In this paper, we study the quasi-neutral limit for the compressible two-fluid Euler–Maxwell equations for well-prepared initial data. Precisely, we proved the solution of the three-dimensional compressible two-fluid Euler–Maxwell equations converges locally in time to that of the compressible Euler equation as ε tends to zero. This proof is based on the formal asymptotic expansions, the iteration techniques, the vector analysis formulas and the Sobolev energy estimates.
Citation: Min Li, Xueke Pu, Shu Wang. Quasineutral limit for the compressible two-fluid Euler–Maxwell equations for well-prepared initial data[J]. Electronic Research Archive, 2020, 28(2): 879-895. doi: 10.3934/era.2020046
[1] | Min Li, Xueke Pu, Shu Wang . Quasineutral limit for the compressible two-fluid Euler–Maxwell equations for well-prepared initial data. Electronic Research Archive, 2020, 28(2): 879-895. doi: 10.3934/era.2020046 |
[2] | Fei Shi . Incompressible limit of Euler equations with damping. Electronic Research Archive, 2022, 30(1): 126-139. doi: 10.3934/era.2022007 |
[3] | Min Li . Long-wavelength limit for the Green–Naghdi equations. Electronic Research Archive, 2022, 30(7): 2700-2718. doi: 10.3934/era.2022138 |
[4] | Jie Zhang, Gaoli Huang, Fan Wu . Energy equality in the isentropic compressible Navier-Stokes-Maxwell equations. Electronic Research Archive, 2023, 31(10): 6412-6424. doi: 10.3934/era.2023324 |
[5] | Xiaoxia Wang, Jinping Jiang . The uniform asymptotic behavior of solutions for 2D g-Navier-Stokes equations with nonlinear dampness and its dimensions. Electronic Research Archive, 2023, 31(7): 3963-3979. doi: 10.3934/era.2023201 |
[6] | Natália Bebiano, João da Providência, Wei-Ru Xu . Approximations for the von Neumann and Rényi entropies of graphs with circulant type Laplacians. Electronic Research Archive, 2022, 30(5): 1864-1880. doi: 10.3934/era.2022094 |
[7] | Long Fan, Cheng-Jie Liu, Lizhi Ruan . Local well-posedness of solutions to the boundary layer equations for compressible two-fluid flow. Electronic Research Archive, 2021, 29(6): 4009-4050. doi: 10.3934/era.2021070 |
[8] | Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao . A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28(4): 1439-1457. doi: 10.3934/era.2020076 |
[9] | Haibo Cui, Junpei Gao, Lei Yao . Asymptotic behavior of the one-dimensional compressible micropolar fluid model. Electronic Research Archive, 2021, 29(2): 2063-2075. doi: 10.3934/era.2020105 |
[10] | Xincai Zhu, Yajie Zhu . Existence and limit behavior of constraint minimizers for elliptic equations with two nonlocal terms. Electronic Research Archive, 2024, 32(8): 4991-5009. doi: 10.3934/era.2024230 |
In this paper, we study the quasi-neutral limit for the compressible two-fluid Euler–Maxwell equations for well-prepared initial data. Precisely, we proved the solution of the three-dimensional compressible two-fluid Euler–Maxwell equations converges locally in time to that of the compressible Euler equation as ε tends to zero. This proof is based on the formal asymptotic expansions, the iteration techniques, the vector analysis formulas and the Sobolev energy estimates.
The purpose of this present paper is to investigate the quasi-neutral limit for the two-fluid Euler–Maxwell equations consisting of a set of nonlinear conservation laws for densities and momentums coupled to the Maxwell equations in time
{∂nν∂t+div(nνuν)=0,ν=e,i,mν[∂(nνuν)∂t+div(nνuν⊗uν)]+∇Pν(nν)=qνnν(E+uνטB),∂t˜B+∇×E=0,ϵ0∂tE−μ−10∇טB=−(qiniui+qeneue),div˜B=0,ϵ0divE=qini+qene,(1a)(1b)(1c)(1d) |
where
With these parameters, system (1) under study can be scaled to the following form
{∂tnν+∇⋅(nνuν)=0,mν(∂tuν+uν⋅∇uν)+∇hν(nν)=qν(E+γuν×B),γ∂tB+∇×E=0,γε2∂tE−∇×B=−γ(niui−neue),divB=0,ε2divE=ni−ne,(2a)(2b)(2c)(2d) |
where
Usually, the dimensionless parameters
When taking
Recently, the two-fluid Euler/Navier-Stokes equations with electromagnetic field become more and more interesting as well as important in fluid dynamics. The local smooth solution was established in [5] since Euler–Maxwell equations are symmetrizable hyperbolic for
Different from the unipolar case, the formal quasi-neutral limit for the two-fluid Euler–Maxwell equations is the compressible type. Here, we are going to establish the quasi-neutral limit for the two-fluid system (2) under well-prepared initial data, which means the compatibility conditions (9) are satisfied. Based on the asymptotic expansion and the iteration techniques, we proved rigorously the main result stated in Theorem 2.3. Formally, setting
The paper is organized as follows. In Sect. 2, we perform the formal asymptotic analysis and give the main result stated in Theorem 2.3. In Sect. 3, we justify rigorously the uniform (in
Before proceeding, let us introduce the notations and lemmas which will be frequently used throughout this paper. We denote by
In the following, we state the basic Moser-type calculus inequalities which will be used widely in the error estimates.
Lemma 1.1. Let
‖∂α(fg)‖Lp≤C‖f‖Lp1‖∂αg‖Lp2+C‖∂αf‖Lp3‖g‖Lp4, |
‖[∂α,f]g‖Lp≤C‖∂f‖Lp1‖∂α−1g‖Lp2+C‖∂αf‖Lp3‖g‖Lp4, | (3) |
where
1p=1p1+1p2=1p3+1p4. |
We make the following ansatz for
(nεν,uεν,Eε,Bε)=∑k≥0ε2k(n(k)ν,u(k)ν,E(k),B(k)). | (4) |
Plugging the formal expansion (4) into system (2), we can obtain the following results.
(ⅰ)The leading term
{∂tn(0)+n(0)divu(0)ν+u(0)ν⋅∇n(0)=0,mν(∂tu(0)ν+u(0)ν⋅∇u(0)ν)+∇hν(n(0))=qν(E(0)+u(0)ν×B(0)),∇×B(0)=n(0)(u(0)i−u(0)e),∂tB(0)+∇×E(0)=0,divB(0)=0.(5a)(5b)(5c)(5d) |
The local existence of smooth solutions cannot be obtained directly by the result of [5] since the displacement current and the charge separation are neglected in the limit system (5). In order to overcome the difficulty, we introduce the general vorticity
∂tω(0)ν+∇×(u(0)ν×ω(0)ν)=0, | (6) |
namely,
∂tω(0)ν+ω(0)νdivu(0)ν+u(0)ν⋅∇ω(0)ν−ω(0)ν⋅∇u(0)ν=0. | (7) |
Taking the inner product of (7) with
12ddt‖ω(0)ν‖2L2≤C‖u(0)ν‖H3‖ω(0)ν‖2L2. | (8) |
We supplement the above limit system (5) with the initial data
n(0)i0=n(0)e0=n(0)0,ω(0)ν0=0,∇×B(0)0=n(0)0(u(0)i0−u(0)e0). | (9) |
In view of (8), we get
0=∇×(ω(0)i−ω(0)e)=∇×(∇×(u(0)i−u(0)e))+mi+memimen(0)(u(0)i−u(0)e). | (10) |
Taking the inner product of (10) with
‖∇×(u(0)i−u(0)e)‖2L2+mi+memime‖√n(0)(u(0)i−u(0)e)‖2L2=0, |
which implies
Therefore, for well-prepared initial data (9), solutions
{∂tn(0)+n(0)divu(0)+u(0)⋅∇n(0)=0,∂tu(0)+u(0)⋅∇u(0)+∇h0(n(0))=0,E(0)=∇ψ,(11a)(11b)(11c) |
where
ψ=mimemi+me(hi(n(0))mi−he(n(0))me), | (12) |
and
h0(n(0))=hi(n(0))+he(n(0))mi+me. | (13) |
Theorem 2.1. Let
(n(0),u(0))∈L∞(0,T0;H˜s+3),E(0)∈L∞(0,T0;H˜s+2). |
(ⅱ)For any
(n(k)ν,u(k)ν,E(k),B(k))0≤k≤j−1 |
are smooth as much as we want in previous steps, we can get the following linear system satisfied by
{∂tn(j)ν+n(0)divu(j)ν+n(j)νdivu(0)+u(0)⋅∇n(j)ν+u(j)ν⋅∇n(0)=f1ν,mν(∂tu(j)ν+u(0)⋅∇u(j)ν+u(j)ν⋅∇u(0))+∇(hν(n(0))n(j)ν)=qν(E(j)+u(0)×B(j))+f2ν,∇×B(j)=∂tE(j−1)+n(0)(u(j)i−u(j)e)+u(0)(n(j)i−n(j)e)+f3,∂tB(j)+∇×E(j)=0,n(j)i−n(j)e=divE(j−1),(14a)(14b)(14c)(14d)(14e) |
where
{f1ν=−j−1∑k=1(n(k)νdivu(j−k)ν+u(k)ν⋅∇n(j−k)ν),(15a)f2ν=−mνj−1∑k=1(u(k)ν⋅∇u(j−k)ν)−∇(hj−1ν(n(k)ν)k≤j−1)+qνj−1∑k=1(u(k)ν×B(j−k)),(15b)f3=j−1∑k=1n(k)ν(u(j−k)i−u(j−k)e).(15c) |
Here, we have used the following relation
hν(n(0)+∑j≥1ε2jn(j)ν)=hν(n(0))+h′ν(n(0))∑j≥1(ε2jn(j)ν)+∑j≥2ε2jhj−1ν((n(k)ν)k≤j−1), | (16) |
where
hj−1ν((n(k)ν)k≤j−1)=1j!ddε2jhν(n(0)+∑j≥1ε2jn(j)ν)|ε=0−h′ν(n(0))n(j)ν. | (17) |
Obviously, the profile
Letting
{∂tω(j)−+ω(j)−divu(0)+u(0)⋅∇ω(j)−−ω(j)−⋅∇u(0)=∇×(f2i−f2e),(18a)∇×ω(j)−=∇divu(j)−−Δu(j)−+(1mi+1me)(n(0)u(j)−+divE(j−1)u(0)+∂tE(j−1)+f3),(18b) |
where
n(j)i,0−n(j)e,0=divE(j−1)0, divB(j)0=0. | (19) |
Letting
{∂tn(j)++n(0)divu(j)++n(j)+divu(0)+u(0)⋅∇n(j)++u(j)+⋅∇n(0)=f1i+f1e,(20a)(mi+me)(∂tu(j)++u(0)⋅∇u(j)++u(j)+⋅∇u(0))+∇((hi(n(0))+he(n(0)))n(j)+)=(mi−me)(∂tu(j)−+u(0)⋅∇u(j)−+u(j)−⋅∇u(0))+∇((hi(n(0))−he(n(0)))divE(j−1))+f2i+f2e.(20b) |
Then
Theorem 2.2. Let
(n(j)ν,u(j)ν,E(j),B(j))∈L∞(0,T0;H˜s+3×H˜s+3×H˜s+2×H˜s+2). |
Take the ansatz for
{nεν=n(0)+m∑k=1ε2kn(k)ν+ε2mΨν=¯nν+ε2mΨν,(21a)uεν=u(0)+m∑k=1ε2ku(k)ν+ε2mUν=¯uν+ε2mUν,(21b)Eε=E(0)+m∑k=1ε2kE(k)+ε2mF=ˉE+ε2mF,(21c)Bε=m∑k=1ε2kB(k)+ε2mG=ˉB+ε2mG,(21d) |
where
{∂tΨν+uεν⋅∇Ψν+nενdivUν=−Ψνdiv¯uν−Uν⋅∇¯nν−ε2ℜν1,(22a)mν(∂tUν+uεν⋅∇Uν)+h′ν(nεν)∇Ψν−qνF−qν(uεν×G)=−mνUν⋅∇¯uν+qνUν×ˉB−h″ν(ˉnν)Ψν∇ˉnν−ε2ℜν2,(22b)ε2∂tF−∇×G+nεiUi−nεeUe+Ψi¯ui−Ψe¯ue=−ε2ℜ3,(22c)∂tG+∇×F=0,divG=0,(22d)ε2divF−Ψi+Ψe=0,(22e) |
where the profile
Let
{∂tWν+3∑i=1Ai(nεν,uεν)∂xiWν+J=ℜν1−ε2ℜν0,(23a)ε2∂tF−∇×G+nεiUi−nεeUe+Ψi¯ui−Ψe¯ue=−ε2ℜ3,(23b)ε2divF−Ψi+Ψe=0,(23c)∂tG+∇×F=0,divG=0,(23d)(Wν,F,G)|t=0=(Wν0,F0,G0),(23e) |
where
Ai(nεν,uεν)=(uενnενe⊤ih′ν(nεν)mνeiuενI), | (24) |
J=(0−qνF−qν(uεν×G)mν), | (25) |
ℜν1=(−Ψνdiv¯uν−Uν⋅∇¯nν−Uν⋅∇¯uν+qνmνUν×ˉB−1mν(h″ν(ˉnν)Ψν∇ˉnν)), | (26) |
and
ℜν0=(ℜν1,ℜν2)⊤. |
Moreover,
A0(nεν)=(h′ν(nεν)mν0⊤0nενI), | (27) |
where
Thanks to the symmetrizable structure of system (22), we obtain the standard existence theory of local smooth solutions [5]. Based on this, we will prove the main result stated in the following
Theorem 2.3. Let
‖(nεν,0−n(0)0−2m∑j=1εjn(j)ν,0,uεν,0−u(0)0−2m∑j=1εju(j)ν,0,Eε0−E(0)0−2m∑j=1εjE(j)0, Bε0−2m∑j=1εjB(j)0)‖H4≤Cε2m−4, |
where
supt∈[0,T0]‖(nεν−n(0)−2m∑j=1εjn(j)ν,uεν−u(0)−2m∑j=1εju(j)ν,Eε−E(0)−2m∑j=1εjE(j),Bε−2m∑j=1εjB(j))(t)‖H3≤Cε2m−4. |
To state the main theorem, we introduce the set
‖(Wν,εF,G)‖H3≤˜Cε−3, |
where
|||(Wν,εF,G)|||ε,s=s∑|β|=0ε|β|‖∂β(Wν,εF,G)‖L2, | (28) |
for
(Wν,0,F0,G0)=(Wν0,F0,G0), |
where
(Wν,p+1,Fp+1,Gp+1)=Φ(Wν,p,Fp,Gp), |
where
{∂tWν,p+1+3∑i=1˜Ai(nε,pν,uε,pν)∂xiWν,p+1+˜Jν,p+1=˜ℜν,p+1,(29a)ε2∂tFp+1−∇×Gp+1+nε,piUi,p+1−nε,peUe,p+1+¯uiΨi,p+1−¯ueΨe,p+1=−ε2ℜ3,(29b)∂tGp+1+∇×Fp+1=0,divGp+1=0,(29c)ε2divFp+1−Ψi,p+1+Ψe,p+1=0,(29d)(Wν,p+1,Fp+1,Gp+1)|t=0=(Wν0,F0,G0),(29e) |
where
(nε,pν,uε,pν)=(ˉnν,ˉuν)+ε2m(Ψν,p,Uν,p), | (30) |
˜Jν,p+1=(0−qνFp+1−qν(uε,pν×Gp+1)mν), | (31) |
˜Ai(nε,pν,uε,pν)=(uε,pνnε,pνe⊤ih′ν(nε,pν)mνeiuε,pνI), | (32) |
and
˜ℜν,p+1=(−Ψν,p+1div¯uν−Uν,p+1⋅∇¯nν−Uν,p+1⋅∇¯uν+qνmνUν,p+1×ˉB−1mν(h″ν(ˉnν)Ψν,p+1∇ˉnν))−ε2ℜν0. | (33) |
Denote
Ep,ε≜‖(Wν,p,Gp,εFp)‖H4. | (34) |
Proposition 1. Let
(nε,pν,uε,pν,Wν,p+1,Gp+1,Fp+1) (ν=i,e) |
be the solutions of the iteration equations (29). Assume that
|||(Wν0,εF0,G0)|||ε,4≤C, |
where
|||(Wν,p,εFp,Gp)(t)|||ε,4≤C. |
Further, by the definitions (28) and (34) that
Ep,ε≤Cε−4, |
for any
The following section is devoted to the proof of Proposition 1.
Obviously, since
(Wν,0,F0,G0)=(Wν0,F0,G0), |
we can obtain
E0,ε≤Cε−4. | (35) |
Now we assume there exists a sufficiently small
Ep,ε≤Cε−4. | (36) |
Hence, we need to prove that
Ep+1,ε≤Cε−4. | (37) |
Recalling the expansion (21), we immediately obtain that there exists positive constant
n(0)2≤nε,pν≤3n(0)2. | (38) |
Here, we need the condition
Lemma 3.1. For any
‖(nε,pν,uε,pν)‖Hk≤C(1+ε2mEp,ε). | (39) |
Proof. By the expansion (21) and Sobolev imbedding that
‖(nε,pν,uε,pν)‖Hk≤C+Cε2m‖(Ψν,p,Uν,p)‖Hk≤C(1+ε2mEp,ε). | (40) |
Analogously, we get
Lemma 3.2. Under the same assumptions as in Lemma 3.1 hold. Then we obtain
‖∂tnε,pν‖L∞≤C+Cε4mE2p,ε. | (41) |
In the following, we first give the
Lemma 3.3. For any
ddt‖(Wi,p+1,We,p+1,εFp+1,Gp+1)‖2L2≤C(1+ε4mE2p,ε)‖(Wi,p+1,We,p+1,εFp+1,Gp+1)‖2L2+Cε2. | (42) |
Proof. Applying the operator
mν∑ν=i,e⟨TWν,p+1,Wν,p+1⟩+ddt‖(εFp+1,Gp+1)‖2L2+∫nε,piUi,p+1⋅Fp+1−∫nε,peUe,p+1⋅Fp+1−∑ν=i,eqν∫nε,pνFp+1⋅Uν,p+1=−∫¯uiΨi,p+1⋅Fp+1+∫¯ueΨe,p+1⋅Fp+1+∑ν=i,eqν∫nε,pνuε,pν×Gp+1⋅Uν,p+1+∑ν=i,e∫ˆA0˜ℜν,p+1Wν,p+1−ε2∫ˆA0ℜ3Fp+1≜5∑i=1Ii0, | (43) |
where
ˆA0=(h′ν(nε,pν)mν0⊤0nε,pνI), | (44) |
and the abbreviated operator
⟨TWν,p+1,Wν,p+1⟩=12ddt‖ˆA0Wν,p+1‖2L2−12∫(∂t,∇⋅)(ˆA0,→ˆA)|Wν,p+1|2, | (45) |
where
−∫∇×Gp+1⋅Fp+1+∫∇×Fp+1⋅Gp+1=∫div(Fp+1×Gp+1)=0. | (46) |
Thanks to Sobolev embedding
‖∂tˆA0‖L∞≤‖(1+h″ν(nε,pν))∂tnε,pν‖L∞≤C+Cε4mE2p,ε, | (47) |
and
‖div→ˆA‖L∞≤C‖(1+h″ν(nε,pν))‖(∇nε,pν,divuε,pν)‖L∞+C‖(1+h″ν(nε,pν))‖∇nε,pν⋅uε,pν‖L∞≤C+Cε4m‖(Ψν,p,Uν,p)‖2H3≤C+Cε4mE2p,ε. | (48) |
Hence,
12∫(∂t,∇⋅)(ˆA0,→ˆA)|Wν,p+1|2≤C(1+ε4mE2p,ε)‖Wν,p+1‖2L2. | (49) |
Inserting this into (43), and using (46) and
ddt‖(ˆA0Wν,p+1,εFp+1,Gp+1)‖2L2≤5∑i=1Ii0+C(1+ε4mE2p,ε)‖Wν,p+1‖2L2. | (50) |
From (29d), the first and second term on the right hand side of (43) can be accordingly decomposed into
I10+I20=−∫(Ψi,p+1−Ψe,p+1)¯ui⋅Fp+1−∫(¯ui−¯ue)Ψe,p+1⋅Fp+1=−ε2∫divFp+1Fp+1⋅¯ui−∫(¯ui−¯ue)Ψe,p+1⋅Fp+1. |
By the vector analysis formulation
divff=div(f⊗f)−12∇(|f|2)−∇×f×f, | (51) |
where
I10+I20=−ε2∫(div(Fp+1⊗Fp+1)−12∇(|Fp+1|2)−∇×Fp+1×Fp+1)⋅¯ui−∫(¯ui−¯ue)Ψe,p+1⋅Fp+1≤ε2∫∇×Fp+1×Fp+1⋅¯ui+C‖(Ψe,p+1,εFp+1)‖2L2, |
thanks to
ε2∂t(Fp+1×Gp+1)−∇×Gp+1×Gp+1−ε2∇×Fp+1×Fp+1 +(nε,piUi,p+1−nε,peUe,p+1)×Gp+1+(¯uiΨi,p+1−¯ueΨe,p+1)×Gp+1 +ε2ℜ3×Gp+1=0. | (52) |
Thus, we have
ε2∫∇×Fp+1×Fp+1⋅¯ui=ε2ddt∫(Fp+1×Gp+1)⋅¯ui−ε2∫(Fp+1×Gp+1)⋅∂t¯ui−∫div(Gp+1⊗Gp+1)⋅ˉu+12∫∇(|Gp+1|2)⋅ˉu+∫(nε,piUi,p+1−nε,peUe,p+1)×Gp+1⋅¯ui+∫(¯uiΨi,p+1−¯ueΨe,p+1)×Gp+1⋅¯ui+ε2∫ℜ3×Gp+1⋅¯ui≤ε2ddt∫(Fp+1×Gp+1)⋅¯ui+Cε4+C‖(Wν,p+1,Gp+1,εFp+1)‖2L2, |
thanks to
∑ν=i.e‖ˆA0Wν,p+1‖2L2≥C‖Wν,p+1‖2L2. |
In fact, since
‖(εFp+1,Gp+1)‖2L2−ε2∫(Fp+1×Gp+1)⋅¯ui≥C‖(εFp+1,Gp+1)‖2L2. |
For the last three terms
I30∼I50≤Cε2+C(1+ε2mEp,ε)‖(εFp+1,Gp+1,Wν,p+1)‖2L2. |
Putting the above estimates together, the proof of Lemma 3.3 is then complete.
Lemma 3.4. Let
ddt‖(∂αWi,p+1,∂αWe,p+1)‖2L2−∑ν=i,eqν∫nε,pν∂αFp+1⋅∂αUν,p+1≤Cε4+C(1+ε4mE2p,ε)‖(Gp+1,Wν,p+1)‖2Hk. | (53) |
Proof. First, applying the operator
∂t∂αWν,p+1+3∑i=1˜Ai(nε,pν,uε,pν)∂xi∂αWν,p+1+∂α˜Jν,p+1=∂α˜ℜν,p+1+H1, | (54) |
where
H1=3∑i=1[∂α,˜Ai(nε,pν,uε,pν)]∂xiWν,p+1. | (55) |
Then taking inner product of (54) with
mν⟨T∂αWν,p+1,∂αWν,p+1⟩−qν∫nε,pν∂αFp+1⋅∂αUν,p+1=mν∫ˆA0∂α˜ℜν,p+1∂αWν,p+1+qν∫nε,pν∂α(uε,pν×Gp+1)⋅∂αUν,p+1+mν∫ˆA0H1∂αWν,p+1=3∑i=1Iiε. | (56) |
Again, the abbreviated operator
⟨TWν,p+1,Wν,p+1⟩=12ddt‖ˆA0∂αWν,p+1‖2L2−12∫(∂t,∇⋅)(ˆA0,→˜A)|∂αWν,p+1|2, |
where
mν⟨T∂αWν,p+1,∂αWν,p+1⟩≤C(1+ε4mE2p,ε)‖Wν,p+1‖2Hk. | (57) |
On the other hand, using Young's inequality, Hölder inequality, Lemma 1.1, together with (38), we get
I1ε≤C‖Wν,p+1‖2Hk+Cε4, |
and
I2ε≤C(1+ε2mEp,ε)‖(Gp+1,Wν,p+1)‖2Hk. |
For the commutator term
I3ε≤C‖ˆA0‖L∞‖H1‖L2‖∂αWν,p+1‖L2≤C(‖∇˜Ai‖L∞‖∇Wν,p+1‖Hk−1+‖˜Ai‖Hk‖∇Wν,p+1‖L∞)‖∂αWν,p+1‖L2≤C(1+ε2mEp,ε)‖Wν,p+1‖2Hk. |
Finally, putting all the above estimates together, we completes the proof of Lemma 3.4, thanks to (38).
Lemma 3.5. Under the same conditions in Lemma 3.4, we have the following estimate
ddt‖(ε∂αFp+1,∂αGp+1)‖2L2+∑ν=i,eqν∫nε,pν∂αUν,p+1⋅∂αFp+1≤C‖(Gp+1,Wν,p+1,εFp+1)‖2Hk+Cε2(1+ε4mE2p,ε)‖Wν,p+1‖2Hk−1+Cε2. | (58) |
Proof. An application of the operator
{ε2∂t∂αFp+1−∂α∇×Gp+1+nε,pi∂αUi,p+1−nε,pe∂αUe,p+1+¯ui∂αΨi,p+1−¯ue∂αΨe,p+1=−ε2∂αℜ3+H2+H3,(59a)∂t∂αGp+1+∂α∇×Fp+1=0,∂αdivGp+1=0,(59b) |
where
H2=[∂α,nε,pi]Ui,p+1−[∂α,nε,pe]Ue,p+1, | (60) |
and
H3=[∂α,¯ui]Ψi,p+1−[∂α,¯ue]Ψe,p+1. | (61) |
Multiplying (62) by
ddt‖(ε∂αFp+1,∂αGp+1)‖2L2+∫nε,pi∂αUi,p+1⋅∂αFp+1−∫nε,pe∂αUe,p+1⋅∂αFp+1=−∫¯ui∂αΨi,p+1⋅∂αFp+1+∫¯ue∂αΨe,p+1⋅∂αFp+1+∫H2∂αFp+1+∫H3∂αFp+1−ε2∫∂αℜ3∂αFp+1≜5∑i=1Jiε. | (62) |
Here, the vector analysis formula
div(f×g)=(∇×f)⋅g−(∇×g)⋅f | (63) |
has been used again, for any vector functions
We proceed to control the five terms on the right hand side of (62). For
J1ε+J2ε≤ε2ddt∫(∂αFp+1×∂αGp+1)⋅¯ui+C‖(Gp+1,Wν,p+1,εFp+1)‖2Hk+Cε4. |
The usual estimate (3) on commutator leads to
J3ε≤C‖εFp+1‖Hk‖1εH2‖L2≤C‖εFp+1‖Hk1ε(‖∇nε,pν‖L∞‖Uν,p+1‖Hk−1+‖Uν,p+1‖L∞‖nε,pν‖Hk)≤C‖εFp+1‖2Hk+Cε2(1+ε4mE2p,ε)‖Wν,p+1‖2Hk−1. |
Similarly, the forth term
J4ε≤C‖εFp+1‖2Hk+Cε2‖Wν,p+1‖2Hk−1. |
It follows from Young's inequality and Hölder inequality, the last term
J5ε≤Cε2+C‖εFp+1‖2Hk. |
Adding these above estimates together, the proof of Lemma 3.5 is then complete.
Proof. Combining Lemmas 3.4 and 3.5, we have
ddt‖(∂αWp+1,ε∂αFp+1,∂αGp+1)‖2L2≤Cε2+C(1+ε4mE2p,ε)‖(Gp+1,Wν,p+1,εFp+1)‖2Hk+Cε2(1+ε4mE2p,ε)‖Wν,p+1‖2Hk−1, | (64) |
where
Recalling Lemma 3.3 and the weighted energy norm (28), we obtain, for
|||(Wp+1,εFp+1,Gp+1)(t)|||2ε,4≤C|||(Wp+1,εFp+1,Gp+1)(0)|||2ε,4+Cε2+C∫t0(1+ε4mE2p,ε)|||(Wp+1,εFp+1,Gp+1)(τ)|||2ε,4. | (65) |
From (36), there exists
ε2mEp,ε<1, | (66) |
thanks to the assumption
supt∈[0,T0]|||(Wν,p+1,εFp+1,Gp+1)(t)|||2ε,4≤˜C, | (67) |
where
Ep+1,ε≤Cε−4|||(Wν,p+1,εFp+1,Gp+1)(t)|||ε,4≤˜Cε−4. | (68) |
This completes the proof of Proposition 1.
Proof. Set
(Wν,p,εFp,Gp)=(Wν,p+1,εFp+1,Gp+1)−(Wν,p,εFp,Gp), |
where
Wν,p=(Ψν,p,Uν,p)=(Ψν,p+1,Uν,p+1)−(Ψν,p,Uν,p). |
By careful computation, we obtain the system satisfied by
{∂tWν,p+3∑i=1˜Ai(nε,pν,uε,pν)∂xiWν,p+˜Jν,p+1−˜Jν,p−˜ℜν,p+1+˜ℜν,p=−3∑i=1(˜Ai(nε,pν,uε,pν)−˜Ai(nε,p−1ν,uε,p−1ν))∂xiWν,p,(69a)ε2∂tFp−∇×Gp+nε,piUi,p−nε,peUe,p+¯uiΨi,p−¯ueΨe,p=−(nε,pi−nε,p−1i)Ui,p+(nε,pe−nε,p−1e)Ue,p,(69b)∂tGp+∇×Fp=0,divGp=0,(69c)ε2divFp−Ψi,p+Ψe,p=0,(69d)(Wν,p,εFp,Gp)|t=0=0.(69e) |
Based on the similar arguments of Lemmas 3.3-3.5 and (64)-(68), we deduce
supt∈[0,T0]|||(Wν,p,εFp,Gp)(t)|||ε,3≤c|||(Wν,p−1,εFp−1,Gp−1)(t)|||ε,3, |
where
(Ψi,p,Ui,p,Ψe,p,Ue,p,εFp,Gp) |
is a Cauchy sequence, and hence there exists
(Ψi,Ui,Ψe,Ue,εF,G)∈C([0,T0];H3) |
such that, as
(Wi,p,We,p,Gp,εFp)p≥1 |
to
supt∈[0,T0]‖(Wi,We,εF,G)(t)‖H3≤Cε−3, |
for any
supt∈[0,T0]‖(Wi,We,F,G)(t)‖H3≤Cε−4. |
With the aid of the expansion (21),
The proof of Theorem 2.3 is then complete.
We would like to thank the editor and the anonymous referees for the valuable comments and corrections which greatly improved our original manuscript.
[1] |
Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries. Indiana Univ. Math. J. (2013) 62: 359-402. ![]() |
[2] |
D. Gérard-Varet, D. Han-Kwan and F. Rousset, Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries Ⅱ, J. Éc. Polytech. Math., 1 (2014), 343–386. doi: 10.5802/jep.13
![]() |
[3] |
Global solutions of the Euler–Maxwell two-fluid system in 3D. Ann. of Math. (2) (2016) 183: 377-498. ![]() |
[4] |
Quasineutral limit of the two-fluid Euler-Poisson system in a bounded domain of R3. J. Math. Anal. Appl. (2019) 469: 169-187. ![]() |
[5] |
The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Rational Mech. Anal. (1975) 58: 181-205. ![]() |
[6] |
Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math. (1981) 34: 481-524. ![]() |
[7] |
The asymptotic behavior and the quasineutral limit for the bipolar Euler-Poisson system with boundary effects and a vacuum. Chin. Ann. Math. Ser. B (2013) 34: 529-540. ![]() |
[8] |
Quasineutral limit for the compressible quantum Navier-Stokes-Maxwell equations. Commun. Math. Sci. (2018) 16: 363-391. ![]() |
[9] |
A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, 53. Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-1116-7
![]() |
[10] |
Y. J. Peng, Global existence and long-time behavior of smooth solutions of two-fluid Euler-Maxwell equations, Ann. Inst. H. Poincaré Anal. Non Lińeaire, 29 (2012), 737–759. doi: 10.1016/j.anihpc.2012.04.002
![]() |
[11] |
Convergence of compressible Euler-Maxwell equations to compressible Euler-Poisson equations. Chin. Ann. Math. Ser. B (2007) 28: 583-602. ![]() |
[12] |
Convergence of compressible Euler-Maxwell equations to incompressible Euler equations. Comm. Partial Differential Equations (2008) 33: 349-476. ![]() |
[13] |
Rigorous derivation of incompressible e-MHD equations from compressible Euler-Maxwell equations. SIAM J. Math. Anal. (2008) 40: 540-565. ![]() |
[14] |
Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete Contin. Dyn. Syst. (2009) 23: 415-433. ![]() |
[15] |
Boundary layers and quasi-neutral limit in steady state Euler-Poisson equations for potential flows. Nonlinearity (2004) 17: 835-849. ![]() |
[16] |
Asymptotic behaviors for the full compressible quantum Navier-Stokes-Maxwell equations with general initial data. Discrete Contin. Dyn. Syst. B (2019) 24: 5149-5181. ![]() |
[17] |
A boundary layer problem for an asymptotic preserving scheme in the quasi-neutral limit for the Euler-Poisson system. SIAM J. Appl. Math. (2010) 70: 1761-1787. ![]() |
[18] |
Quasineutral limit of Euler-Poisson system with and without viscosity. Comm. Partial Differential Equations (2004) 29: 419-456. ![]() |
[19] |
Incompressible limit of isentropic Navier-Stokes equations with Navier-slip boundary. Kinet. Relat. Models (2018) 11: 469-490. ![]() |
[20] |
Global classical solutions to the compressible Euler-Maxwell equations. SIAM J. Math. Anal. (2011) 43: 2688-2718. ![]() |
[21] |
The non-relativistic limit of Euler-Maxwell equations for two-fluid plasma. Nonlinear Anal. (2010) 72: 1829-1840. ![]() |
[22] |
Convergence of the Euler-Maxwell two-fluid system to compressible Euler equations. J. Math. Anal. Appl. (2014) 417: 889-903. ![]() |
1. | Fei Shi, Incompressible limit of Euler equations with damping, 2021, 30, 2688-1594, 126, 10.3934/era.2022007 |