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ABSTRACT. In this paper, we study the quasi-neutral limit for the compress-
ible two-fluid Euler—-Maxwell equations for well-prepared initial data. Precisely,
we proved the solution of the three-dimensional compressible two-fluid Euler—
Maxwell equations converges locally in time to that of the compressible Euler
equation as ¢ tends to zero. This proof is based on the formal asymptotic ex-
pansions, the iteration techniques, the vector analysis formulas and the Sobolev
energy estimates.

1. Introduction. The purpose of this present paper is to investigate the quasi-
neutral limit for the two-fluid Euler-Maxwell equations consisting of a set of non-
linear conservation laws for densities and momentums coupled to the Maxwell equa-
tions in time ¢ > 0 and space R?, which describes the transport of electrons of charge
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ge = —1 and ions of charge ¢; = 1 without viscosity in a magnetized plasma [3]
on,,
g; +div(nyu,) =0, v=e,i, (1a)
A(nyuy) . 5
my (S div(nyu, © w)] + VPy(n,) = gy (B +u, x B),  (1b)
5}]? +V x E=0, €0 E — ,Uzalv X B = —(Qz’niui + Qeneue)a (lc)
divB =0, edivE = gin; + gene, (1d)

where n;, u; (respectively, ne, u.) denote the density and velocity of the ions (re-
spectively, electrons), and E, B are the electric field and the magnetic field. The
coefficients €q, ug, ¢ are the vacuum permittivity, vacuum permeability and light
speed with eguoc® = 1, and the parameter v = 1/(e2c¢) is usually chosen to be
inversely proportional to the light speed c. As in classical fluid dynamics, the pres-
sure functions P,(n,) = a2n% (v = i,e) are supposed to be smooth and strictly
increasing with a, > 0,b, > 1. Moreover, g,n,(E + u, X B), @ity + geNelie,
qin; + gene stand for the Lorentz force, the current density and the free charges
for the particle, respectively. We introduce the Debye length A2 = E‘)KniBTe, where
the physical parameters are the mean density of the plasma ny > 0, the Boltzmann
constant Kp > 0 and the temperature of the electron T, > 0. The scaled Debye
length is denoted by €% = €.

With these parameters, system (1) under study can be scaled to the following
form

on, + V- (nyu,) =0, (2a)
my, (Oruy + uy - Vuy,) + Vhy,(ny,) = ¢ (E 4+ yu, X B), (2b)
¥0;B+V x E =0, ye?0,E — V x B = —y(n;u; — neue), (2¢)
divB =0, 2divE = n; — ne, (2d)

where B = £,

Usually, the dimensionless parameters -, € are small compared with the size of the
other quantities as for the physical situation. In quasi-neutral plasma, the Debye
length is small compared with the typical length L of the plasma. By taking the limit
% — 0 formally, we can derive an equilibrium between the positive and negative
charges. In the non-relativistic limit, we regard v as the singular perturbation
parameter and let v — 0. For such scales, the plasma can be considered as the
compressible Euler-Poisson system. Furthermore, v = €2 — 0 is the combined
non-relativistic and quasi-neutral limit, which leads to incompressible (one-fluid) or
compressible (two-fluid) Euler equation.

When taking n;,u; = 0, system (2) is reduced to the unipolar Euler-Maxwell
equations, and there have been many interesting results for the well-posedness and
asymptotic analysis [11-13,20]. To list a few, Peng and Wang [13] studied the
convergence of Euler—-Maxwell equations in three-dimensional case to the e-MHD
equations under well prepared initial data in the quasi-neutral limit. This result
was then generalized in the quantum counterpart recently [8] and later in [16] for
the general initial data. Moreover, in [11], the authors justified rigorously the
convergence of Euler-Maxwell equations to compressible Euler—Poisson equations
in time intervals independent of « by an analysis of asymptotic expansions up to
first order for general initial data and up to any order for well-prepared initial data.
The combined non-relativistic and quasi-neutral limit can be found in [12]. For the
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formation of boundary layers, the interested readers can refer to [1,2,15,17,19] and
the references therein for example.

Recently, the two-fluid Euler/Navier-Stokes equations with electromagnetic field
become more and more interesting as well as important in fluid dynamics. The
local smooth solution was established in [5] since Euler—-Maxwell equations are sym-
metrizable hyperbolic for n” in the sense of Friedrichs. The global existence and
large time behavior were obtained in [3,10]. For the asymptotic limits with small
parameters, there have been many mathematical investigations for Euler—Maxwell
equations, see [14,21,22] for example. With boundary effects, one can see [4, 7]
and references therein. However, the rigorous study of the quasi-neutral limit for
two-fluid Euler-Maxwell equations is also open [14]. The goal of this paper is to
consider this problem. For convenience, we assume 7 = 1, which can be chosen
independently of the Debye length.

Different from the unipolar case, the formal quasi-neutral limit for the two-fluid
Euler-Maxwell equations is the compressible type. Here, we are going to establish
the quasi-neutral limit for the two-fluid system (2) under well-prepared initial data,
which means the compatibility conditions (9) are satisfied. Based on the asymp-
totic expansion and the iteration techniques, we proved rigorously the main result
stated in Theorem 2.3. Formally, setting ¢ = 0, we obtain the compressible limit
system (5). Note, too, that the displacement current and the charge separation
are neglected in (5), which is essential different from the Euler—-Maxwell equations
which are symmetrizable and hyperbolic. Moreover, the singularities in the cou-
pling electromagnetic field can also not be cancelled by a symmetrizer of hyperbolic
systems [6], which leads the straightforward energy method invalid. We solve these
difficulties by introducing the general vorticity and vector analysis formulas (see
(51) in Lemma 3.3). In the mean time, long-time existence for smooth solutions
of the two-fluid Euler—-Maxwell equations as ¢ — 0 is also obtained provided that
the smooth solution of one-fluid Euler equations exists. Indeed, if the initial data
are not well-prepared, we cannot obtain the uniform energy estimates because of
uz(-o) — ugo) # O(e). Therefore, extending the result to the general case is not so
obvious since we not only need to obtain the initial layer corrections but also to
construct a new energy method, and thus is also open.

The paper is organized as follows. In Sect. 2, we perform the formal asymptotic
analysis and give the main result stated in Theorem 2.3. In Sect. 3, we justify
rigorously the uniform (in €) energy estimates for the error system (22) by the
iteration techniques. Finally, we complete the proof of Theorem 2.3 by taking the
limit of the sequences satisfying Cauchy’s criterion in Sect. 4.

Before proceeding, let us introduce the notations and lemmas which will be fre-
quently used throughout this paper. We denote by H*(R?) the standard Sobolev’s
space in the whole space R?, and denote by || - ||g= the norm of the Banach space
H*(R?). In addition, we denote « as the multi-index, and 8% = 921992023, |a| =
a1 + ag + a3. Moreover, C' is the general constant independent of the Debye length
E.

In the following, we state the basic Moser-type calculus inequalities which will
be used widely in the error estimates.

Lemma 1.1. Let o be any multi-index with |a| =k, k > 1 and p € (1,00). Then
there holds

10°(f9)llr <CIFll Lo 10%g] Loz + CNO“ Fll Los 9]l Lot
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0%, flgllLe <CIOfN Lot [0 gll oz + CNO* Fll Lo 91l Lo » (3)
where f,g €S, the Schwartz class, and pa,p3 € (1,00) such that

11 1
p ptopr PP pt

2. Formal asymptotic analysis and the main result. We make the following
ansatz for v = i, e in terms of the Debye length € to the initial value problem (2)

(nl/”u’an‘E BE ZEQk(nl(/k)7ul(/k)vE(k)7B(k))' (4)
k>0
Plugging the formal expansion (4) into system (2), we can obtain the following

results.
(i)The leading term (n(-o) u” ngo),u((go) E©) BO)) satisfies

o + n(o)dlvu(o) + 4. vn® =0, (5a
my (0 + 1 - Vul?) + Vh, (n?) = ¢, (BQ +u® x B@),
V x B = (ugo) —ul"), (5¢
B + v x E® =0, divB® = . (5d
The local existence of smooth solutions cannot be obtained directly by the result

of [5] since the displacement current and the charge separation are neglected in
the limit system (5). In order to overcome the difficulty, we introduce the general

vorticity w? =V x ( + v A(O)), where we have used divB(®) = 0, which implies
there exists some magnetic potential A©) such that V x A® = B Hence, we
substitute the following equation for (5b)

w® +V x (u® x w®) =0, (6)
namely,
Dwl® 4+ wOdive® + u® . Vo — @ . vu® = 0. (7)
Taking the inner product of (7) with W, we derive
;;itﬂw Dlze < Clluf? |l s llwf”13- (8)
We supplement the above limit system (5) with the initial data
oD = =) 0T B PG ).

In view of (8), we get w? =0 (v = i,e) are naturally preserved for all time.
Moreover, it follows from (5¢) and w'” = V x ul) + v BO) that

o=vX@$%W$U=VXNXa&tw@»+TZUEMW¢®—¢%ww>

miMme

Taking the inner product of (10) with ugo) — | it holds
0 m; +Me 0
IV % (@ = uf)[F2 + == VO (@ — u?)[F2 = 0

which implies ul(-o) = ugo).
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Therefore, for well-prepared initial data (9), solutions (n,(,o), ul(,o), E© BO) (v =
i,e) to system (5) are the smooth solutions of the following compressible Euler
equation

am©® + nOdivy© 4+ 40 . yrp© =, (11a)
9ul® +u® . Vu® 4 Vho(n®) = 0, (11b)
E(O) — V’l/J, (110)
where
mime [ h; (n(o)) he (”(O))
_ _ 12
¥ mi—i—me( m; Me )7 ( )
and
(n(0) (0)
ho(n(o)) _ hi(n'™) + he(n ) (13)

mi+me

Theorem 2.1. Let s > 3, and (n(()o), u(()o)) € H? be any given initial data satisfying
n(()o) > 0. Then there exists some 0 < T, < 400, the maximal time of existence,
such that the initial value problem (11) has a unique solution such that, for any

TO < T*;
(@, u©) e L0, Ty; H+3), E® e L>(0, Ty; H1?).

(ii)For any j > 1, provided that we have proved the profiles
(ny{:)v u(uk)7 E(k)v B<k))0<k<j—1

are smooth as much as we want in previous steps, we can get the following linear
system satisfied by (n(yj),ul(,]), EW BU)) (v =i,e)

5in + nOdiu) + 1P divu® 44 - Tnd + 0P TaO = 11 (140)
my (0 + u® - Vuld) + 49 - Tu) + V(h, (nO)nd)
— g (B9 44 x @)Y 1 g2, (14b)
V x B9 = 9,EU-1 4 ) (ul(_j) _ u((ij)) + u(o)(nl(-j) _ ngj)) + 13, (14c)
9,BY + v x EW =0, (144d)
nz(j) —n) =divEU—Y, (14e)
where
j—1
fr ==Y (Pdivuy ™ +ul) - Vni=h), (152)
k=1
j—1
o =—my Yy (u - Va ™) = V(B (n)r<jo1)
k=1
j—1
+a, ) (uf? x BUTM), (15b)
k=1
Jj—1 )
f2=3 " nP @l — R, (15¢)
k=1
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Here, we have used the following relation

n® 4 Z e2iny =h, (n(0) 4 b’ (n() Z(g%‘n(uj))
§>1 §>1 (16)
+ e h (0 kgj-1),
§>2

where

1 d o _
i~ 1(( k))k<] 1) — ﬁﬁh”(nm) +§ :62Jnl(lj))|6=0 _ h/y(n(O))nl(/j). (17)
' i>1

Obviously, the profile (fL, 2, f3) only depends on the known terms by the previous
steps.

Letting (), u?) = (0!, 49y — (0, uY), we rewrite the induction system
(14) as the followmg form

a,w?) + w(_j)divu(o) +u® -Vw(_j) — w9 v = v x (f2— 1%, (18a)

1 1 , .
V x wm = levu Au +(—+ f)(n(o)u(_]) +divEU D0

m; Me

+O,EGD 4 p3), (18b)

where w’ = V x v + (= + -1)BU. Existence of solutions to system (18) has
been derived by [8]. Moreover, we need the following compatibility conditions

nt) —nl) = divey ™Y, divBy’ =o. (19)

Letting (ni), (7)) (n( ) u(»j)) + (né ), ugj)) we can rewrite the induction system
(14) as
O n )+ n(o)dlvu(j) + n(j)dlvu(o) + Vngf + u ). wn©
= fi +fe, (20a)
(m; + me)(ﬁtu(]) + 4. vu(]) + u( 7) Vu(o))
+v(( (@) + B (@)Y = (m; — me)(Ou? + u@ - Vu
Vovu @) + Y ((hi(n®) — he(n®@))divEY D) 4 f2 4 f2. (20b)

Then (ngf), u(j)) (j > 1) are the solutions to the linear nonhomogeneous compress-

ible Euler equations [5]. Finally, combining the definition (n.’ G ) e )) = (n(J ), ugj )) —

K3
(n,u) and the equation (14e), we derive the following result

Theorem 2.2. Let 5 > 3, and (n l(,j()y ,%,E(g ),B(J)) (v =1i,e) be any given initial

data satisfying (19) with n(]) > 0. Then there exists some Ty > 0, such that the
initial value problem (14) has a unique solution that satisfies

(nD ), BY BWY € L0, Ty; H3 x HS x HF? x H?),
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2.1. Derivation of the error system. Take the ansatz for v = 4, e in terms of
the Debye length ¢

ng =n® 4 Z ek 4 2my? = g7, 4 2y, (21a)
k=1
u;, = NGNS Z 52ku£’“) + XMUY=, + MUY, (21b)
k=1
m
EF=EO+Y *EW 4 ?mF = B4, (21c)
k=1
B = ZEQkB(k) +e*™G = B + ™G, (21d)
k=1

where (n$,u$,nS,us, B¢, B?) is the exact solution to system (2), (n(?),u(®), £(©) is
the solution to the limit system (11), (nl(]), uz(-J), nd W9 EG), BU) is the solution
to the linear system (14) and (¥, U, ¢, U¢, F, G) is the remainder term. By careful

computation, we derive the following system satisfied by the remainder term

O +uf, - VU 4+ nSdivU” = —Wdivag, — U - Vi, — e*RY,  (22a)
my (OU + u, - VU) + i, (0 ) VY — ¢, F — ¢, (u;, x G)
=-m,U"-Vu, +qU" x B—1!(n,)¥"Vn, —*RY, (22b)
20,F —V x G +niU" —nSU® + i, — U, = —e* RNy, (22c)
G +V x F =0, divG =0, (22d)
e2divF — U + ¥ =0, (22e)

where the profile (RY, Ry, R3) " is O(1), and depends only on the known and suffi-
ciently smooth functions.
Let W¥ = (U¥,U")T. We can rewrite the remainder system (22) in the form

3
AW+ Ai(ng,uf)0x, WY +J =RY — 2Ry, (23a)
=1
20,F —V x G +nfU" —nSU® + V'i; — U, = —e* RNy, (23b)
e2divF — W' + ¥ = 0, (23c)
&G +V x F=0, divG =0, (23d)
(WV,F, G)|t:0 = (Wé’,Fo,Go), (236)
where
us, nsel
A;(n =1 1 (nf v 24
i(ng,u;) (hVTin,,)ei el > : (24)
0
J = —@wF—q, (u; xG) | > (25)
. —Udiva, — U -V, o6
T=\ v Vi, + 207 < B - L (0(0,) 90 VR, ) (26)
and

Ry = (R, R5) "
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Moreover, A;(ns,u$) can be symmetrized by the following symmetric and positive

matrix
A R h; (ni) OT o7
o) = " ) (27)

where I is the 3 x 3 identity matrix.

Thanks to the symmetrizable structure of system (22), we obtain the standard
existence theory of local smooth solutions [5]. Based on this, we will prove the main
result stated in the following

2.2. Main results.

Theorem 2.3. Let 2m be any integer with 2m > 4. Assume that the initial data
(15,0, u5,0, EG, Bg) (v = i,e) satisfy the compatibility conditions (9) and

2m
15 o — n® ZSJ 0 s —ul? =S Iul), Bs — B - ZsjEm
Jj=1 Jj=1
2m )
Bj — Y 'BY)|us < C¥
j=1

where C is some positive constant independent of €. Then there exist g > 0 and
solution (n5, u;,, £, B¥) of system (2) with initial data (n;, o, us, o, EG, B§) on [0,7¢)
with iminf._o T¢ > T, the maximal existence time of solutions to the limit system
(11). In particular, for every Ty < Tk, 0 < € < &g, there holds

2m 2m 2m

sup ||(nS — n© _ ZEjnf/j)»Ui — 40 _ ZEjU,(,j), s _ O _ ZsjE(j),

t€[0,To] j=1 j=1 j=1

ZEJB(J) Was < Ce?m4,

3. Rigorous quasi-neutral limit. To state the main theorem, we introduce the
set S, of function in L*°(0,Ty; H?) that satisfies (W", F,G)(z,0) = (WY, Fo, Go)
and

(WY, eF,G)||gs < Ce3,

where C is a constant independent of &, which will be determined later. Moreover,
we define the weighted norm as

S

I(W?,eF,Glles = Y P07 (WY, eF, G|l 2, (28)
181=0

for s > 0. Our next goal is to prove system (23) has a smooth solution (W?*, F,G) €
S¢ for appropriate C and e, which implies the desired estimates stated in Theorem
2.3. Asin [9,18], we consider the nonlinear remainder system coupled with Maxwell
equations by the following iteration

(W= F° GO = (WY, Fy, Gy),
where W¥0 = (U0 U¥9) and
(Wwp-&-l’Fp-s-l,GpH) _ @(W”’p,F”,G”),
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where ® maps vector (W"P FP GP) into solution (W*PT1 FPTl GPT1) of the fol-
lowing linear system

3
QWL 4 Z RSP uSP) D, WL 4 Jretl - L (292)
20, FPH! — V x GPTL o p2PUBPHL — p2PUCPTL 4 g UoPHh — g, goPtt
= %Ry, (29D)
0,GPTL £V x FPTL =0, divGPT =0, (29¢)
2divFPtt — ghrtl L gertl — (29d)
(Wwrrtt prl grthy| o = (WY, Fy, Go), (29¢)
where
(nSP, uSP) =(fy,, 4, + 2™ (WP, UVP), (30)
— 0
Jv = —unp+1—qy(ui'pXGp+l) s (31)
~ usP ni,pelT
Ani?ui?) = | wetny ey | (32
my ? v
and
Forptl —Urrtidiva, — UvPH - Vi, 2
T\ Ut v, U ) B — L (BY(7,) BVPVA,) ) TS
(33)
Denote
Epe 2 (WP, GP e FP)| ga. (34)

Proposition 1. Let 2m be any integer with 2m > 4, and
(n?, ug?, WL GPEL FPEY) (v = e)
be the solutions of the iteration equations (29). Assume that
(W5, eFo, Go)lle.a < C,

where C' is a generic constant. Then for all t € [0,Ty], there exists a positive
constant €y such that, for all p > 1,

(WP, eFP,GP)(t)]lca < C.
Further, by the definitions (28) and (34) that
Epe < Ce™?,
for any 0 < e < ¢gp.

The following section is devoted to the proof of Proposition 1.
Obviously, since
(W0 FO .G = (WY, Fy, Go),
we can obtain
o < Ce—, (35)
Now we assume there exists a sufficiently small € such that

EB,.<Ce™. (36)
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Hence, we need to prove that
Epi1. <Ce™ (37)

Recalling the expansion (21), we immediately obtain that there exists positive con-
stant &g such that for any 0 < ¢ < g9, n5? = 0, + 2™ WP is bounded from above

and below, namely,
n© - 3n(®

(38)

Here, we need the condition 2m > 4. Similar arguments applying to ||(n5?, uS?) || g+
with 0 < k < 4 yields

Lemma 3.1. For any 2m > 4 and sufficiently small €, it holds that
(5P, ug?) | e < C(L+ ¥ Bye). (39)
Proof. By the expansion (21) and Sobolev imbedding that
(05, ug )| v <C + CE2™[[(B7P,UP) || g
<C(1+e"mE,.). (40)
O
Analogously, we get
Lemma 3.2. Under the same assumptions as in Lemma 3.1 hold. Then we obtain
|0in5P || Lo <C + Ce™E2 .. (41)
In the following, we first give the L?-estimates.

3.1. L2-estimates.

Lemma 3.3. For any t € [0,To], there exists a sufficiently small € > 0 such that

%H (Wi,p-&-l’ 1/1/6717-&-17 5Fp+1, GP-‘rl)H%z

SC(A+ e EL )(WHPTL Wertt epptl Grity||2, 4+ Ce?.

(42)

Proof. Applying the operator m, Ag to system (29) and taking the inner product
with (WvP+1 pr+l GP+ T we obtain

my S TWIPE e 4 D eEr L G s et e

v=i,e

_ /ni,pUe,erl . P+l _ § ql,/nf,’prH .yvrtl

v=i,e

= /ai\lﬂ%”“ - prtl +/u-e\pem+1 - pett

43
+ Z qy/ni,pui,p x GPTL.pyvrtl Z /A()?]?E”’erlW”’p*l ( )
_52/A0%3Fp+1

5
S

i=1
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R
AO = my s (44)

0 nPI

where

and the abbreviated operator 7 is defined by
1d
2dt

—

. 1
JAgwreriz, - L / (0, V) (Ao, A) WP+ 2, (45)

v,p+1 v,p+1\ _
(TWr e ;

where A = Ag[(Ay, Ay, A3)(nSP, usP)]. Here, we have used the vector analysis for-
mula
- /v x GPtL. pril +/v x Frl.grtl = /div(F”“ x GPTY) =0. (46)
Thanks to Sobolev embedding H? < L*°, (36), (38) and (41), we derive
10¢ Aol o= <[[(1 + Ry (n5?))Beni,?

| L

<C+ Cs4mE12),6, (47)
and
divAl = <CI(L+ RSP DI (VnE?, dives )] -
+ O+ Ay (ny )V - ug P e (48)
<C + C*™ (TP, UYP) (1%
<C+Ce'™ME] .
Hence,
% / (91, V) (Ao, A)WPPH P < C(1+ B2 ) W+ 2. (49)

Inserting this into (43), and using (46) and ¢; = 1,¢. = —1, we have

[

(AgWH w1 e PPt Grn|2, < ST I O(L+ B2 )W 2., (50)

L
dt P

From (29d), the first and second term on the right hand side of (43) can be accord-
ingly decomposed into

Ig+ 13 =— /(\I/”’“ — perthyg, . prt /(m — g, ) WPt prtl
=— 52/divFP+1FP+1 S — /(m— — 1l ) WPt
By the vector analysis formulation

. . 1
divff =div(f @ f) = 5V(f*) =V x fx f, (51)
where f is a vector function, I} + I can be further decomposed by

1
2 =— 52/ (div(Fp+1 ® FrHh) = SU(FPHR) =V x PP x Fp+1> g
- /(di — ) WPt il

SEQ/V x P FPHL g, + O|(WePT e FPHY)||3,,
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thanks to (@; —.) ~ O(g?) since ugo) = u?. To deal with the term 2 [ V x FP*1 x
FPHL o qq;, we apply (29b)x GPHL—(29¢)xe2 FPHL to derive
£20,(FPHL x GPTY) — V x GPT x GPT! — 2V x FPHl x prtt
+ (névPUi7p+1 _ n&pUe,p-&-l) x GPT1 4 (di\l,iw-&-l _ deq;&p-i-l) x Pt (52)
1 €
+82§R3 X Gerl =0.

Thus, we have
52/V x P prlog,

d
_ 2
o

1
—/div(G”“@GpH)~ﬂ+§/v(\Gp+1| ) -

(FPH o GPHYY L qg; — €2 /(Ferl x GPTYY - 9y

+ / (nf’pUi’p+1 _ ni,pU&pH) x GPH1 .,

+ / (@ UoPHE — g P x GPT g 4 62/%3 x GPTL .,

d
<52$/(F1”+1 X GPHY) iy Cet + O (WHPHL QP e PP,

thanks to divGPT! = 0 and (38). Recalling Ay is positively definite, we have

3 A2, > oWt 2.,

v=i.e

In fact, since ¢ is sufficiently small, we get
I(eFPHY, GPT)|1 72 — 52/(Fp+1 x GPT) ;> Of|(eFPH, 6P |1
For the last three terms I$ ~ I3, by Young’s inequality and Hélder inequality, we
get
I§ ~ I§ <C* + O(1+ B, )||(eFPH GrHt Wt h)|2,.

Putting the above estimates together, the proof of Lemma 3.3 is then complete.
O

3.2. Higher order estimates.

Lemma 3.4. Let 1 < k < 4 be an integer, a be a multi-index with |a| = k, then
we have

dgH(@C“W"”’“,8C’W€”’“)H%2 - / ngPOe FPEL . 9oyt
! v=i,e (53)
<O+ O+ B )||(G W7+

Proof. First, applying the operator 9% to (29a), we derive

3
O OOWI P N " Ay (ng P, ugP )0y, 0°W PP 4 9 JUP T = 9ORVP o Hy, o (54)

i=1
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where

3
Hy = (0%, Ai(ng? i) 0, et (55)

i=1

Then taking inner product of (54) with m,, Ag@*W*»*+1, we derive
mV<T8aWV’p+1,8aWV’p+1> —qy /ns,paan—l-l . 6aUu,p+1

— / Agd*RrPHigewrrtl 4, / nSPY%(uEP x GPHL) . 9o+l

. (56)
+my/AoH18aWV’p+1

Again, the abbreviated operator T is defined by
1d

v,p+1 v,p+1y
(TW W ) 5 7t

~ 1 N b=
HAoaaWV’erlH%z _ 5 /(325,V‘)(Ao,A)|8°‘WV’p+1|2’

where A = Ag[(Ay, Ay, A3)(nSP, usP)]. For the first term on the left side hand of
(56), we can employ arguments similar to those used in the estimate of (45) to
obtain

My (TOCWYPHL QW Pty < C(1 4 ™ B2 ) [WH P+ |2, (57)

On the other hand, using Young’s inequality, Holder inequality, Lemma 1.1,
together with (38), we get

I} < WG + Cet,
and
I2 < C(1+MEp o) [(GPFH WP .
For the commutator term I2, by Lemma 1.1, we have,
2 <C||Ag|| oo | HL | 21| 0* WP+ 2
<SC(IV Al Lo VWP | s+ | Ail e [ VWPH | o) [ 9O WP HY| 2
S(7(1 + EQmEp’E)”Wy’pJ’_l H%{k :

Finally, putting all the above estimates together, we completes the proof of Lemma
3.4, thanks to (38). O

Lemma 3.5. Under the same conditions in Lemma 3.4, we have the following
estimate

(0 Fr 90 Gr )2, + Y g, / ngPoe U 9o pri
v=i,e (58)

1% C m 1%
<c|(Grttw ”""1,(€Fp+1)||?ﬁ[;c + 6—2(1 + &t E§6)||W 7p+1||§_1k—1 + Ce2.

<
dt



892 MIN LI, XUEKE PU AND SHU WANG

Proof. An application of the operator 0% to (29b) and (29c¢) leads to

€20,0°FPTL — 90V x GPFL 4 nSPOOUNPTY — 2P RUS Pt 4 g it

— 0 00UEPTE = _29Rs + Hy + Hs,
0GP + 0%V x FPT! =0, 9*divGPT! =0,
where
Hy = [0%,nSPJUPTE — [0, nSP]USPT!,
and

Hjy = [6a, ﬂi]\lfi’p+1 - [aa, Ee]\l/e’p+1.
Multiplying (59) by (9% FP*1 9*GP*1), it holds

%“(E@an+1)aaGp+l)||2L2 + /n?,paan,p-&-l O Fptl

_ /ni,paaUeJHl . 3an+1

- _ /diaa\l,i,p+l '8an+1 _,'_/Eeaa\pe,p—&-l . aan-i-l +/H28an+1

—1—/[{30”!“F1"+1 —52/60“8?36“F”+1

Here, the vector analysis formula
div(f xg)=(Vx[f)-g=(Vxg)-f

has been used again, for any vector functions f and g.

(59a)
(59D)

(60)

(63)

We proceed to control the five terms on the right hand side of (62). For J! and
J2, we can employ arguments similar to those used in the estimates of I} and I3 to

obtain

d
JE 4 J2 < — [ (9°FPTL x 9°GPY) iy + O||(GPTY, WrrH s PR |12 4 Ot

dt

The usual estimate (3) on commutator leads to

, 1
J2 <CleF" x| Ho| 2

1
<CeFP e - (VRSP oo IUPP H lprses + (U7 e 057 | 224)

C
(L4 B2 ) [WHP 2

<ClleFP 3 + 5

Similarly, the forth term J2 can be bounded by

C
TESCIeF ™ + S WP+ s,
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It follows from Young’s inequality and Hélder inequality, the last term J2 can be
estimated as

J2 <Ce* + C||eFP || 3.
Adding these above estimates together, the proof of Lemma 3.5 is then complete. [
3.3. The end of the proof of Proposition 1.

Proof. Combining Lemmas 3.4 and 3.5, we have

d
@ WP o PPt oGP |,
<Ce® + C(1+ e ™E2 )|(GPHY, Wrrtt e FPty|2,, (64)

C
+ (LB )W s,

where 1 < |a| = k < 4.
Recalling Lemma 3.3 and the weighted energy norm (28), we obtain, for ¢ €
[O7T0]a

[P e PPt GPE ()12 .4

SOWPH, e PP GPHH(0))2 4 + C<?

(65)
¢
o KB L N TCTEN
From (36), there exists £; > 0 such that for any 0 < & < 1, we have
e¥mE,. <1, (66)

thanks to the assumption 2m > 4. Using Gronwall inequality, (65) and (66), we
infer that

sup [[(WoPH eFPtt GrHh))2, < C, (67)
t€[0,To] ’

where C = ¢2To (Co 4+ 1)Tp, and Cj is a constant dependent on the initial data. A
straightforward calculation implies

Eps1,e SCeH(WHPHL eFPHL GPFY)(2)

||s,4
(68)
§C~'5_4.

This completes the proof of Proposition 1. O

4. Proof of Theorem 2.3.

Proof. Set
O/\;V,p7 eFP, gp) _ (I/Vrf,p-i-l7 ng-H’ Gp-i-l) _ (Wlf,p, EFP7 Gp)’

where
WYP = (&P UVP) = (\llvm-irl7 Uv,p+1) — (UVP UVP).
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By careful computation, we obtain the system satisfied by (W"?,eFP GP)

3
DV + 37 Ai(nSP uSP) Dy WHP + JUPHL e Rt g g
=1
3 ~ ~
=— Z (A;i(nP,ul?) — Ay (nSP = usP™1)) 0, WHP, (69a)
i=1

20, FP — V x GP + nSPUP — nSPUP + 4;09P — 7,0

= —(n? =TT 4 (n? — P U, (69b)
9GP +V x FP =0, divG? =0, (69¢)
e2divF? — o"P 4 0P = (), (69d)
(W¥P e FP GP)|y—o = 0. (69e)

Based on the similar arguments of Lemmas 3.3-3.5 and (64)-(68), we deduce

sup [|[OWV"P, eFP,GP)()lle,s < el OV P~ eFPTE 6P (1) e 5,
t€[0,To)

where 0 < ¢ < 1, which depends on the bound C' in Proposition 1, thanks to (69e),
2m > 4 and (nSP,uSP) = (i, 1,) + 2™ (VP UYP). This implies

(UoP UsP WP P cFP GP)
is a Cauchy sequence, and hence there exists
(U1, U, ¥°,U% eF,G) € C([0,Tp]; H?)
such that, as p — 0o, we can obtain the convergence of the whole sequence
(WP WP GP eFP),sq
to (Wi, We G,eF), as well as

sup [|(W*', W€, eF,G)(t)|gs < Ce™?,
t€[0,To]

for any 0 < & < &¢. Indeed, in a similar manner to [9], we infer that (W¢ W¢ eF,G) €
C¥([0, Tp); H37?) for i = 0, 1. Passing the limit p — oo in the system (29), we obtain
system (23) admits a classical solution (W? W€, F,G) that satisfies

sup |[(WH, W, F,G)(t)||gs < Ce™ .
t€[0,To)

With the aid of the expansion (21), (n§,u$,nS, us, E°, B®) converges strongly to

(9,40 n© 4O EO) 0)in C(0,Ty; H?), for any integer 2m > 4.
The proof of Theorem 2.3 is then complete. O
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