Citation: Mushtaq Hussain, Nusrat Jabeen, Anusha Amanullah, Ayesha Ashraf Baig, Basma Aziz, Sanya Shabbir, Fozia Raza, Nasir Uddin. Molecular docking between human TMPRSS2 and SARS-CoV-2 spike protein: conformation and intermolecular interactions[J]. AIMS Microbiology, 2020, 6(3): 350-360. doi: 10.3934/microbiol.2020021
| [1] |
Cui J, Li F, Shi ZL (2019) Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17: 181-192. doi: 10.1038/s41579-018-0118-9
|
| [2] | https://covid19.who.int/. |
| [3] |
Wu A, Peng Y, Huang B, et al. (2020) Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 27: 325-328. doi: 10.1016/j.chom.2020.02.001
|
| [4] |
Li F (2015) Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol 89: 1954-1964. doi: 10.1128/JVI.02615-14
|
| [5] |
Lan J, Ge J, Yu J, et al. (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581: 215-220. doi: 10.1038/s41586-020-2180-5
|
| [6] |
Hoffmann M, Kleine-Weber H, Schroeder, et al. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181: 271-280. doi: 10.1016/j.cell.2020.02.052
|
| [7] |
Wang Q, Qiu Y, Li JY, et al. (2020) A unique protease cleavage site predicted in the spike protein of the novel pneumonia coronavirus (2019-nCoV) potentially related to viral transmissibility. Virol Sin 35: 337-339. doi: 10.1007/s12250-020-00212-7
|
| [8] |
Zhang H, Penninger JM, Li Y, et al. (2020) Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 46: 586-590. doi: 10.1007/s00134-020-05985-9
|
| [9] |
Wrapp D, Wang N, Corbett KS, et al. (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367: 1260-1263. doi: 10.1126/science.abb2507
|
| [10] |
Herter S, Piper DE, Aaron W, et al. (2005) Hepatocyte growth factor is a preferred in vitro substrate for human hepsin, a membrane-anchored serine protease implicated in prostate and ovarian cancers. Biochem J 390: 125-136. doi: 10.1042/BJ20041955
|
| [11] |
Goodsell DS, Zardecki C, Di Costanzo L, et al. (2020) RCSB Protein Data Bank: Enabling biomedical research and drug discovery. Protein Sci 29: 52-65. doi: 10.1002/pro.3730
|
| [12] |
Slabinski L, Jaroszewski L, Rychlewski L, et al. (2007) XtalPred: a web server for prediction of protein crystallizability. Bioinformatics 23: 3403-3405. doi: 10.1093/bioinformatics/btm477
|
| [13] |
Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5: 725. doi: 10.1038/nprot.2010.5
|
| [14] |
Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 54: 5-6. doi: 10.1002/cpbi.3
|
| [15] |
Chen VB, Arendall WB, Headd JJ, et al. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66: 12-21. doi: 10.1107/S0907444909042073
|
| [16] |
Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35: W407-410. doi: 10.1093/nar/gkm290
|
| [17] |
Johansson MU, Zoete V, Michielin O, et al. (2012) Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinform 13: 173. doi: 10.1186/1471-2105-13-173
|
| [18] |
Abraham MJ, Murtola T, Schulz R, et al. (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1: 19-25. doi: 10.1016/j.softx.2015.06.001
|
| [19] |
Van Zundert GC, Rodrigues JP, Trellet M, et al. (2016) The HADDOCK2. 2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428: 720-725. doi: 10.1016/j.jmb.2015.09.014
|
| [20] | Xue LC, Rodrigues JP, Kastritis PL, et al. (2016) PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics 32: 3676-3678. |
| [21] |
Paoloni-Giacobino A, Chen H, Peitsch MC, et al. (1997) Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22. 3. Genomics 44: 309-320. doi: 10.1006/geno.1997.4845
|
| [22] |
Ojala JR, Pikkarainen T, Tuuttila A, et al. (2007) Crystal structure of the cysteine-rich domain of scavenger receptor MARCO reveals the presence of a basic and an acidic cluster that both contribute to ligand recognition. J Biol Chem 282: 16654-16666. doi: 10.1074/jbc.M701750200
|
| [23] |
Mönttinen HA, Ravantti JJ, Poranen MM (2019) Structural comparison strengthens the higher-order classification of proteases related to chymotrypsin. PLoS One 14: e0216659. doi: 10.1371/journal.pone.0216659
|
| [24] |
Böttcher E, Matrosovich T, Beyerle M, et al. (2006) Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol 80: 9896-9898. doi: 10.1128/JVI.01118-06
|
| [25] |
Shirogane Y, Takeda M, Iwasaki M, et al. (2008) Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2. J Virol 82: 8942-8946. doi: 10.1128/JVI.00676-08
|
| [26] |
Vaarala MH, Porvari KS, Kellokumpu S, et al. (2001) Expression of transmembrane serine protease TMPRSS2 in mouse and human tissues. J Pathol 193: 134-140. doi: 10.1002/1096-9896(2000)9999:9999<::AID-PATH743>3.0.CO;2-T
|
| [27] |
Zhou L, Xu Z, Castiglione GM, et al. (2020) ACE2 and TMPRSS2 are expressed on the human ocular surface, suggesting susceptibility to SARS-CoV-2 infection. Ocul Surf 18: 537-544. doi: 10.1016/j.jtos.2020.06.007
|
| [28] | Afar DE, Vivanco I, Hubert RS, et al. (2001) Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res 61: 1686-1692. |
| [29] |
Donaldson SH, Hirsh A, Li DC, et al. (2002) Regulation of the epithelial sodium channel by serine proteases in human airways. J Biol Chem 277: 8338-8345. doi: 10.1074/jbc.M105044200
|
| [30] |
Aimes RT, Zijlstra A, Hooper JD, et al. (2003) Endothelial cell serine proteases expressed during vascular morphogenesis and angiogenesis. J Thromb Haemost 89: 561-572. doi: 10.1055/s-0037-1613388
|
| [31] |
Shulla A, Heald-Sargent T, Subramanya G, et al. (2011) A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol 85: 873-882. doi: 10.1128/JVI.02062-10
|
| [32] |
Abe M, Tahara M, Sakai K, et al. (2013) TMPRSS2 is an activating protease for respiratory parainfluenza viruses. J Virol 87: 11930-11935. doi: 10.1128/JVI.01490-13
|
| [33] |
Shirato K, Kawase M, Matsuyama S (2013) Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol 87: 12552-12561. doi: 10.1128/JVI.01890-13
|
| [34] |
Shah B, Modi P, Sagar SR (2020) In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sci e117652. doi: 10.1016/j.lfs.2020.117652
|
| [35] | Hussain M (2013) Phylogenomic and structure-function relationship studies of proteins involved in EBV associated oncogenesis. University of Glasgow 84: 2209-2217. |
| [36] |
Araghi RR, Keating AE (2016) Designing helical peptide inhibitors of protein–protein interactions. Curr Opin Struct Biol 39: 27-38. doi: 10.1016/j.sbi.2016.04.001
|
| [37] |
Cardinale D, Guaitoli G, Tondi D, et al. (2011) Protein–protein interface-binding peptides inhibit the cancer therapy target human thymidylate synthase. PNAS 108: E542-E549. doi: 10.1073/pnas.1104829108
|
| [38] |
Hussain M, Jabeen N, Raza F, et al. (2020) Structural Variations in Human ACE2 may Influence its Binding with SARS-CoV-2 Spike Protein. J Med Virol 92: 1580-1586. doi: 10.1002/jmv.25832
|
| [39] |
Zang R, Castro MF, McCune BT, et al. (2020) TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol 5: eabc3582. doi: 10.1126/sciimmunol.abc3582
|
| [40] |
Hoffmann M, Kleine-Weber H, Pöhlmann SA (2020) Multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell 78: 779-784. doi: 10.1016/j.molcel.2020.04.022
|