on existence of prime period two solutions of the above mentioned system. Also, we prove a result on oscillatory solutions. As applications of the obtained results, some particular systems of difference equations defined by homogeneous functions of degree zero are investigated. Our results generalize some existing ones in the literature.

    Citation: Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour. On a general homogeneous three-dimensional system of difference equations[J]. Electronic Research Archive, 2021, 29(5): 2841-2876. doi: 10.3934/era.2021017

    Related Papers:

    [1] Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour . On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, 2021, 29(5): 2841-2876. doi: 10.3934/era.2021017
    [2] Xiaojun Huang, Zigen Song, Jian Xu . Amplitude death, oscillation death, and stable coexistence in a pair of VDP oscillators with direct–indirect coupling. Electronic Research Archive, 2023, 31(11): 6964-6981. doi: 10.3934/era.2023353
    [3] Weiyu Li, Hongyan Wang . Dynamics of a three-molecule autocatalytic Schnakenberg model with cross-diffusion: Turing patterns of spatially homogeneous Hopf bifurcating periodic solutions. Electronic Research Archive, 2023, 31(7): 4139-4154. doi: 10.3934/era.2023211
    [4] Amira Khelifa, Yacine Halim . Global behavior of P-dimensional difference equations system. Electronic Research Archive, 2021, 29(5): 3121-3139. doi: 10.3934/era.2021029
    [5] Qianhong Zhang, Shirui Zhang, Zhongni Zhang, Fubiao Lin . On three-dimensional system of rational difference equations with second-order. Electronic Research Archive, 2025, 33(4): 2352-2365. doi: 10.3934/era.2025104
    [6] Jialu Tian, Ping Liu . Global dynamics of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and prey-taxis. Electronic Research Archive, 2022, 30(3): 929-942. doi: 10.3934/era.2022048
    [7] Najmeddine Attia, Ahmed Ghezal . Global stability and co-balancing numbers in a system of rational difference equations. Electronic Research Archive, 2024, 32(3): 2137-2159. doi: 10.3934/era.2024097
    [8] Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li . Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, 2021, 29(5): 2973-2985. doi: 10.3934/era.2021022
    [9] Wedad Albalawi, Fatemah Mofarreh, Osama Moaaz . Dynamics of a general model of nonlinear difference equations and its applications to LPA model. Electronic Research Archive, 2024, 32(11): 6072-6086. doi: 10.3934/era.2024281
    [10] Zhili Zhang, Aying Wan, Hongyan Lin . Spatiotemporal patterns and multiple bifurcations of a reaction- diffusion model for hair follicle spacing. Electronic Research Archive, 2023, 31(4): 1922-1947. doi: 10.3934/era.2023099
  • In this work, we study the behavior of the solutions of following three-dimensional system of difference equations

    xn+1=f(yn,yn1),yn+1=g(zn,zn1),zn+1=h(xn,xn1)

    where nN0, the initial values x1, x0, y1, y0 z1, z0 are positive real numbers, the functions f,g,h:(0,+)2(0,+) are continuous and homogeneous of degree zero. By proving some general convergence theorems, we have established conditions for the global stability of the corresponding unique equilibrium point. We give necessary and sufficient conditions on existence of prime period two solutions of the above mentioned system. Also, we prove a result on oscillatory solutions. As applications of the obtained results, some particular systems of difference equations defined by homogeneous functions of degree zero are investigated. Our results generalize some existing ones in the literature.



    In this paper, we study the behavior of the solutions of the following three-dimensional system of difference equations of second order

    xn+1=f(yn,yn1),yn+1=g(zn,zn1),zn+1=h(xn,xn1) (1)

    where nN0, the initial values xi, yi and zi,i=0,1, are positive real numbers, the functions f,g,h:(0,+)2(0,+) are continuous and homogeneous of degree zero. We establish results on local and global stability of the unique positive equilibrium point. To do this we prove some general convergence theorems, that can be applied to generalize a lot of existing systems and to study new ones. Some results on existence of periodic and oscillatory solutions are also proved.

    Now, we explain our motivation for doing this work. Clearly if we take zi=xi,i=0,1, and hg, then the system (1), will be

    xn+1=f(yn,yn1),yn+1=g(xn,xn1). (2)

    Noting also that if we choose zi=yi=xi,i=0,1, and hgf, then System (1) will be

    xn+1=f(xn,xn1). (3)

    In [23], the behavior of the solutions of System (2) has been investigated. System (2) is a generalization of Equation (3), studied in [17]. The present System (1) is the three-dimensional generalization of System (2).

    In the literature there are many studies on difference equations defined by homogeneous functions, see for instance [1,2,5,7,11,16]. Noting that also a lot of studies are devoted to various models of difference equations and systems, not necessary defined by homogeneous functions, see for example [4,9,10,12,14,18,19,20,21,22,24,25,26,27,28,29].

    Before we state our results, we recall the following definitions and results. For more details we refer to the following references [3,6,8,13].

    Let F:(0,+)6(0,+)6 be a continuous function and consider the system of difference equations

    Yn+1=F(Yn),nN0, (4)

    where the initial value Y0(0,+)6. A point ¯Y(0,+)6 is an equilibrium point of (4), if it is a solution of ¯Y=F(¯Y).

    Definition 1.1. Let ¯Y be an equilibrium point of System (4), and let . any convenient vector norm.

    1. We say that the equilibrium point ¯Y is stable (or locally stable) if for every ϵ>0 there exists δ>0 such that for every initial condition Y0: Y0¯Y<δ implies Yn¯Y<ϵ. Otherwise, the equilibrium point ¯Y is unstable.

    2. We say that the equilibrium point ¯Y is asymptotically stable (or locally asymptotically stable) if it is stable and there exists γ>0 such that Y0¯Y<γ implies

    limnYn=¯Y.

    3. We say that the equilibrium point ¯Y is a global attractor if for every Y0,

    limnYn=¯Y.

    4. We say that the equilibrium point ¯Y is globally (asymptotically) stable if it is stable and a global attractor.

    Assume that F is C1 on (0,+)6. To System (4), we associate a linear system, about the equilibrium point ¯Y, given by

    Zn+1=FJ(¯Y)Zn,nN0,Zn=Yn¯Y,

    where FJ is the Jacobian matrix of the function F evaluated at the equilibrium point ¯Y.

    To study the stability of the equilibrium point ¯Y, we need the following theorem.

    Theorem 1.2. Let ¯Y be an equilibrium point of System (4). Then, the following statements are true:

    (i) If all the eigenvalues of the Jacobian matrix FJ lie in the open unit disk |λ|<1, then the equilibrium ¯Y is asymptotically stable.

    (ii) If at least one eigenvalue of FJ has absolute value greater than one, then the equilibrium ¯Y is unstable.

    Definition 1.3. A solution (xn,yn,zn)n1 of System (1) is said to be periodic of period pN if

    xn+p=xn,yn+p=yn,zn+p=zn,n1. (5)

    The solution (xn,yn,zn)n1 is said to be periodic with prime period pN, if it is periodic with period p and p is the least positive integer for which (1.3) holds.

    Definition 1.4. Let (xn,yn,zn)n1 be a solution of System (1). We say that the sequence (xn)n1 (resp. (yn)n1, (zn)n1) oscillates about ¯x (resp. ¯y, ¯z) with a semi-cycle of length one if: (xn¯x)(xn+1¯x)<0,n1 (resp. (yn¯y)(yn+1¯y)<0,n1, (zn¯z)(zn+1¯z)<0,n1).

    Remark 1. For every term xn0 of the sequence (xn)n1, the notation "+ " means xn0¯x>0 and the notation "" means xn0¯x<0. The same notations will be used for the terms of the sequences (yn)n1 and (zn)n1.

    Definition 1.5. A function Φ:(0,+)2(0,+) is said to be homogeneous of degree mR if we have

    Φ(λu,λv)=λmΦ(u,v)

    for all (u,v)(0,+)2 and for all λ>0.

    Theorem 1.6. Let Φ:(0,+)2(0,+) be a C1 function on (0,+)2.

    1. Then, Φ is homogeneous of degree m if and only if

    uΦu(u,v)+vΦv(u,v)=mΦ(u,v),(u,v)(0,+)2.

    (This statement is usually called Euler's Theorem).

    2. If Φ is homogeneous of degree m on (0,+)2, then Φu and Φv are homogenous of degree m1 on (0,+)2.

    A point (¯x,¯y,¯z)(0,+)3 is an equilibrium point of System (1) if it is a solution of the following system

    ¯x=f(¯y,¯y),¯y=g(¯z,¯z),¯z=g(¯x,¯x).

    Using the fact that f, g and h are homogeneous of degree zero, we get that

    (¯x,¯y,¯z)=(f(1,1),g(1,1),h(1,1))

    is the unique equilibrium point of System (1).

    Let F:(0,+)6(0,+)6 be the function defined by

    F(W)=(f1(W),f2(W),g1(W),g2(W),h1(W),h2(W)),W=(u,v,w,t,r,s)

    with

    f1(W)=f(w,t),f2(W)=u,g1(W)=g(r,s),g2(W)=w,h1(W)=h(u,v),g2(W)=r.

    Then, System (1) can be written as follows

    Wn+1=F(Wn),Wn=(xn,xn1,yn,yn1,zn,zn1)t,nN0.

    So, (¯x,¯y,¯z)=(f(1,1),g(1,1),h(1,1)) is an equilibrium point of system (1) if and only if

    ¯W=(¯x,¯x,¯y,¯y,¯z,¯z)=(f(1,1),f(1,1),g(1,1),g(1,1),h(1,1),h(1,1))

    is an equilibrium point of Wn+1=F(Wn).

    Assume that the functions f, g and h are C1 on (0,+)2. To System (1), we associate about the equilibrium point ¯W the following linear system

    Xn+1=JFXn,nN0

    where JF is the Jacobian matrix associated to the function F evaluated at

    ¯W=(f(1,1),f(1,1),g(1,1),g(1,1),h(1,1),h(1,1)).

    We have

    JF=(00fw(¯y,¯y)ft(¯y,¯y)001000000000gr(¯z,¯z)gs(¯z,¯z)001000hu(¯x,¯x)hv(¯x,¯x)0000000010)

    As f, g and h are homogeneous of degree 0, then using Part 1. of Theorem 1.6, we get

    ¯yfw(¯y,¯y)+¯yft(¯y,¯y)=0

    which implies

    ft(¯y,¯y)=fw(¯y,¯y).

    Similarly we get

    gs(¯z,¯z)=gr(¯z,¯z),hv(¯x,¯x)=hu(¯x,¯x).

    It follows that JF takes the form:

    JF=(00fw(¯y,¯y)fw(¯y,¯y)001000000000gr(¯z,¯z)gr(¯z,¯z)001000hu(¯x,¯x)hu(¯x,¯x)0000000010)

    The characteristic polynomial of the matrix JF is given by

    P(λ)=λ6hu(¯x,¯x)gr(¯z,¯z)fw(¯y,¯y)λ3+3hu(¯x,¯x)gr(¯z,¯z)fw(¯y,¯y)λ23hu(¯x,¯x)gr(¯z,¯z)fw(¯y,¯y)λ+hu(¯x,¯x)gr(¯z,¯z)fw(¯y,¯y).

    Now assume that

    |hu(¯x,¯x)gr(¯z,¯z)fw(¯y,¯y)|<18

    and consider the two functions

    Φ(λ)=λ6,
    Ψ(λ)=hu(¯x,¯x)gr(¯z,¯z)fw(¯y,¯y)λ3+3hu(¯x,¯x)gr(¯z,¯z)fw(¯y,¯y)λ23hu(¯x,¯x)gr(¯z,¯z)fw(¯y,¯y)λ+hu(¯x,¯x)gr(¯z,¯z)fw(¯y,¯y).

    We have

    |Ψ(λ)|8|hu(¯x,¯x)gr(¯z,¯z)fw(¯y,¯y)|<1=|Φ(λ)|,λC:|λ|=1.

    So, by Rouché's Theorem it follows that all roots of P(λ) lie inside the unit disk.

    Hence, by Theorem 1.2, we deduce from the above consideration that the equilibrium point (¯x,¯y,¯z)=(f(1,1),g(1,1),h(1,1)) is locally asymptotically stable.

    Using Part 2. of Theorem 1.6 and the fact that the function f, g, h are homogeneous of degree zero, we get that fw, gr and hu are homogeneous of degree 1. So, it follows that

    fw(¯y,¯y)=fw(1,1)¯y,gr(¯z,¯z)=gr(1,1)¯z,hu(¯x,¯x)=hu(1,1)¯x.

    In summary, we have proved the following result.

    Theorem 2.1. Assume that f(u,v), g(u,v) and h(u,v) are C1 on (0,+)2. The equilibrium point

    (¯x,¯y,¯z)=(f(1,1),g(1,1),h(1,1))

    of System (1) is locally asymptotically stable if

    |fu(1,1)gu(1,1)hu(1,1)|<f(1,1)g(1,1)h(1,1)8.

    Now, we will prove some general convergence results. The obtained results allow us to deal with the global attractivity of the equilibrium point (¯x,¯y,¯z)=(f(1,1),g(1,1),h(1,1)) and so the global stability.

    Theorem 2.2. Consider System (1). Assume that the following statements are true:

    1. H1: There exist a,b,α,β,λ,γ(0,+) such that

    af(u,v)b,αg(u,v)β,λh(u,v)γ,(u,v)(0,+)2.

    2. H2: f(u,v),g(u,v),h(u,v) are increasing in u for all v and decreasing in v for all u.

    3. H3: If (m1,M1,m2,M2,m3,M3)[a,b]2×[α,β]2×[λ,γ]2 is a solution of the system

    m1=f(m2,M2),M1=f(M2,m2),m2=g(m3,M3),M2=g(M3,m3),m3=h(m1,M1),M3=h(M1,m1)

    then

    m1=M1,m2=M2,m3=M3.

    Then every solution of System (1) converges to the unique equilibrium point

    (¯x,¯y,¯z)=(f(1,1),g(1,1),h(1,1)).

    Proof. Let

    m01:=a,M01:=b,m02:=α,M02:=β,m03:=λ,M03:=γ

    and for each i=0,1,...,

    mi+11:=f(mi2,Mi2),Mi+11:=f(Mi2,mi2),
    mi+12:=g(mi3,Mi3),Mi+12:=g(Mi3,mi3),
    mi+13:=h(mi1,Mi1),Mi+13:=h(Mi1,mi1).

    We have

    af(α,β)f(β,α)b,
    αg(λ,γ)g(γ,λ)β,
    λh(a,b)h(b,a)γ,

    and so,

    m01=af(m02,M02)f(M02,m02)b=M01,
    m02=αg(m03,M03)g(M03,m03)β=M02,

    and

    m03=λh(m01,M01)g(M01,m01)γ=M03.

    Hence,

    m01m11M11M01,
    m02m12M12M02,

    and

    m03m13M13M03.

    Now, we have

    m11=f(m02,M02)f(m12,M12)=m21f(M12,m12)=M21f(M02,m02)=M11,
    m12=g(m03,M03)g(m13,M13)=m22g(M13,m13)=M22g(M03,m03)=M12,
    m13=h(m01,M01)h(m11,M11)=m23h(M11,m11)=M23h(M01,m01)=M13,

    and it follows that

    m01m11m21M21M11M01,
    m02m12m22M22M12M02,

    and

    m03m13m23M23M13M03.

    By induction, we get for i=0,1,..., that

    a=m01m11...mi11mi1Mi1Mi11...M11M01=b,
    α=m02m12...mi12mi2Mi2Mi12...M12M02=β,

    and

    λ=m03m13...mi13mi3Mi3Mi13...M13M03=γ.

    It follows that the sequences (mi1)iN0, (mi2)iN0, (mi3)iN0 (resp. (Mi1)iN0, (Mi2)iN0, (Mi3)iN0) are increasing (resp. decreasing) and also bounded, so convergent. Let

    m1=limi+mi1,M1=limi+Mi1,
    m2=limi+mi2,M2=limi+Mi2.
    m3=limi+mi3,M3=limi+Mi3.

    Then

    am1M1b,αm2M2β,λm3M3γ.

    By taking limits in the following equalities

    mi+11=f(mi2,Mi2),Mi+11=f(Mi2,mi2),
    mi+12=g(mi3,Mi3),Mi+12=g(Mi3,mi3),
    mi+13=h(mi1,Mi1),Mi+13=h(Mi1,mi1),

    and using the continuity of f, g and h we obtain

    m1=f(m2,M2),M1=f(M2,m2),m2=g(m3,M3),M2=g(M3,m3),m3=h(m1,M1),M3=h(M1,m1)

    so it follows from H3 that

    m1=M1,m2=M2,m3=M3.

    From H1, for n=1,2,, we get

    m01=axnb=M01,m02=αynβ=M02,m03=λznγ=M03.

    For n=2,3,..., we have

    m11=f(m02,M02)xn+1=f(yn,yn1)f(M02,m02)=M11,
    m12=g(m03,M03)yn+1=g(zn,zn1)g(M03,m03)=M12,

    and

    m13=h(m01,M01)zn+1=h(xn,xn1)h(M01,m01)=M13,

    that is

    m11xnM11,m12ynM12,m13znM13,n=3,4,.

    Now, for n=4,5,..., we have

    m21=f(m12,M12)xn+1=f(yn,yn1)f(M12,m12)=M21,

    and

    m22=g(m13,M13)yn+1=g(zn,zn1)g(M13,m13)=M22,
    m23=h(m11,M11)zn+1=h(xn,xn1)h(M11,m11)=M23,

    that is

    m21xnM21,m22ynM22,m23znM23,n=5,6,.

    Similarly, for n=6,7,..., we have

    m31=f(m22,M22)xn+1=f(yn,yn1)f(M22,m22)=M31,
    m32=g(m23,M23)yn+1=g(zn,zn1)g(M23,m23)=M32,

    and

    m33=h(m21,M21)zn+1=h(xn,xn1)h(M21,m21)=M33,

    that is

    m31xnM31,m32ynM32,m33znM33,n=7,8,.

    It follows by induction that for i=0,1,... we get

    mi1xnMi1,mi2ynMi2,mi3znMi3,n2i+1.

    Using the fact that i+ implies n+ and m1=M1,m2=M2,m3=M3, we obtain that

    limn+xn=M1,limn+yn=M2,limn+zn=M3.

    From (1) and using the fact that f, g and h are continuous and homogeneous of degree zero, we get

    M1=f(M2,M2)=f(1,1),M2=g(M3,M3)=g(1,1),M3=h(M1,M1)=h(1,1).

    Theorem 2.3. Consider System (1). Assume that the following statements are true:

    1. H1: There exist a,b,α,β,λ,γ(0,+) such that

    af(u,v)b,αg(u,v)β,λh(u,v)γ,(u,v)(0,+)2.

    2. H2: f(u,v),g(u,v) are increasing in u for all v and decreasing in v for all u and h(u,v) is decreasing in u for all v and increasing in v for all u.

    3. H3: If (m1,M1,m2,M2,m3,M3)[a,b]2×[α,β]2×[λ,γ]2 is a solution of the system

    m1=f(m2,M2),M1=f(M2,m2),m2=g(m3,M3),M2=g(M3,m3),m3=h(M1,m1),M3=h(m1,M1)

    then

    m1=M1,m2=M2,m3=M3.

    Then every solution of System (1) converges to the unique equilibrium point

    (¯x,¯y,¯z)=(f(1,1),g(1,1),h(1,1)).

    Proof. Let

    m01:=a,M01:=b,m02:=α,M02:=β,m03:=λ,M03:=γ

    and for each i=0,1,...,

    mi+11:=f(mi2,Mi2),Mi+11:=f(Mi2,mi2),
    mi+12:=g(mi3,Mi3),Mi+12:=g(Mi3,mi3),
    mi+13:=h(Mi1,mi1),Mi+13:=h(mi1,Mi1).

    We have

    af(α,β)f(β,α)b,
    αg(λ,γ)g(γ,λ)β,
    λh(b,a)h(a,b)γ,

    and so,

    m01=af(m02,M02)f(M02,m02)b=M01,
    m02=αg(m03,M03)g(M03,m03)β=M02,

    and

    m03=λh(M01,m01)h(m01,M01)γ=M03.

    Hence,

    m01m11M11M01,
    m02m12M12M02,

    and

    m03m13M13M03.

    Now, we have

    m11=f(m02,M02)f(m12,M12)=m21f(M12,m12)=M21f(M02,m02)=M11,
    m12=g(m03,M03)g(m13,M13)=m22g(M13,m13)=M22g(M03,m03)=M12,
    m13=h(M01,m01)h(M11,m11)=m23h(m11,M11)=M23h(m01,M01)=M13,

    and it follows that

    m01m11m21M21M11M01,
    m02m12m22M22M12M02,

    and

    m03m13m23M23M13M03.

    By induction, we get for i=0,1,..., that

    a=m01m11...mi11mi1Mi1Mi11...M11M01=b,
    α=m02m12...mi12mi2Mi2Mi12...M12M02=β,

    and

    λ=m03m13...mi13mi3Mi3Mi13...M13M03=γ.

    It follows that the sequences (mi1)iN0, (mi2)iN0, (mi3)iN0 (resp. (Mi1)iN0, (Mi2)iN0, (Mi3)iN0) are increasing (resp. decreasing) and also bounded, so convergent. Let

    m1=limi+mi1,M1=limi+Mi1,
    m2=limi+mi2,M2=limi+Mi2.
    m3=limi+mi3,M3=limi+Mi3.

    Then

    am1M1b,αm2M2β,λm3M3γ.

    By taking limits in the following equalities

    mi+11=f(mi2,Mi2),Mi+11=f(Mi2,mi2),
    mi+12=g(mi3,Mi3),Mi+12=g(Mi3,mi3),
    mi+13=h(Mi1,mi1),Mi+13=h(mi1,Mi1),

    and using the continuity of f, g and h we obtain

    m1=f(m2,M2),m2=f(M2,m2),m2=g(m3,M3),M2=g(M3,m3),m3=h(M1,m1),M3=h(m1,M1)

    so it follows from H3 that

    m1=M1,m2=M2,m3=M3.

    From H1, for n=1,2,, we get

    m01=axnb=M01,m02=αynβ=M02,m03=λznγ=M03.

    For n=2,3,..., we have

    m11=f(m02,M02)xn+1=f(yn,yn1)f(M02,m02)=M11,
    m12=g(m03,M03)yn+1=g(zn,zn1)g(M03,m03)=M12,

    and

    m13=h(M01,m01)zn+1=h(xn,xn1)h(m01,M01)=M13,

    that is

    m11xnM11,m12ynM12,m13znM13,n=3,4,.

    Now, for n=4,5,..., we have

    m21=f(m12,M12)xn+1=f(yn,yn1)f(M12,m12)=M21,

    and

    m22=g(m13,M13)yn+1=g(zn,zn1)g(M13,m13)=M22,
    m23=h(M11,m11)zn+1=h(xn,xn1)h(m11,M11)=M23,

    that is

    m21xnM21,m22ynM22,m23znM23,n=5,6,.

    Similarly, for n=6,7,..., we have

    m31=f(m22,M22)xn+1=f(yn,yn1)f(M22,m22)=M31,
    m32=g(m23,M23)yn+1=g(zn,zn1)g(M23,m23)=M32,

    and

    m33=h(M21,m21)zn+1=h(xn,xn1)h(m21,M21)=M33,

    that is

    m31xnM31,m32ynM32,m33znM33,n=7,8,.

    It follows by induction that for i=0,1,... we get

    mi1xnMi1,mi2ynMi2,mi3znMi3,n2i+1.

    Using the fact that i+ implies n+ and m1=M1,m2=M2,m3=M3, we obtain that

    limn+xn=M1,limn+yn=M2,limn+zn=M3.

    From (1) and using the fact that f, g and h are continuous and homogeneous of degree zero, we get

    M1=f(M2,M2)=f(1,1),M2=g(M3,M3)=g(1,1),M3=h(M1,M1)=h(1,1).

    Theorem 2.4. Consider System (1). Assume that the following statements are true:

    1. H1: There exist a,b,α,β,λ,γ(0,+) such that

    af(u,v)b,αg(u,v)β,λh(u,v)γ,(u,v)(0,+)2.

    2. H2: f(u,v) is increasing in u for all v and decreasing in v for all u and g(u,v), h(u,v) are decreasing in u for all v and increasing in v for all u.

    3. H3: If (m1,M1,m2,M2,m3,M3)[a,b]2×[α,β]2×[λ,γ]2 is a solution of the system

    m1=f(m2,M2),M1=f(M2,m2),m2=g(M3,m3),M2=g(m3,M3),m3=h(M1,m1),M3=h(m1,M1)

    then

    m1=M1,m2=M2,m3=M3.

    Then every solution of System (1) converges to the unique equilibrium point

    (¯x,¯y,¯z)=(f(1,1),g(1,1),h(1,1)).

    Proof. Let

    m01:=a,M01:=b,m02:=α,M02:=β,m03:=λ,M03:=γ

    and for each i=0,1,...,

    mi+11:=f(mi2,Mi2),Mi+11:=f(Mi2,mi2),
    mi+12:=g(Mi3,mi3),Mi+12:=g(mi3,Mi3),
    mi+13:=h(Mi1,mi1),Mi+13:=h(mi1,Mi1).

    We have

    af(α,β)f(β,α)b,
    αg(γ,λ)g(λ,γ)β,
    λh(b,a)h(a,b)γ,

    and so,

    m01=af(m02,M02)f(M02,m02)b=M01,
    m02=αg(M03,m03)g(m03,M03)β=M02,

    and

    m03=λh(M01,m01)h(m01,M01)γ=M03.

    Hence,

    m01m11M11M01,
    m02m12M12M02,

    and

    m03m13M13M03.

    Now, we have

    m11=f(m02,M02)f(m12,M12)=m21f(M12,m12)=M21f(M02,m02)=M11,
    m12=g(M03,m03)g(M13,m13)=m22g(m13,M13)=M22g(m03,M03)=M12,
    m13=h(M01,m01)h(M11,m11)=m23h(m11,M11)=M23h(m01,M01)=M13,

    and it follows that

    m01m11m21M21M11M01,
    m02m12m22M22M12M02,

    and

    m03m13m23M23M13M03.

    By induction, we get for i=0,1,..., that

    a=m01m11...mi11mi1Mi1Mi11...M11M01=b,
    α=m02m12...mi12mi2Mi2Mi12...M12M02=β,

    and

    λ=m03m13...mi13mi3Mi3Mi13...M13M03=γ.

    It follows that the sequences (mi1)iN0, (mi2)iN0, (mi3)iN0 (resp. (Mi1)iN0, (Mi2)iN0, (Mi3)iN0) are increasing (resp. decreasing) and also bounded, so convergent. Let

    m1=limi+mi1,M1=limi+Mi1,
    m2=limi+mi2,M2=limi+Mi2.
    m3=limi+mi3,M3=limi+Mi3.

    Then

    am1M1b,αm2M2β,λm3M3γ.

    By taking limits in the following equalities

    mi+11=f(mi2,Mi2),Mi+11=f(Mi2,mi2),
    mi+12=g(Mi3,mi3),Mi+12=g(mi3,Mi3),
    mi+13=h(Mi1,mi1),Mi+13=h(mi1,Mi1),

    and using the continuity of f, g and h we obtain

    m1=f(m2,M2),M1=f(M2,m2),m2=g(M3,m3),M2=g(m3,M3),m3=h(M1,m1),M3=h(m1,M1)

    so it follows from H3 that

    m1=M1,m2=M2,m3=M3.

    From H1, for n=1,2,, we get

    m01=axnb=M01,m02=αynβ=M02,m03=λznγ=M03.

    For n=2,3,..., we have

    m11=f(m02,M02)xn+1=f(yn,yn1)f(M02,m02)=M11,
    m12=g(M03,m03)yn+1=g(zn,zn1)g(m03,M03)=M13,

    and

    m13=h(M01,m01)zn+1=h(xn,xn1)h(m01,M01)=M13,

    that is

    m11xnM11,m12ynM12,m13znM13,n=3,4,.

    Now, for n=4,5,..., we have

    m21=f(m12,M12)xn+1=f(yn,yn1)f(M12,m12)=M21,

    and

    m22=g(M13,m13)yn+1=g(zn,zn1)g(m13,M13)=M22,
    m23=h(M11,m11)zn+1=h(xn,xn1)h(m11,M11)=M23,

    that is

    m21xnM21,m22ynM22,m23znM23,n=5,6,.

    Similarly, for n=6,7,..., we have

    m31=f(m22,M22)xn+1=f(yn,yn1)f(M22,m22)=M31,
    m32=g(M23,m23)yn+1=g(zn,zn1)g(m23,M23)=M32,

    and

    m33=h(M21,m21)zn+1=h(xn,xn1)h(m21,M21)=M33,

    that is

    m31xnM31,m32ynM32,m33znM33,n=7,8,.

    It follows by induction that for i=0,1,... we get

    mi1xnMi1,mi2ynMi2,mi3znMi3,n2i+1.

    Using the fact that i+ implies n+ and m1=M1,m2=M2,m3=M3, we obtain that

    limn+xn=M1,limn+yn=M2,limn+zn=M3.

    From (1) and using the fact that f, g and h are continuous and homogeneous of degree zero, we get

    M1=f(M2,M2)=f(1,1),M2=g(M3,M3)=g(1,1),M3=h(M1,M1)=h(1,1).

    Theorem 2.5. Consider System (1). Assume that the following statements are true:

    1. H1: There exist a,b,α,β,λ,γ(0,+) such that

    af(u,v)b,αg(u,v)β,λh(u,v)γ,(u,v)(0,+)2.

    2. H2: f(u,v), h(u,v) are increasing in u for all v and decreasing in v for all u and g(u,v) is decreasing in u for all v and increasing in v for all u.

    3. H3: If (m1,M1,m2,M2,m3,M3)[a,b]2×[α,β]2×[λ,γ]2 is a solution of the system

    m1=f(m2,M2),M1=f(M2,m2),m2=g(M3,m3),M2=g(m3,M3),m3=h(m1,M1),M3=h(M1,m1)

    then

    m1=M1,m2=M2,m3=M3.

    Then every solution of System (1) converges to the unique equilibrium point

    (¯x,¯y,¯z)=(f(1,1),g(1,1),h(1,1)).

    Proof. Let

    m01:=a,M01:=b,m02:=α,M02:=β,m03:=λ,M03:=γ

    and for each i=0,1,...,

    mi+11:=f(mi2,Mi2),Mi+11:=f(Mi2,mi2),
    mi+12:=g(Mi3,mi3),Mi+12:=g(mi3,Mi3),
    mi+13:=h(mi1,Mi1),Mi+13:=h(Mi1,mi1).

    We have

    af(α,β)f(β,α)b,
    αg(γ,λ)g(λ,γ)β,
    λh(a,b)h(b,a)γ,

    and so,

    m01=af(m02,M02)f(M02,m02)b=M01,
    m02=αg(M03,m03)g(m03,M03)β=M02,

    and

    m03=λh(m01,M01)h(M01,m01)γ=M03.

    Hence,

    m01m11M11M01,
    m02m12M12M02,

    and

    m03m13M13M03.

    Now, we have

    m11=f(m02,M02)f(m12,M12)=m21f(M12,m12)=M21f(M02,m02)=M11,
    m12=g(M03,m03)g(M13,m13)=m22g(m13,M13)=M22g(m03,M03)=M12,
    m13=h(m01,M01)h(m11,M11)=m23h(M11,m11)=M23h(M01,m01)=M13,

    and it follows that

    m01m11m21M21M11M01,
    m02m12m22M22M12M02,

    and

    m03m13m23M23M13M03.

    By induction, we get for i=0,1,..., that

    a=m01m11...mi11mi1Mi1Mi11...M11M01=b,
    α=m02m12...mi12mi2Mi2Mi12...M12M02=β,

    and

    λ=m03m13...mi13mi3Mi3Mi13...M13M03=γ.

    It follows that the sequences (mi1)iN0, (mi2)iN0, (mi3)iN0 (resp. (Mi1)iN0, (Mi2)iN0, (Mi3)iN0) are increasing (resp. decreasing) and also bounded, so convergent. Let

    m1=limi+mi1,M1=limi+Mi1,
    m2=limi+mi2,M2=limi+Mi2.
    m3=limi+mi3,M3=limi+Mi3.

    Then

    am1M1b,αm2M2β,λm3M3γ.

    By taking limits in the following equalities

    mi+11=f(mi2,Mi2),Mi+11=f(Mi2,mi2),
    mi+12=g(Mi3,mi3),Mi+12=g(mi3,Mi3),
    mi+13=h(mi1,Mi1),Mi+13=h(Mi1,mi1),

    and using the continuity of f, g and h we obtain

    m1=f(m2,M2),M1=f(M2,m2),m2=g(M3,m3),M2=g(m3,M3),m3=h(m1,M1),M3=h(M1,m1)

    so it follows from H3 that

    m1=M1,m2=M2,m3=M3.

    From H1, for n=1,2,, we get

    m01=axnb=M01,m02=αynβ=M02,m03=λznγ=M03.

    For n=2,3,..., we have

    m11=f(m02,M02)xn+1=f(yn,yn1)f(M02,m02)=M11,
    m12=g(M03,m03)yn+1=g(zn,zn1)g(m03,M03)=M13,

    and

    m13=h(m01,M01)zn+1=h(xn,xn1)h(M01,m01)=M13,

    that is

    m11xnM11,m12ynM12,m13znM13,n=3,4,.

    Now, for n=4,5,..., we have

    m21=f(m12,M12)xn+1=f(yn,yn1)f(M12,m12)=M21,

    and

    m22=g(M13,m13)yn+1=g(zn,zn1)g(m13,M13)=M22,
    m23=h(m11,M11)zn+1=h(xn,xn1)h(M11,m11)=M23,

    that is

    m21xnM21,m22ynM22,m23znM23,n=5,6,.

    Similarly, for n=6,7,..., we have

    m31=f(m22,M22)xn+1=f(yn,yn1)f(M22,m22)=M31,
    m32=g(M23,m23)yn+1=g(zn,zn1)g(m23,M23)=M32,

    and

    m33=h(m21,M21)zn+1=h(xn,xn1)h(M21,m21)=M33,

    that is

    m31xnM31,m32ynM32,m33znM33,n=7,8,.

    It follows by induction that for i=0,1,... we get

    mi1xnMi1,mi2ynMi2,mi3znMi3,n2i+1.

    Using the fact that i+ implies n+ and m1=M1,m2=M2,m3=M3, we obtain that

    limn+xn=M1,limn+yn=M2,limn+zn=M3.

    From (1) and using the fact that f, g and h are continuous and homogeneous of degree zero, we get

    M1=f(M2,M2)=f(1,1),M2=g(M3,M3)=g(1,1),M3=h(M1,M1)=h(1,1).

    Theorem 2.6. Consider System (1). Assume that the following statements are true:

    1. H1: There exist a,b,α,β,λ,γ(0,+) such that

    af(u,v)b,αg(u,v)β,λh(u,v)γ,(u,v)(0,+)2.

    2. H2: f(u,v),g(u,v),h(u,v) are decreasing in u for all v and increasing in v for all u.

    3. H3: If (m1,M1,m2,M2,m3,M3)[a,b]2×[α,β]2×[λ,γ]2 is a solution of the system

    m1=f(M2,m2),M1=f(m2,M2),m2=g(M3,m3),M2=g(m3,M3),m3=h(M1,m1),M3=h(m1,M1)

    then

    m1=M1,m2=M2,m3=M3.

    Then every solution of System (1) converges to the unique equilibrium point

    (¯x,¯y,¯z)=(f(1,1),g(1,1),h(1,1)).

    Proof. Let

    m01:=a,M01:=b,m02:=α,M02:=β,m03:=λ,M03:=γ

    and for each i=0,1,...,

    mi+11:=f(Mi2,mi2),Mi+11:=f(mi2,Mi2),
    mi+12:=g(Mi3,mi3),Mi+12:=g(mi3,Mi3),
    mi+13:=h(Mi1,mi1),Mi+13:=h(mi1,Mi1).

    We have

    af(β,α)f(α,β)b,
    αg(γ,λ)g(λ,γ)β,
    λh(b,a)h(a,b)γ

    and so,

    m01=af(M02,m02)f(m02,M02)b=M01,
    m02=αg(M03,m03)g(m03,M03)β=M02,
    m03=λh(M01,m01)h(m01,M01)γ=M03.

    Hence,

    m01m11M11M01,
    m02m12M12M02,

    and

    m03m13M13M03.

    Now, we have

    m11=f(M02,m02)f(M12,m12)=m21f(m12,M12)=M21f(m02,M02)=M11,
    m12=g(M03,m03)g(M13,m13)=m22g(m13,M13)=M22g(m03,M03)=M12,
    m13=h(M01,m01)h(M11,m11)=m23h(m11,M11)=M23h(m01,M01)=M13

    and it follows that

    m01m11m21M21M11M01,
    m02m12m22M22M12M02,
    m03m13m23M23M13M03.

    By induction, we get for i=0,1,..., that

    a=m01m11...mi11mi1Mi1Mi11...M11M01=b,
    α=m02m12...mi12mi2Mi2Mi12...M12M02=β,

    and

    λ=m03m13...mi13mi3Mi3Mi13...M13M03=γ.

    It follows that the sequences (mi1)iN0, (mi2)iN0 (mi3)iN0(resp. (Mi1)iN0, (Mi2)iN0, (Mi3)iN0) are increasing (resp. decreasing) and also bounded, so convergent. Let

    m1=limi+mi1,M1=limi+Mi1,
    m2=limi+mi2,M2=limi+Mi2.
    m3=limi+mi3,M3=limi+Mi3.

    Then

    am1M1b,αm2M2β,λm3M3γ.

    By taking limits in the following equalities

    mi+11=f(Mi2,mi2),Mi+11=f(mi2,Mi2),
    mi+12=g(Mi3,mi3),Mi+12=g(mi3,Mi3),
    mi+13=h(Mi1,mi1),Mi+13=h(mi1,Mi1)

    and using the continuity of f, g, and h we obtain

    m1=f(M2,m2),M1=f(m2,M2),m2=g(M3,m3),M2=g(m3,M3),m3=h(M1,m1),M3=h(m1,M1)

    so it follows from H3 that

    m1=M1,m2=M2,m3=M3.

    From H1, for n=1,2,, we get

    m01=axnb=M01,m02=αynβ=M02,m03=λznγ=M03.

    For n=2,3,..., we have

    m11=f(M02,m02)xn+1=f(yn,yn1)f(m02,M02)=M11,
    m12=g(M03,m03)yn+1=g(zn,zn1)g(m03,M03)=M12,
    m13=h(M01,m01)zn+1=h(xn,xn1)h(m01,M01)=M13,

    that is

    m11xnM11,m12ynM12,m13znM13,n=3,4,.

    Now, for n=4,5,..., we have

    m21=f(M12,m12)xn+1=f(yn,yn1)f(m12,M12)=M21,
    m22=g(M13,m31)yn+1=g(zn,zn1)g(m13,M31)=M22,
    m23=h(M11,m11)zn+1=h(xn,xn1)h(m11,M11)=M23,

    that is

    m21xnM21,m22ynM22,m23znM23,n=5,6,.

    Similarly, for n=6,7,..., we have

    m31=f(M22,m22)xn+1=f(yn,yn1)f(m22,M22)=M31,
    m32=g(M23,m23)yn+1=g(zn,zn1)g(m23,M23)=M32,
    m33=h(M21,m21)zn+1=h(xn,xn1)h(m21,M21)=M33,

    that is

    m31xnM31,m32ynM32,m33znM33,n=7,8,.

    It follows by induction that for i=0,1,... we get

    mi1xnMi1,mi2ynMi2,mi3znMi3,n2i+1.

    Using the fact that i+ implies n+ and m1=M1,m2=M2,m3=M3, we obtain that

    limn+xn=M1,limn+yn=M2,limn+zn=M3.

    From (1) and using the fact that f, g and h are continuous and homogeneous of degree zero, we get

    M1=f(M2,M2)=f(1,1),M2=g(M3,M3)=g(1,1),M3=h(M1,M1)=h(1,1).

    Theorem 2.7. Consider System (1). Assume that the following statements are true:

    1. H1: There exist a,b,α,β,λ,γ(0,+) such that

    af(u,v)b,αg(u,v)β,λh(u,v)γ,(u,v)(0,+)2.

    2. H2: f(u,v),g(u,v) are decreasing in u for all v and increasing in v for all u, however h(u,v) is increasing in u for all v and decreasing in v for all u.

    3. H3: If (m1,M1,m2,M2,m3,M3)[a,b]2×[α,β]2×[λ,γ]2 is a solution of the system

    m1=f(M2,m2),M1=f(m2,M2),m2=g(M3,m3),M2=g(m3,M3),m3=h(m1,M1),M3=h(M1,m1)

    then

    m1=M1,m2=M2,m3=M3.

    Then every solution of System (1) converges to the unique equilibrium point

    (¯x,¯y,¯z)=(f(1,1),g(1,1),h(1,1)).

    Proof. Let

    m01:=a,M01:=b,m02:=α,M02:=β,m03:=λ,M03:=γ

    and for each i=0,1,...,

    mi+11:=f(Mi2,mi2),Mi+11:=f(mi2,Mi2),
    mi+12:=g(Mi3,mi3),Mi+12:=g(mi3,Mi3),
    mi+13:=h(mi1,Mi1),Mi+13:=h(Mi1,mi1).

    We have

    af(β,α)f(α,β)b,
    αg(γ,λ)g(λ,γ)β,
    λh(a,b)h(b,a)γ,

    and so,

    m01=af(M02,m02)f(m02,M02)b=M01,
    m02=αg(M03,m03)g(m03,M03)β=M02,

    and

    m03=λh(m01,M01)h(M01,m01)γ=M03.

    Hence,

    m01m11M11M01,
    m02m12M12M02,

    and

    m03m13M13M03.

    Now, we have

    m11=f(M02,m02)f(M12,m12)=m21f(m12,M12)=M21f(m02,M02)=M11,
    m12=g(M03,m03)g(M13,m13)=m22g(m13,M13)=M22g(m03,M03)=M12,
    m13=h(m01,M01)h(m11,M11)=m23h(M11,m11)=M23h(M01,m01)=M13,

    and it follows that

    m01m11m21M21M11M01,
    m02m12m22M22M12M02,

    and

    m03m13m23M23M13M03.

    By induction, we get for i=0,1,..., that

    a=m01m11...mi11mi1Mi1Mi11...M11M01=b,
    α=m02m12...mi12mi2Mi2Mi12...M12M02=β,

    and

    λ=m03m13...mi13mi3Mi3Mi13...M13M03=γ.

    It follows that the sequences (mi1)iN0, (mi2)iN0 (mi3)iN0(resp. (Mi1)iN0, (Mi2)iN0, (Mi3)iN0) are increasing (resp. decreasing) and also bounded, so convergent. Let

    m1=limi+mi1,M1=limi+Mi1,
    m2=limi+mi2,M2=limi+Mi2.
    m3=limi+mi3,M3=limi+Mi3.

    Then

    am1M1b,αm2M2β,λm3M3γ.

    By taking limits in the following equalities

    mi+11=f(Mi2,mi2),Mi+11=f(mi2,Mi2),
    mi+12=g(Mi3,mi3),Mi+12=g(mi3,Mi3),
    mi+13=h(mi1,Mi1),Mi+13=h(Mi1,mi1),

    and using the continuity of f, g, and h we obtain

    m1=f(M2,m2),M1=f(m2,M2),m2=g(M3,m3),M2=g(m3,M3),m3=h(m1,M1),M3=h(M1,m1)

    so it follows from H3 that

    m1=M1,m2=M2,m3=M3.

    From H1, for ,n=1,2,, we get

    m01=axnb=M01,m02=αynβ=M02,m03=λznγ=M03.

    For n=2,3,..., we have

    m11=f(M02,m02)xn+1=f(yn,yn1)f(m02,M02)=M11,
    m12=g(M03,m03)yn+1=g(zn,zn1)g(m03,M03)=M12,

    and

    m13=h(m01,M01)zn+1=h(xn,xn1)h(M01,m01)=M13,

    that is

    m11xnM11,m12ynM12,m13znM13,n=3,4,.

    Now, for n=4,5,..., we have

    m21=f(M12,m12)xn+1=f(yn,yn1)f(m12,M12)=M21,
    m22=g(M13,m31)yn+1=g(zn,zn1)g(m13,M31)=M22,

    and

    m23=h(m11,M11)zn+1=h(xn,xn1)h(M11,m11)=M23,

    that is

    m21xnM21,m22ynM22,m23znM23,n=5,6,.

    Similarly, for n=6,7,..., we have

    m31=f(M22,m22)xn+1=f(yn,yn1)f(m22,M22)=M31,
    m32=g(M23,m23)yn+1=g(zn,zn1)g(m23,M23)=M32,

    and

    m33=h(m21,M21)zn+1=h(xn,xn1)h(M21,m21)=M33,

    that is

    m31xnM31,m32ynM32,m33znM33,n=7,8,.

    It follows by induction that for i=0,1,... we get

    mi1xnMi1,mi2ynMi2,mi3znMi3,n2i+1.

    Using the fact that i+ implies n+ and m1=M1,m2=M2,m3=M3, we obtain that

    limn+xn=M1,limn+yn=M2,limn+zn=M3.

    From (1) and using the fact that f, g and h are continuous and homogeneous of degree zero, we get

    M1=f(M2,M2)=f(1,1),M2=g(M3,M3)=g(1,1),M3=h(M1,M1)=h(1,1).

    Theorem 2.8. Consider System (1). Assume that the following statements are true:

    1. H1: There exist a,b,α,β,λ,γ(0,+) such that

    af(u,v)b,αg(u,v)β,λh(u,v)γ,(u,v)(0,+)2.

    2. H2: f(u,v) is decreasing in u for all v and increasing in v for all u, however g(u,v),h(u,v) are increasing in u for all v and decreasing in v for all u.

    3. H3: If (m1,M1,m2,M2,m3,M3)[a,b]2×[α,β]2×[λ,γ]2 is a solution of the system

    m1=f(M2,m2),M1=f(m2,M2),m2=g(m3,M3),M2=g(M3,m3),m3=h(m1,M1),M3=h(M1,m1)

    then

    m1=M1,m2=M2,m3=M3.

    Then every solution of System (1) converges to the unique equilibrium point

    (¯x,¯y,¯z)=(f(1,1),g(1,1),h(1,1)).

    Proof. Let

    m01:=a,M01:=b,m02:=α,M02:=β,m03:=λ,M03:=γ

    and for each i=0,1,...,

    mi+11:=f(Mi2,mi2),Mi+11:=f(mi2,Mi2),
    mi+12:=g(mi3,Mi3),Mi+12:=g(Mi3,mi3),
    mi+13:=h(mi1,Mi1),Mi+13:=h(Mi1,mi1).

    We have

    af(β,α)f(α,β)b,
    αg(λ,γ)g(γ,λ)β,
    λh(a,b)h(b,a)γ,

    and so,

    m01=af(M02,m02)f(m02,M02)b=M01,
    m02=αg(m03,M03)g(M03,m03)β=M02,

    and

    m03=λh(m01,M01)g(M01,m01)γ=M03.

    Hence,

    m01m11M11M01,
    m02m12M12M02,

    and

    m03m13M13M03.

    Now, we have

    m11=f(M02,m02)f(M12,m12)=m21f(m12,M12)=M21f(m02,M02)=M11,
    m12=g(m03,M03)g(m13,M13)=m22g(M13,m13)=M22g(M03,m03)=M12,
    m13=h(m01,M01)h(m11,M11)=m23h(M11,m11)=M23h(M01,m01)=M13,

    and it follows that

    m01m11m21M21M11M01,
    m02m12m22M22M12M02,

    and

    m03m13m23M23M13M03.

    By induction, we get for i=0,1,..., that

    a=m01m11...mi11mi1Mi1Mi11...M11M01=b,
    α=m02m12...mi12mi2Mi2Mi12...M12M02=β,

    and

    λ=m03m13...mi13mi3Mi3Mi13...M13M03=γ.

    It follows that the sequences (mi1)iN0, (mi2)iN0, (mi3)iN0 (resp. (Mi1)iN0, (Mi2)iN0, (Mi3)iN0) are increasing (resp. decreasing) and also bounded, so convergent. Let

    m1=limi+mi1,M1=limi+Mi1,
    m2=limi+mi2,M2=limi+Mi2.
    m3=limi+mi3,M3=limi+Mi3.

    Then

    am1M1b,αm2M2β,λm3M3γ.

    By taking limits in the following equalities

    mi+11=f(Mi2,mi2),Mi+11=f(mi2,Mi2),
    mi+12=g(mi3,Mi3),Mi+12=g(Mi3,mi3),
    mi+13=h(mi1,Mi1),Mi+13=h(Mi1,mi1),

    and using the continuity of f, g and h we obtain

    m1=f(M2,m2),M1=f(m2,M2),m2=g(m3,M3),M2=g(M3,m3),m3=h(m1,M1),M3=h(M1,m1)

    so it follows from H3 that

    m1=M1,m2=M2,m3=M3.

    From H1, for n=1,2,, we get

    m01=axnb=M01,m02=αynβ=M02,m03=λznγ=M03.

    For n=2,3,..., we have

    m11=f(M02,m02)xn+1=f(yn,yn1)f(m02,M02)=M11,
    m12=g(m03,M03)yn+1=g(zn,zn1)g(M03,m03)=M13,

    and

    m13=h(m01,M01)zn+1=h(xn,xn1)h(M01,m01)=M13,

    that is

    m11xnM11,m12ynM12,m13znM13,n=3,4,.

    Now, for n=4,5,..., we have

    m21=f(M12,m12)xn+1=f(yn,yn1)f(m12,M12)=M21,
    m22=g(m13,M13)yn+1=g(zn,zn1)g(M13,m13)=M22,

    and

    m23=h(m11,M11)zn+1=h(xn,xn1)h(M11,m11)=M23,

    that is

    m21xnM21,m22ynM22,m23znM23,n=5,6,.

    Similarly, for n=6,7,..., we have

    m31=f(M22,m22)xn+1=f(yn,yn1)f(m22,M22)=M31,
    m32=g(m23,M23)yn+1=g(zn,zn1)g(M23,m23)=M32,

    and

    m33=h(m21,M21)zn+1=h(xn,xn1)h(M21,m21)=M33,

    that is

    m31xnM31,m32ynM32,m33znM33,n=7,8,.

    It follows by induction that for i=0,1,... we get

    mi1xnMi1,mi2ynMi2,mi3znMi3,n2i+1.

    Using the fact that i+ implies n+ and m1=M1,m2=M2,m3=M3, we obtain that

    limn+xn=M1,limn+yn=M2,limn+zn=M3.

    From (1) and using the fact that f, g and h are continuous and homogeneous of degree zero, we get

    M1=f(M2,M2)=f(1,1),M2=g(M3,M3)=g(1,1),M3=h(M1,M1)=h(1,1).

    Theorem 2.9. Consider System (1). Assume that the following statements are true:

    1. H1: There exist a,b,α,β,λ,γ(0,+) such that

    af(u,v)b,αg(u,v)β,λh(u,v)γ,(u,v)(0,+)2.

    2. H2: f(u,v),h(u,v) are decreasing in u for all v and increasing in v for all u, however g(u,v) is increasing in u for all v and decreasing in v for all u.

    3. H3: If (m1,M1,m2,M2,m3,M3)[a,b]2×[α,β]2×[λ,γ]2 is a solution of the system

    m1=f(M2,m2),M1=f(m2,M2),m2=g(m3,M3),M2=g(M3,m3),m3=h(M1,m1),M3=h(m1,M1)

    then

    m1=M1,m2=M2,m3=M3.

    Then every solution of System (1) converges to the unique equilibrium point

    (¯x,¯y,¯z)=(f(1,1),g(1,1),h(1,1)).

    Proof. Let

    m01:=a,M01:=b,m02:=α,M02:=β,m03:=λ,M03:=γ

    and for each i=0,1,...,

    mi+11:=f(Mi2,mi2),Mi+11:=f(mi2,Mi2),
    mi+12:=g(mi3,Mi3),Mi+12:=g(Mi3,mi3),
    mi+13:=h(Mi1,mi1),Mi+13:=h(mi1,Mi1).

    We have

    af(β,α)f(α,β)b,
    αg(λ,γ)g(γ,λ)β,
    λh(b,a)h(a,b)γ,

    and so,

    m01=af(M02,m02)f(m02,M02)b=M01,
    m02=αg(m03,M03)g(M03,m03)β=M02,

    and

    m03=λh(M01,m01)h(m01,M01)γ=M03.

    Hence,

    m01m11M11M01,
    m02m12M12M02,

    and

    m03m13M13M03.

    Now, we have

    m11=f(M02,m02)f(M12,m12)=m21f(m12,M12)=M21f(m02,M02)=M11,
    m12=g(m03,M03)g(m13,M13)=m22g(M13,m13)=M22g(M03,m03)=M12,
    m13=h(M01,m01)h(M11,m11)=m23h(m11,M11)=M23h(m01,M01)=M13,

    and it follows that

    m01m11m21M21M11M01,
    m02m12m22M22M12M02,

    and

    m03m13m23M23M13M03.

    By induction, we get for i=0,1,..., that

    a=m01m11...mi11mi1Mi1Mi11...M11M01=b,
    α=m02m12...mi12mi2Mi2Mi12...M12M02=β,

    and

    λ=m03m13...mi13mi3Mi3Mi13...M13M03=γ.

    It follows that the sequences (mi1)iN0, (mi2)iN0, (mi3)iN0 (resp. (Mi1)iN0, (Mi2)iN0, (Mi3)iN0) are increasing (resp. decreasing) and also bounded, so convergent. Let

    m1=limi+mi1,M1=limi+Mi1,
    m2=limi+mi2,M2=limi+Mi2.
    m3=limi+mi3,M3=limi+Mi3.

    Then

    am1M1b,αm2M2β,λm3M3γ.

    By taking limits in the following equalities

    mi+11=f(Mi2,mi2),Mi+11=f(mi2,Mi2),
    mi+12=g(mi3,Mi3),Mi+12=g(Mi3,mi3),
    mi+13=h(Mi1,mi1),Mi+13=h(mi1,Mi1),

    and using the continuity of f, g and h we obtain

    m1=f(M2,m2),M1=f(m2,M2),m2=g(m3,M3),M2=g(M3,m3),m3=h(M1,m1),M3=h(m1,M1)

    so it follows from H3 that

    m1=M1,m2=M2,m3=M3.

    From H1, for n=1,2,, we get

    m01=axnb=M01,m02=αynβ=M02,m03=λznγ=M03.

    For n=2,3,..., we have

    m11=f(M02,m02)xn+1=f(yn,yn1)f(m02,M02)=M11,
    m12=g(m03,M03)yn+1=g(zn,zn1)g(M03,m03)=M13,

    and

    m13=h(M01,m01)zn+1=h(xn,xn1)h(m01,M01)=M13,

    that is

    m11xnM11,m12ynM12,m13znM13,n=3,4,.

    Now, for n=4,5,..., we have

    m21=f(M12,m12)xn+1=f(yn,yn1)f(m12,M12)=M21,
    m22=g(m13,M13)yn+1=g(zn,zn1)g(M13,m13)=M22,

    and

    m23=h(M11,m11)zn+1=h(xn,xn1)h(m11,M11)=M23,

    that is

    m21xnM21,m22ynM22,m23znM23,n=5,6,.

    Similarly, for n=6,7,..., we have

    m31=f(M22,m22)xn+1=f(yn,yn1)f(m22,M22)=M31,
    m32=g(m23,M23)yn+1=g(zn,zn1)g(M23,m23)=M32,

    and

    m33=h(M21,m21)zn+1=h(xn,xn1)h(m21,M21)=M33,

    that is

    m31xnM31,m32ynM32,m33znM33,n=7,8,.

    It follows by induction that for i=0,1,... we get

    mi1xnMi1,mi2ynMi2,mi3znMi3,n2i+1.

    Using the fact that i+ implies n+ and m1=M1,m2=M2,m3=M3, we obtain that

    limn+xn=M1,limn+yn=M2,limn+zn=M3.

    From (1) and using the fact that f, g and h are continuous and homogeneous of degree zero, we get

    M1=f(M2,M2)=f(1,1),M2=g(M3,M3)=g(1,1),M3=h(M1,M1)=h(1,1).

    The following theorem is devoted to global stability of the equilibrium point (¯x,¯y,¯z)=(f(1,1),g(1,1),h(1,1)).

    Theorem 2.10. Under the hypotheses of Theorem 2.1 and one of Theorems 2.2– 2.9, the equilibrium point (¯x,¯y,¯z)=(f(1,1),g(1,1),h(1,1)) is globally stable.

    Now as an application of the previous results, we give an example.

    Example 1. Consider the following system of difference equations

    xn+1=f(yn,yn1),yn+1=g(zn,zn1),zn+1=h(xn,xn1),nN0, (6)

    where x1, x0, y1, y0, z1, z0 (0,+) and

    f(u,v)=a1u+b1vα1u+β1v,g(u,v)=a2u+b2vα2u+β2v,h(u,v)=a3u+b3vα3u+β3v.

    Assume that ri:=aiβiαibi,i=1,2,3 are positive. For all (u,v)(0,+), we have

    fu(u,v)=r1v(α1u+β1v)2,fv(u,v)=r1u(α1u+β1v)2,a:=b1β1f(u,v)b:=a1α1
    gu(u,v)=r2v(α2u+β2v)2,gv(u,v)=r2u(α2u+β2v)2,α:=b2β2g(u,v)β:=a2α2
    hu(u,v)=r3v(α3u+β3v)2,hv(u,v)=r3u(α3u+β3v)2,λ:=b3β3h(u,v)γ:=a3α3

    It follows from Theorem 2.1 that the unique equilibrium point

    (f(1,1),g(1,1),h(1,1))=(a1+b1α1+β1,a2+b2α2+β2,a3+b3α3+β3)

    of System (6) will be locally stable if

    fu(1,1)gu(1,1)hu(1,1)<f(1,1)g(1,1)h(1,1)8

    which is equivalent to

    r1r2r3(α1+β1)2(α2+β2)2(α3+β3)2<(a1+b1)(a2+b2)(a3+b3)8(α1+β1)(α2+β2)(α3+β3).

    Also, we have conditions H1 and H2 of Theorem 2.2 are satisfied. So, to prove the global stability of the equilibrium point (f(1,1),g(1,1),h(1,1)) it suffices to check condition H3 of Theorem 2.2.

    For this purpose, let (m1,M1,m2,M2,m3,M3)[a,b]×[α,β]×[γ,λ] such that

    m1=f(m2,M2)=a1m2+b1M2α1m2+β1M2,M1=f(M2,m2)=a1M2+b1m2α1M2+β1m2, (7)
    m2=g(m3,M3)=a2m3+b2M3α2m3+β2M3,M2=g(M3,m3)=a2M3+b2m3α2M3+β2m3, (8)
    m3=h(m1,M1)=a3m1+b3M1α3m1+β3M1,M3=h(M1,m1)=a3M1+b3m1α3M1+β3m1. (9)

    From (7)-(9), we get

    m1M1=r1(m2M2)(m2+M2)(α1m2+β1M2)(α1M2+β1m2), (10)
    m2M2=r2(m3M3)(m3+M3)(α2m3+β2M3)(α2M3+β2m3), (11)
    m3M3=r3(m1M1)(m1+M1)(α3m1+β3M1)(α3M1+β3m1). (12)

    Now, from (10)-(12), we get

    (m1M1)(m2M2)(m3M3)=(m1M1)(m2M2)(m3M3)Θ(m1,M1,m2,M2,m3,M3), (13)

    where Θ(m1,M1,m2,M2,m3,M3) is equal to

    r1r2r3(m1+M1)(m2+M2)(m3+M3)(α3m1+β3M1)(α3M1+β3m1)(α1m2+β1M2)(α1M2+β1m2)(α2m3+β2M3)(α2M3+β2m3).

    It is not hard to see that

    83i=1α2ibiria2iβi(αi+βi)2Θ(m1,M1,m2,M2,m3,M3)83i=1aiβ2iriαib2i(αi+βi)2.

    Using the fact

    riaiβi,(αi+βi)22αiβi,αibi<aiβi,i=1,2,3,

    we get

    83i=1α2ibiria2iβi(αi+βi)23i=1αibiaiβi<1.

    If we choose the parameters ai,bi,αi,βi,i=1,2,3 such that

    3i=1aiβ2iriαib2i(αi+βi)2<18,

    then we get that

    Θ(m1,M1,m2,M2,m3,M3)1

    and so it follows from (13) that

    (m1M1)(m2M2)(m3M3)=0.

    Using this and (10)-(12), we obtain m1=M1,m2=M2,m3=M3. That is the condition H3 is satisfied.

    In summary we have the following result.

    Theorem 2.11. Assume that that parameters ai,bi,αi,βi,i=1,2,3 are such that

    C1: aiβi>αibi,i=1,2,3.

    C2:

    3i=1aiβiαibi(αi+βi)2<183i=1ai+biαi+βi.

    C3:

    3i=1aiβ2iriαib2i(αi+βi)2<18.

    Then the equilibrium point (f(1,1),g(1,1),h(1,1))=(a1+b1α1+β1,a2+b2α2+β2,a3+b3α3+β3) is globally stable.

    We visualize the solutions of System (6) in Figures 1-3. In Figure 1 and Figure 2, we give the solution and corresponding global attractor of System (6) for x1=2.13,x0=3.1,y1=4.03,y0=2.21,z1=2.76,z0=3.12 and a1=3,α1=3.2,b1=4,β1=5,a2=1.2,α2=2,b2=3.2,β2=6,a3=2.4,α3=2.3,b3=1.3,β3=1.3, respectively. Note that the conditions C1,C2,C3 is satisfied for these values.

    Figure 1.   .
    Figure 2.   .
    Figure 3.   .

    However Figure 3 shows the unstable solution corresponding to the values x1=2.13,x0=3.1,y1=4.03,y0=2.21,z1=2.76,z0=3.12 and a1=0.3,α1=4,b1=3,β1=1.1,a2=1.2,α2=4,b2=3.7,β2=1,a3=2.7,α3=0.2,b3=1.3,β3=3, which do not satisfy the conditions C1,C2,C3.

    Here, we are interested in existence of periodic solutions for System (1). In the following result we will established a necessary and sufficient condition for which there exist prime period two solutions of System (1).

    Theorem 3.1. Assume that α, β and γ are positive real numbers such that (α1)(β1)(γ1)0. Then, System (1) has a prime period two solution in the form of

    ...,(αp,βq,γr),(p,q,r),(αp,βq,γr),(p,q,r),...

    if and only if

    f(1,β)=αf(β,1),g(1,γ)=βg(γ,1),h(1,α)=γh(α,1).

    Proof. Let α, β, γ be positive real numbers such that (α1)(β1)(γ1)0 and assume that

    ...,(αp,βq,γr),(p,q,r),(αp,βq,γr),(p,q,r),...

    is a solution for System (1). Then, we have

    αp=f(q,βq)=f(1,β) (14)
    p=f(βq,q)=f(β,1) (15)
    βq=g(r,γr)=g(1,γ) (16)
    q=g(γr,r)=g(γ,1) (17)
    γr=h(p,αp)=h(1,α) (18)
    r=h(αp,p)=h(α,1). (19)

    From (14)-(19), it follows that

    f(1,β)=αf(β,1),g(1,γ)=βg(γ,1),h(1,α)=γh(α,1).

    Now, assume that

    f(1,β)=αf(β,1),g(1,γ)=βg(γ,1),h(1,α)=γh(α,1).

    and let

    x0=f(β,1),x1=f(1,β),y0=g(γ,1),y1=g(1,γ),z0=h(α,1),z1=h(1,α).

    We have

    x1=f(y0,y1)=f(g(γ,1),g(1,γ))=f(g(γ,1),βg(γ,1))=f(1,β)=x1,
    y1=g(z0,z1)=g(h(α,1),h(1,α))=g(h(α,1),γh(α,1))=g(1,γ)=y1,
    z1=h(x0,x1)=h(f(β,1),f(1,β))=h(f(β,1),αf(β,1))=h(1,α)=z1,
    x2=f(y1,y0)=f(g(1,γ),g(γ,1))=f(βg(γ,1),g(γ,1))=f(β,1)=x0,
    y2=g(z1,z0)=g(h(1,α),h(α,1))=g(γh(α,1),h(α,1))=g(1,γ)=y0,
    z1=h(x1,x0)=h(f(1,β),f(β,1))=h(αf(β,1),f(β,1))=h(1,α)=z0.

    By induction we get

    x2n1=x1,x2n=x0,y2n1=y1,y2n=y0,z2n1=z1,z2n=z0,nN0.

    In the following, we apply our result in finding prime period two solutions of two special Systems.

    Consider the three dimensional system of difference equations

    {xn+1=a1+b1ynyn1+c1yn1yn,yn+1=a2+b2znzn1+c2zn1zn,zn+1=a3+b3xnxn1+c3xn1xn (20)

    where nN0, the initial values xi,yi,zi,i=0,1 and the ai,bi,ci,i=1,2,3 are positive real numbers.

    System (20) can be seen as a generalization of the system

    xn+1=a1+b1ynyn1+c1yn1yn,yn+1=a2+b2xnxn1+c2xn1xn,

    studied in [23]. This last one is also a generalization of the equation

    xn+1=a1+b1xnxn1+c1xn1xn

    studied in [7] and [15].

    Corollary 1. Assume that (α1)(β1)(γ1)0, then System (20) has prime period two solution of the form

    ...,(αf(β,1),βg(γ,1),γh(α,1)),(f(β,1),g(γ,1),h(α,1)),...

    if and only if

    {(b1αc1)β2+a1β(α1)+c1αb1=0,(b2βc2)γ2+a2γ(β1)+c2βb2=0,(b3γc3)α2+a3α(γ1)+c3γb3=0. (21)

    Proof. System (20) can be written as

    xn+1=f(yn,yn1),yn+1=g(zn,zn1),zn+1=h(xn,xn1),

    where

    f(u,v)=a1+b1uv+c1vu,g(u,v)=a2+b2uv+c2vu,h(u,v)=a3+b3uv+c3vu.

    So, from Theorem 3.1,

    ...,(αf(β,1),βg(γ,1),γh(α,1)),(f(β,1),g(γ,1),h(α,1)),...

    will be a period prime two solution of System (20) if and only if

    f(1,β)=αf(β,1),g(1,γ)=βg(γ,1),h(1,α)=γh(α,1).

    Clearly this condition is equivalent to (21).

    Example 2. If we choose α=2,β=3,γ=12 then, condition (21) will be

    3a1+17b17c1=0,4a2b2+11c2=0,2a3+2b37c3=0.

    The last condition is satisfied for the choice

    a1=43,b1=1,c1=3,a2=14,b2=2,c2=111,a3=12,b3=4,c3=1

    of the parameters. The corresponding prime period two solution will be

    x2n1=x1=αf(β,1)=323,
    y2n1=y1=βg(γ,1)=18944,
    z2n1=z1=γh(α,1)=92,

    and

    x2n=x0=f(β,1)=163,
    y2n=y0=g(γ,1)=6344,
    z2n=z0=h(α,1)=9,

    that is

    {(323,18944,92),(163,6344,9),(323,18944,92),(163,6344,9),}.

    Now, consider the following system of difference equations

    {xn+1=a1+b1ynyn1+c1(yn1yn)2,yn+1=a2+b2zn1zn+c2(zn1zn)2,zn+1=a3+b3xn1xn+32(xn1xn)2,nN0 (22)

    where the initial values xi,yi,zi,i=0,1 and ai,bi,ci,i=1,2,3 are positive real numbers.

    Corollary 2. Assume that (α1)(β1)(γ1)0, then System (22) has prime period two solution of the form

    ...,(αf(β,1),βg(γ,1),γh(α,1)),(f(β,1),g(γ,1),h(α,1)),...

    if and only if

    {a1β2(α1)+b1β(αβ21)+c1(αβ4)=0,a2γ2(β1)+b2γ(βγ21)+c2(βγ4)=0,a3α2(γ1)+b3α(γα21)+c3(γα4)=0. (23)

    Proof. System (22) can be written as

    xn+1=f(yn,yn1),yn+1=g(zn,zn1),zn+1=h(xn,xn1),

    where

    {f(u,v)=a1+b1uv+c1(vu)2,g(u,v)=a2+b2vu+c2(vu)2,h(u,v)=a3+b3vu+c3(vu)2.

    So, from Theorem 3.1,

    ...,(αf(β,1),βg(γ,1),γh(α,1)),(f(β,1),g(γ,1),h(α,1)),...

    will be a period prime two solution of System (20) if and only if

    f(1,β)=αf(β,1),g(1,γ)=βg(γ,1),h(1,α)=γh(α,1).

    Clearly this condition is equivalent to

    {a1β2(α1)+b1β(αβ21)+c1(αβ4)=0,a2γ2(β1)+b2γ(βγ21)+c2(βγ4)=0,a3α2(γ1)+b3α(γα21)+c3(γα4)=0.

    Example 3. For α=3,β=2,γ=13 then, condition (23) will be

    8a1+22b113c1=0,9a221b2+161c2=0,18a318b3+242c3=0.

    The last condition is satisfied for the choice

    a1=1,b1=1,c1=3013,a2=199,b2=2,c2=17,a3=16,b3=79,c3=122

    of the parameters. The corresponding prime period two solution will be

    x2n1=x1=3f(2,1)=29726,
    y2n1=y1=2g(13,1)=51263,
    z2n1=z1=13h(3,1)=248297,

    and

    x2n=x0=f(2,1)=9326,
    y2n=y0=g(13,1)=25663,
    z2n=z0=h(3,1)=744297,

    that is

    {(29726,51263,248297),(9326,25663,744297),(29726,51263,248297),}.

    Here, we are interested in the oscillation of the solutions of System (1) about the equilibrium point (¯x,¯y,¯z)=(f(1,1),g(1,1), h(1,1)).

    Theorem 4.1. Let (xn,yn,zn)n1 be a solution of System (1) and assume that f(x,y), g(x,y) h(x,y) are decreasing in x for all y and are increasing in y for all x.

    1. If

    x0<¯x,x1>¯x,y0<¯y,y1>¯y,z0<¯z,z1>¯z,

    then we get

    x2n<¯x,x2n1>¯x,y2n<¯y,y2n1>¯y,z2n<¯z,z2n1>¯z,nN0.

    That is for the sequences (xn)n1, (yn)n1 and (zn)n1 we have semi-cycles of length one of the form

    +++.

    2. If

    x0>¯x,x1<¯x,y0>¯y,y1<¯y,z0>¯z,z1<¯z,

    then we get

    x2n>¯x,x2n1<¯x,y2n>¯y,y2n1<¯y,z2n>¯z,z2n1<¯z,nN0.

    That is for the sequences (xn)n1, (yn)n1 and (zn)n1 we have semi-cycles of length one of the form

    +++.

    Proof. 1. Assume that

    x0<¯x,x1>¯x,y0<¯y,y1>¯y,z0<¯z,z1>¯z.

    We have

    x1=f(y0,y1)>f(¯y,y1)>f(¯y,¯y)=f(1,1)=¯x,
    y1=g(z0,z1)>g(¯z,z1)>g(¯z,¯z)=g(1,1)=¯y,
    z1=h(x0,x1)>h(¯x,x1)>h(¯x,¯x)=h(1,1)=¯z,
    x2=f(y1,y0)<f(¯y,y0)<f(¯y,¯y)=f(1,1)=¯x,
    y2=g(z1,z0)<g(¯z,z0)<g(¯z,¯z)=g(1,1)=¯y,
    z2=h(x1,x0)<h(¯x,x0)<h(¯x,¯x)=h(1,1)=¯z.

    By induction, we get

    x2n<¯x,x2n1>¯x,y2n<¯y,y2n1>¯y,z2n<¯z,z2n1>¯z,nN0.

    2. Assume that

    x0>¯x,x1<¯x,y0>¯y,y1<¯y,z0>¯z,z1<¯z.

    We have

    x1=f(y0,y1)<f(¯y,y1)<f(¯y,¯y)=f(1,1)=¯x,
    y1=g(z0,z1)<g(¯z,z1)<g(¯z,¯z)=g(1,1)=¯y,
    z1=h(x0,x1)<h(¯x,x1)<h(¯x,¯x)=h(1,1)=¯z,
    x2=f(y1,y0)>f(¯y,y0)>f(¯y,¯y)=f(1,1)=¯x,
    y2=g(z1,z0)>g(¯z,z0)>g(¯z,¯z)=g(1,1)=¯y,
    x2=h(x1,x0)>h(¯x,x0)>h(¯x,¯x)=h(1,1)=¯y.

    By induction, we get

    x2n>¯x,x2n1<¯x,y2n>¯y,y2n1<¯y,z2n>¯z,z2n1<¯z,nN0.

    So, the proof is completed. Now, we will apply the results of this section on the following particular system.

    Example 4. Consider the system of difference equations

    xn+1=a1+b1(yn1yn)p,yn+1=a2+b2(zn1zn)q,zn+1=a3+b3(xn1xn)r,nN0, (24)

    where p,q,rN, the initial values xi,yi,zi,i=0,1 and the parameters ai,bi,i=1,2,3 are positive real numbers.

    Let f, g and h be the functions defined by

    f(u,v)=a1+b1(vu)p,g(u,v)=a2+b2(vu)q,h(u,v)=a3+b3(vu)r,u,v(0,+).

    It is not hard to see that

    fu(u,v)<0,fv(u,v)>0,gu(u,v)<0,gv(u,v)>0hu(u,v)<0,hv(u,v)>0.

    System (24) has the unique equilibrium point (¯x,¯y,¯z)=(a1+b1,a2+b2,a3+b3).

    Corollary 3. Let (xn,yn,zn)n1 be a solution of System (24). The following statements holds true:

    1. Let

    x0<¯x,x1>¯x,y0<¯y,y1>¯y,z0<¯z,z1>¯z.

    Then the sequences (xn)n (resp. (yn)n, (zn)n) oscillates about ¯x (resp. about ¯y, ¯z) with semi-cycle of length one and every semi-cycle is in the form

    +++.

    2. Let

    x0>¯x,x1<¯x,y0>¯y,y1<¯y,z0>¯z,z1<¯z.

    Then the sequences (xn)n (resp. (yn)n, (zn)n) oscillates about ¯x (resp. about ¯y, ¯z) with semi-cycle of length one and every semi-cycle is in the form

    +++.

    Proof. 1. Let

    x0<¯x,x1>¯x,y0<¯y,y1>¯y,z0<¯z,z1>¯z.

    We have

    y1y0>¯y¯y=1,

    which implies that

    x1=a1+b1(y1y0)p>a1+b1=¯x.

    Using the fact that

    z1z0>¯z¯z=1,

    we get

    y1=a2+b2(z1z0)q>a2+b2=¯y.

    Also as,

    x1x0>¯x¯x=1,

    we get

    z1=a3+b3(x1x0)r>a3+b3=¯z.

    Now, as

    y0y1<¯y¯y=1,

    we obtain

    x2=a1+b1(y0y1)p<a1+b1=¯x.

    Similarly,

    z0z1<¯z¯z=1y2=a2+b2(z0z1)q<a2+b2=¯y,

    and

    x0x1<¯x¯x=1z2=a3+b3(x0x1)r<a3+b3=¯z,

    and by induction we get that

    x2n¯x<0,y2n¯y<0,z2n¯z<0,
    x2n1¯x>0,y2n1¯y>0,z2n1¯z>0,

    for nN0. That is, the sequences (xn)n (resp. (yn)n, (zn)n) oscillates about ¯x (resp. about ¯y, ¯z) with semi-cycle of length one and every semi-cycle is in the form

    +++

    and this is the statement of Part 1. of Theorem 4.1.

    2.Let

    x0>¯x,x1<¯x,y0>¯y,y1<¯y,z0>¯z,z1<¯z.

    We have

    y1y0<¯y¯y=1,

    which implies that

    x1=a1+b1(y1y0)p<a1+b1=¯x.

    Using the fact that

    z1z0<¯z¯z=1,

    we get

    y1=a2+b2(z1z0)q<a2+b2=¯y.

    Also as,

    x1x0<¯x¯x=1,

    we get

    z1=a3+b3(x1x0)r<a3+b3=¯z.

    Now, as

    y0y1>¯y¯y=1,

    we obtain

    x2=a1+b1(y0y1)p>a1+b1=¯x.

    Similarly,

    z0z1>¯z¯z=1y2=a2+b2(z0z1)q>a2+b2=¯y,

    and

    Thus, by induction we get that

    for . That is the sequences (resp. , ) oscillates about (resp. about , ) with semi-cycle of length one and every semi-cycle is in the form

    and this is the statement of Part 2. of Theorem 4.1.

    In this study, the global stability of the unique positive equilibrium point of a three-dimensional general system of difference equations defined by positive and homogeneous functions of degree zero was studied. For this, general convergence theorems were given considering all possible monotonicity cases in arguments of functions , and . In addition, the periodic nature and oscillation of the general system considered was also discussed and successful results were obtained. It is noteworthy that the results obtained on our general three-dimensional system have high applicability.

    The authors thanks the two referees for their comments and suggestions. The work of N. Touafek and Y. Akrour was supported by DGRSDT (MESRS-DZ).



    [1] On the difference equation . J. Taibah Univ. Sci. (2019) 13: 1014-1021.
    [2] On the recursive seqience . J. Math. Anal. Appl. (1999) 233: 790-798.
    [3] K. C. Border, Euler's Theorem for homogeneous functions, 2017. Available from: http://www.its.caltech.edu/ kcborder/Courses/Notes/EulerHomogeneity.pdf.
    [4] Global stability of a third-order nonlinear system of difference equations with period-two coefficients. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. (2017) 111: 325-347.
    [5] On the dynamics of . Commun. Appl. Nonlinear Anal. (2005) 12: 35-39.
    [6] S. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics, Springer, 2005.
    [7] New method to obtain periodic solutions of period two and three of a rational difference equation. Nonlinear Dynam. (2015) 79: 241-250.
    [8] E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Advances in Discrete Mathematics and Applications Volume 4, Chapman and hall/CRC, 2005.
    [9] The global asymptotic stability of a system of difference equations. J. Difference Equ. Appl. (2018) 24: 976-991.
    [10] Solution form of a higher-order system of difference equations and dynamical behavior of its special case. Math. Methods Appl. Sci. (2017) 40: 3599-3607.
    [11] Dynamic behavior of a second-order nonlinear rational difference equation. Turkish J. Math. (2015) 39: 1004-1018.
    [12] On a third order rational difference equation with variable coeffitients. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms (2013) 20: 251-264.
    [13] V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Mathematics and its Applications, Kluwer Academic Publisher, volume 256, 1993. doi: 10.1007/978-94-017-1703-8
    [14] A. S. Kurbanli, C. Çinar and I. Yalçinkaya, On the behavior of positive solutions of the system of rational difference equations , , Math. Comput. Modelling, 53 (2011), 1261–1267. doi: 10.1016/j.mcm.2010.12.009
    [15] Comment on New method to obtain periodic solutions of period two and three of a rational difference equation [Nonlinear Dyn 79:241-250]. Nonlinear Dyn. (2017) 88: 1043-1049.
    [16] O. Moaaz, Dynamics of difference equation , Adv. Difference Equ., 2018 (2018), Paper No. 447, 14 pp. doi: 10.1186/s13662-018-1896-0
    [17] O. Moaaz, D. Chalishajar and O. Bazighifan, Some qualitative behavior of solutions of general class of difference equations, Mathematics, 7 (2019), Article 585, 12 pp.
    [18] O. Özkan, A. S. Kurbanli, On a system of difference equations, Discrete Dyn. Nat. Soc., 2013 (2013), Art. ID 970316, 7 pp. doi: 10.1155/2013/970316
    [19] S. Stević, Representation of solutions of bilinear difference equations in terms of generalized Fibonacci sequences, Electron. J. Qual. Theory Differ. Equ., 2014 (2014), Article no. 67, 15 pp. doi: 10.14232/ejqtde.2014.1.67
    [20] A solvable system of difference equations. Commun. Korean Math. Soc. (2020) 35: 301-319.
    [21] D. T. Tollu and I. Yalçinkaya, Global behavior of a three-dimensional system of difference equations of order three, Commun. Fac. Sci. Univ. Ank., Ser. A1, Math. Stat., 68 (2019), no. 1, 1–16. doi: 10.31801/cfsuasmas.443530
    [22] On a second order rational difference equation. Hacet. J. Math. Stat. (2012) 41: 867-874.
    [23] N. Touafek, On a general system of difference equations defined by homogeneous functions, Math. Slovaca, to appear.
    [24] On the periodicity of a max-type rational difference equation. J. Nonlinear Sci. Appl. (2017) 10: 4648-4661.
    [25] Global asymptotic stability of a system of difference equations. Appl. Anal. (2008) 87: 677-687.
    [26] Global behavior of a second-order system of difference equations. Adv. Stud. Contemp. Math. Kyungshang (2016) 26: 653-667.
    [27] On the behaviour of the solutions of difference equation systems. J. Comput. Anal. Appl. (2014) 16: 932-941.
    [28] On a solvable system of difference equations of higher-order with period two coefficients. Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. (2019) 68: 1675-1693.
    [29] On the solutions of a three-dimensional system of difference equations. Kuwait J. Sci. (2016) 43: 95-111.
  • This article has been cited by:

    1. Ibraheem ALSULAMİ, Elsayed ELSAYED, On the dynamical behaviors and periodicity of difference equation of order three, 2022, 11, 1304-7981, 48, 10.54187/jnrs.1037024
    2. Mounira Boulouh, Nouressadat Touafek, Durhasan Turgut Tollu, On the behavior of the solutions of an abstract system of difference equations, 2022, 68, 1598-5865, 2937, 10.1007/s12190-021-01641-7
    3. Hamida Hamioud, Nouressadat Touafek, Imane Dekkar, Yasin Yazlik, On a three dimensional nonautonomous system of difference equations, 2022, 68, 1598-5865, 3901, 10.1007/s12190-021-01693-9
    4. E. M. Elsayed, Q. Din, N. A. Bukhary, Theoretical and numerical analysis of solutions of some systems of nonlinear difference equations, 2022, 7, 2473-6988, 15532, 10.3934/math.2022851
    5. Mounira Boulouh, Nouressadat Touafek, Durhasan Turgut Tollu, On a System of Difference Equations Defined by the Product of Separable Homogeneous Functions, 2023, 73, 1337-2211, 1243, 10.1515/ms-2023-0092
    6. Hiba Zabat, Nouressadat Touafek, Imane Dekkar, Global behavior of a rational system of difference equations with arbitrary powers, 2024, 1598-5865, 10.1007/s12190-024-02304-z
    7. Durhasan Turgut Tollu, Merve Kayhan, Qualitative behavior of solutions of a two-dimensional rational system of difference equations, 2024, 2687-6531, 10.54286/ikjm.1562737
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2788) PDF downloads(341) Cited by(7)

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog