Review

Nanotechnology-based approaches in the fight against SARS-CoV-2

  • Received: 16 August 2021 Accepted: 07 October 2021 Published: 12 October 2021
  • The COVID-19 pandemic caused by highly-infectious virus namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in infection of millions of individuals and deaths across the world. The need of an hour is to find the innovative solution for diagnosis, prevention, and cure of the COVID-19 disease. Nanotechnology is emerging as one of the important tool for the same. In the present review we discuss the applications of nanotechnology-based approaches that are being implemented to speed up the development of diagnostic kits for SARS-CoV-2, development of personal protective equipments, and development of therapeutics of COVID-19 especially the vaccine development.

    Citation: Alrayan Abass Albaz, Misbahuddin M Rafeeq, Ziaullah M Sain, Wael Abdullah Almutairi, Ali Saeed Alamri, Ahmed Hamdan Aloufi, Waleed Hassan Almalki, Mohammed Tarique. Nanotechnology-based approaches in the fight against SARS-CoV-2[J]. AIMS Microbiology, 2021, 7(4): 368-398. doi: 10.3934/microbiol.2021023

    Related Papers:

  • The COVID-19 pandemic caused by highly-infectious virus namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in infection of millions of individuals and deaths across the world. The need of an hour is to find the innovative solution for diagnosis, prevention, and cure of the COVID-19 disease. Nanotechnology is emerging as one of the important tool for the same. In the present review we discuss the applications of nanotechnology-based approaches that are being implemented to speed up the development of diagnostic kits for SARS-CoV-2, development of personal protective equipments, and development of therapeutics of COVID-19 especially the vaccine development.



    加载中

    Acknowledgments



    The authors acknowledge Almanac Life Science India Pvt. Ltd. for valuable inputs in the manuscript.

    Conflict of interest



    Author declares no conflict of interest.

    [1] Yang P, Wang X (2020) COVID-19: a new challenge for human beings. Cell Mol Immunol 17: 555-557. doi: 10.1038/s41423-020-0407-x
    [2] Finkel Y, Mizrahi O, Nachshon A, et al. (2020) The coding capacity of SARS-CoV-2. Nature 589: 125-130. doi: 10.1038/s41586-020-2739-1
    [3] World Health Organization Numbers at a glance Retrieved July 26, 2021. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
    [4] Hussain A, Kaler J, Tabrez E, et al. (2020) Novel COVID-19: A comprehensive review of transmission, manifestation, and pathogenesis. Cureus 12: e8184.
    [5] Sultan A, Ali R, Sultan T, et al. (2021) Circadian clock modulating small molecules repurposing as inhibitors of SARS-CoV-2 Mpro for pharmacological interventions in COVID-19 pandemic. Chronobiol Int 38: 971-985. doi: 10.1080/07420528.2021.1903027
    [6] Zhang Y, Geng X, Tan Y, et al. (2020) New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomed Pharmacother 127: 110195. doi: 10.1016/j.biopha.2020.110195
    [7] Abdool Karim SS, Oliveira T (2021) New SARS-CoV-2 variants—clinical public health, and vaccine implications. N Engl J Med 384: 1866-1868. doi: 10.1056/NEJMc2100362
    [8] Flaxman S, Mishra S, Gandy A, et al. (2020) Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 584: 257-261. doi: 10.1038/s41586-020-2405-7
    [9] Hsiang S, Allen D, Annan-Phan S, et al. (2020) The effect of large-scale anti-contagion policies on the COVID-19 pandemic. Nature 584: 262-267. doi: 10.1038/s41586-020-2404-8
    [10] Horton R (2020) Offline: the second wave. Lancet 395: 1960. doi: 10.1016/S0140-6736(20)31451-3
    [11] Flühmann B, Ntai I, Borchard G, et al. (2019) Nanomedicines: The magic bullets reaching their target? Eur J Pharm Sci 128: 73-80. doi: 10.1016/j.ejps.2018.11.019
    [12] Hawthorne GH, Bernuci MP, Bortolanza M, et al. (2017) Clinical developments in antimicrobial nanomedicine: toward novel solutions. Nanostructures for antimicrobial therapy Elsevier, 653-668. doi: 10.1016/B978-0-323-46152-8.00029-9
    [13] Szunerits S, Barras A, Khanal M, et al. (2015) Nanostructures for the inhibition of viral infections. Mol Basel Switz 20: 14051-14081.
    [14] Sathish Sundar D, Gover Antoniraj M, Senthil Kumar C, et al. (2016) Recent trends of biocompatible and biodegradable nanoparticles in drug delivery: A review. Curr Med Chem 23: 3730-3751. doi: 10.2174/0929867323666160607103854
    [15] Guntur SR, Kumar NS, Hegde MM, et al. (2018) In vitro studies of the antimicrobial and free-radical scavenging potentials of silver nanoparticles biosynthesized from the extract of Desmostachya bipinnata. Anal Chem Insights 13: 1177390118782877. doi: 10.1177/1177390118782877
    [16] Nasrollahzadeh M, Sajjadi M, Soufi GJ, et al. (2020) Nanomaterials and nanotechnology-associated innovations against viral infections with a focus on coronaviruses. Nanomater Basel Switz 10: 1072. doi: 10.3390/nano10061072
    [17] Singh L, Kruger HG, Maguire GEM, et al. (2017) The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis 4: 105-131.
    [18] Yang D (2021) Application of nanotechnology in the COVID-19 pandemic. Int J Nanomedicine 16: 623-649. doi: 10.2147/IJN.S296383
    [19] Singh L, Kruger HG, Maguire GE, et al. (2017) The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis 4: 105-131.
    [20] Bonam SR, Kotla NG, Bohara RA, et al. (2021) Potential immuno-nanomedicine strategies to fight COVID-19 like pulmonary infections. Nano Today 36: 101051. doi: 10.1016/j.nantod.2020.101051
    [21] Barar J (2020) COVID-19 clinical implications: the significance of nanomedicine. Bioimpacts 10: 137-138. doi: 10.34172/bi.2020.16
    [22] Sivaraman D, Pradeep PS, Manoharan SS, et al. (2020) Current Strategies and Approaches in Combating SARS-CoV-2 Virus that Causes COVID-19. Lett Drug Des Discov 17: 672-674. doi: 10.2174/157018081705200403092546
    [23] Sportelli MC, Izzi M, Kukushkina EA, et al. (2020) Can Nanotechnology and Materials Science Help the Fight against SARS-CoV-2? Nanomaterials 10: 802. doi: 10.3390/nano10040802
    [24] Huang L, Rong Y, Pan Q, et al. (2021) SARS-CoV-2 vaccine research and development: Conventional vaccines and biomimetic nanotechnology strategies. Asian J Pharm Sci 16: 136-146. doi: 10.1016/j.ajps.2020.08.001
    [25] Yang D (2021) Application of Nanotechnology in the COVID-19 Pandemic. Int J Nanomedicine 16: 623-649. doi: 10.2147/IJN.S296383
    [26] Cheema R, Blumberg DA (2021) Understanding laboratory testing for SARS-CoV-2. Children 8: 355. doi: 10.3390/children8050355
    [27] World Health Organization COVID-19 target product profiles for priority diagnostics to support response to the COVID-19 pandemic v.0.1 (2020) .Retrieved July 31, 2020, Available from: https://www.who.int/docs/default-source/blue-print/rd-blueprint-diagnostics-tpp-final-v31july2020.pdf?sfvrsn=2db5b31b_1&download=true.
    [28] Adhikari S, Adhikari U, Mishra A, et al. (2020) Nanomaterials for diagnostic, treatment and prevention of COVID-19. Appl Sci Technol Ann 1: 155-164. doi: 10.3126/asta.v1i1.30295
    [29] Balkourani G, Brouzgou A, Archonti M, et al. (2021) Emerging materials for the electrochemical detection of COVID-19. J Electroanal Chem 893: 115289. doi: 10.1016/j.jelechem.2021.115289
    [30] Misra R, Acharya S, Sushmitha N (2021) Nanobiosensor-based diagnostic tools in viral infections: Special emphasis on Covid-19. Rev Med Virol e2267.
    [31] Shetti NP, Mishra A, Bukkitgar SD, et al. (2021) Conventional and nanotechnology-based sensing methods for SARS coronavirus (2019-nCoV). ACS Appl Bio Mater 4: 1178-1190. doi: 10.1021/acsabm.0c01545
    [32] Suleman S, Shukla SK, Malhotra N, et al. (2021) Point of care detection of COVID-19: Advancement in biosensing and diagnostic methods. Chem Eng J 414: 128759. doi: 10.1016/j.cej.2021.128759
    [33] Choi Y, Hwang JH, Lee SY (2018) Recent trends in nanomaterials-based colorimetric detection of pathogenic bacteria and viruses. Small Methods 2: 1700351. doi: 10.1002/smtd.201700351
    [34] Chen J, Andler SM, Goddard JM, et al. (2017) Integrating recognition elements with nanomaterials for bacteria sensing. Chem Soc Rev 46: 1272-1283. doi: 10.1039/C6CS00313C
    [35] Saha K, Agasti SS, Kim C, et al. (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112: 2739-2779. doi: 10.1021/cr2001178
    [36] Karami A, Hasani M, Azizi Jalilian F, et al. (2021) Hairpin-spherical nucleic acids for diagnosing COVID-19: A simple method to generalize the conventional PCR for molecular assays. Anal Chem 93: 9250-9257. doi: 10.1021/acs.analchem.1c01515
    [37] Sil BK, Jamiruddin MR, Haq MA, et al. (2021) AuNP coupled rapid flow-through dot-blot immuno-assay for enhanced detection of SARS-CoV-2 specific nucleocapsid and receptor binding domain IgG. Int J Nanomedicine 16: 4739-4753. doi: 10.2147/IJN.S313140
    [38] Ventura BD, Cennamo M, Minopoli A, et al. (2020) Colorimetric test for fast detection of SARS-CoV-2 in nasal and throat swabs. ACS Sens 5: 3043-3048. doi: 10.1021/acssensors.0c01742
    [39] Moitra P, Alafeef M, Dighe K, et al. (2020) Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano 14: 7617-7627. doi: 10.1021/acsnano.0c03822
    [40] Mejía-Salazar JR, Oliveira ON (2018) Plasmonic biosensing: Focus review. Chem Rev 118: 10617-10625. doi: 10.1021/acs.chemrev.8b00359
    [41] Jadhav SA, Biji P, Panthalingal MK, et al. (2021) Development of integrated microfluidic platform coupled with Surface-enhanced Raman Spectroscopy for diagnosis of COVID-19. Med Hypotheses 146: 110356. doi: 10.1016/j.mehy.2020.110356
    [42] Shrivastav AM, Cvelbar U, Abdulhalim I (2021) A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun Biol 4: 70. doi: 10.1038/s42003-020-01615-8
    [43] Liu H, Dai E, Xiao R, et al. (2021) Development of a SERS-based lateral flow immunoassay for rapid and ultra-sensitive detection of anti-SARS-CoV-2 IgM/IgG in clinical samples. Sens Actuators B Chem 329: 129196. doi: 10.1016/j.snb.2020.129196
    [44] Qiu G, Gai Z, Tao Y, et al. (2020) Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 14: 5268-5277. doi: 10.1021/acsnano.0c02439
    [45] Zhu X, Wang X, Han L, et al. (2020) Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticles-based lateral flow biosensor for the diagnosis of COVID-19. Biosens Bioelectron 166: 112437. doi: 10.1016/j.bios.2020.112437
    [46] Wang Z, Zheng Z, Hu H, et al. (2020) A point-of-care selenium nanoparticles-based test for the combined detection of anti-SARS-CoV-2 IgM and IgG in human serum and blood. Lab Chip 20: 4255-4261. doi: 10.1039/D0LC00828A
    [47] Vadlamani BS, Uppal T, Verma SC, et al. (2020) Functionalized TiO2 nanotube-based electrochemical biosensor for rapid detection of SARS-CoV-2. Sensors 20: 5871. doi: 10.3390/s20205871
    [48] Jeong S, González-Grandío E, Navarro N, et al. (2021) Extraction of viral nucleic acids with carbon nanotubes increases SARS-CoV-2 quantitative reverse transcription polymerase chain reaction detection sensitivity. ACS Nano 15: 10309-10317. doi: 10.1021/acsnano.1c02494
    [49] Seo G, Lee G, Kim MJ, et al. (2020) Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 14: 5135-5142. doi: 10.1021/acsnano.0c02823
    [50] Li J, Wu D, Yu Y, et al. (2021) Rapid and unamplified identification of COVID-19 with morpholino-modified graphene field-effect transistor nanosensor. Biosens Bioelectron 183: 113206. doi: 10.1016/j.bios.2021.113206
    [51] Ali MA, Hu C, Jahan S, et al. (2021) Sensing of COVID-19 antibodies in seconds via aerosol jet nanoprinted reduced-graphene-oxide-coated 3D electrodes. Adv Mater Deerfield Beach Fla 33: 2006647. doi: 10.1002/adma.202006647
    [52] Zhu Z (2017) An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett 9: 1-24. doi: 10.1007/s40820-016-0103-7
    [53] Vermisoglou E, Panáček D, Jayaramulu K, et al. (2020) Human virus detection with graphene-based materials. Biosens Bioelectron 166: 112436. doi: 10.1016/j.bios.2020.112436
    [54] Yang L, Xie X, Cai L, et al. (2016) p-sulfonated calix [8] arene functionalized graphene as a “turn on” fluorescent sensing platform for aconitine determination. Biosens Bioelectron 82: 146-154. doi: 10.1016/j.bios.2016.04.005
    [55] Huang C, Wen T, Shi FJ, et al. (2020) Rapid detection of IgM antibodies against the SARS-CoV-2 virus via colloidal gold nanoparticle-based lateral-flow assay. ACS Omega 5: 12550-12556. doi: 10.1021/acsomega.0c01554
    [56] Mertens P, De Vos N, Martiny D, et al. (2020) Development and potential usefulness of the COVID-19 Ag Respi-Strip diagnostic assay in a pandemic context. Front Med 7: 225. doi: 10.3389/fmed.2020.00225
    [57] Wen T, Huang C, Shi FJ, et al. (2020) Development of a lateral flow immunoassay strip for rapid detection of IgG antibody against SARS-CoV-2 virus. Analyst 145: 5345-5352. doi: 10.1039/D0AN00629G
    [58] Shan B, Broza YY, Li W, et al. (2020) Multiplexed nanomaterial-based sensor array for detection of COVID-19 in exhaled breath. ACS Nano 14: 12125-12132. doi: 10.1021/acsnano.0c05657
    [59] Lamote K, Janssens E, Schillebeeckx E, et al. (2020) The scent of COVID-19: viral (semi-)volatiles as fast diagnostic biomarkers? J Breath Res 14: 042001. doi: 10.1088/1752-7163/aba105
    [60] Fabiani L, Saroglia M, Galatà G, et al. (2020) Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: A reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosens Bioelectron 171: 112686. doi: 10.1016/j.bios.2020.112686
    [61] Arduini F, Cinti S, Mazzaracchio V, et al. (2020) Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design. Biosens Bioelectron 156: 112033. doi: 10.1016/j.bios.2020.112033
    [62] Vaquer A, Alba-Patiño A, Adrover-Jaume C, et al. (2021) Nanoparticle transfer biosensors for the non-invasive detection of SARS-CoV-2 antigens trapped in surgical face masks. Sens Actuators B Chem 345: 130347. doi: 10.1016/j.snb.2021.130347
    [63] Baker AN, Richards SJ, Guy CS, et al. (2020) The SARS-CoV-2 spike protein binds sialic acids and enables rapid detection in a lateral flow point of care diagnostic device. ACS Cent Sci 6: 2046-2052. doi: 10.1021/acscentsci.0c00855
    [64] Yang Y, Peng Y, Lin C, et al. (2021) Human ACE2-functionalized gold ‘virus-trap’ nanostructures for accurate capture of SARS-CoV-2 and single-virus SERS detection. Nano-Micro Lett 13: 109. doi: 10.1007/s40820-021-00620-8
    [65] Zhang Y, Chen M, Liu C, et al. (2021) Sensitive and rapid on-site detection of SARS-CoV-2 using a gold nanoparticle-based high-throughput platform coupled with CRISPR/Cas12-assisted RT-LAMP. Sens Actuators B Chem 345: 130411. doi: 10.1016/j.snb.2021.130411
    [66] Cao Y, Wu J, Pang B, et al. (2021) CRISPR/Cas12a-mediated gold nanoparticle aggregation for colorimetric detection of SARS-CoV-2. Chem Commun Camb Engl 57: 6871-6874. doi: 10.1039/D1CC02546E
    [67] Jiang Y, Hu M, Liu AA, et al. (2021) Detection of SARS-CoV-2 by CRISPR/Cas12a-enhanced colorimetry. ACS Sens 6: 1086-1093. doi: 10.1021/acssensors.0c02365
    [68] Song F, Shen Y, Wei Y, et al. (2021) Botulinum toxin as an ultrasensitive reporter for bacterial and SARS-CoV-2 nucleic acid diagnostics. Biosens Bioelectron 176: 112953. doi: 10.1016/j.bios.2020.112953
    [69] Lew T, Aung K, Ow SY, et al. (2021) Epitope-functionalized gold nanoparticles for rapid and selective detection of SARS-CoV-2 IgG antibodies. ACS Nano Online ahead of print.
    [70] Alafeef M, Moitra P, Dighe K, et al. (2021) RNA-extraction-free nano-amplified colorimetric test for point-of-care clinical diagnosis of COVID-19. Nat Protoc 16: 3141-3162. doi: 10.1038/s41596-021-00546-w
    [71] Pramanik A, Gao Y, Patibandla S, et al. (2021) Aptamer conjugated gold nanostar-based distance-dependent nanoparticle surface energy transfer spectroscopy for ultrasensitive detection and inactivation of corona virus. J Phys Chem Lett 12: 2166-2171. doi: 10.1021/acs.jpclett.0c03570
    [72] Yao Z, Zhang Q, Zhu W, et al. (2021) Rapid detection of SARS-CoV-2 viral nucleic acids based on surface enhanced infrared absorption spectroscopy. Nanoscale 13: 10133-10142. doi: 10.1039/D1NR01652K
    [73] Karami A, Hasani M, Azizi Jalilian F, et al. (2021) Conventional PCR assisted single-component assembly of spherical nucleic acids for simple colorimetric detection of SARS-CoV-2. Sens Actuators B Chem 328: 128971. doi: 10.1016/j.snb.2020.128971
    [74] de Lima LF, Ferreira AL, Torres MD, et al. (2021) Minute-scale detection of SARS-CoV-2 using a low-cost biosensor composed of pencil graphite electrodes. Proc Natl Acad Sci 118: e2106724118. doi: 10.1073/pnas.2106724118
    [75] Zhang M, Li X, Pan J, et al. (2021) Ultrasensitive detection of SARS-CoV-2 spike protein in untreated saliva using SERS-based biosensor. Biosens Bioelectron 190: 113421. doi: 10.1016/j.bios.2021.113421
    [76] Sibai M, Solis D, Röltgen K, et al. (2021) Evaluation of SARS-CoV-2 total antibody detection via a lateral flow nanoparticles fluorescence immunoassay. J Clin Virol Off Publ Pan Am Soc Clin Virol 139: 104818. doi: 10.1016/j.jcv.2021.104818
    [77] Fu Z, Zeng W, Cai S, et al. (2021) Porous Au@Pt nanoparticles with superior peroxidase-like activity for colorimetric detection of spike protein of SARS-CoV-2. J Colloid Interface Sci 604: 113-121. doi: 10.1016/j.jcis.2021.06.170
    [78] Bayin Q, Huang L, Ren C, et al. (2021) Anti-SARS-CoV-2 IgG and IgM detection with a GMR based LFIA system. Talanta 227: 122207. doi: 10.1016/j.talanta.2021.122207
    [79] Chen Z, Zhang Z, Zhai X, et al. (2020) Rapid and sensitive detection of anti-SARS-CoV-2 IgG, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal Chem 92: 7226-7231. doi: 10.1021/acs.analchem.0c00784
    [80] Wang D, He S, Wang X, et al. (2020) Rapid lateral flow immunoassay for the fluorescence detection of SARS-CoV-2 RNA. Nat Biomed Eng 4: 1150-1158. doi: 10.1038/s41551-020-00655-z
    [81] Stieber F, Howard J, Rao SN, et al. (2020) First performance report of QIAreach™ Anti-SARS-CoV-2 Total Test, an innovative nanoparticle fluorescence digital detection platform. J Clin Virol 133: 104681. doi: 10.1016/j.jcv.2020.104681
    [82] Nguyen N, Kim S, Lindemann G, et al. (2021) COVID-19 spike protein induced phononic modification in antibody-coupled graphene for viral detection application. ACS Nano 15: 11743-11752. doi: 10.1021/acsnano.1c02549
    [83] Zhang Y, Malekjahani A, Udugama BN, et al. (2021) Surveilling and tracking COVID-19 patients using a portable quantum dot smartphone device. Nano Lett 21: 5209-5216. doi: 10.1021/acs.nanolett.1c01280
    [84] Zhou Y, Chen Y, Liu W, et al. (2021) Development of a rapid and sensitive quantum dot nanobead-based double-antigen sandwich lateral flow immunoassay and its clinical performance for the detection of SARS-CoV-2 total antibodies. Sens Actuators B Chem 343: 130139. doi: 10.1016/j.snb.2021.130139
    [85] Sundah NR, Natalia A, Liu Y, et al. (2021) Catalytic amplification by transition-state molecular switches for direct and sensitive detection of SARS-CoV-2. Sci Adv 7: 5940. doi: 10.1126/sciadv.abe5940
    [86] Chen R, Ren C, Liu M, et al. (2021) Early Detection of SARS-CoV-2 seroconversion in humans with aggregation-induced near-infrared emission nanoparticle-labeled lateral flow immunoassay. ACS Nano 15: 8996-9004. doi: 10.1021/acsnano.1c01932
    [87] Bałazy A, Toivola M, Reponen T, et al. (2006) Manikin-based performance evaluation of N95 filtering-facepiece respirators challenged with nanoparticles. Ann Occup Hyg 50: 259-269.
    [88] Chen L, Liang J (2020) An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater Sci Eng C Mater Biol Appl 112: 110924. doi: 10.1016/j.msec.2020.110924
    [89] Militky J, Novak O, Kremenakova D, et al. (2021) A review of impact of textile research on protective face masks. Material (Basel) 14: 1937. doi: 10.3390/ma14081937
    [90] Palmieri V, De Maio F, De Spirito M, et al. (2021) Face masks and nanotechnology: Keep the blue side up. Nano Today 37: 101077. doi: 10.1016/j.nantod.2021.101077
    [91] Talebian S, Wallace GG, Schroeder A, et al. (2020) Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nat Nanotechnol 15: 618-621. doi: 10.1038/s41565-020-0751-0
    [92] Kumar S, Karmacharya M, Joshi SR, et al. (2021) Photoactive Antiviral Face Mask with Self-Sterilization and Reusability. Nano Lett 21: 337-343. doi: 10.1021/acs.nanolett.0c03725
    [93] Nanotechnology Products Database (2021) .Available from: https://product.statnano.com/search?keyword=COVID-19.
    [94]  Nanotechnology in Battle Against Coronavirus Retrieved July 31, 2021, Available from: https://statnano.com/nanotechnology-in-battle-against-coronavirus.
    [95] Borkow G, Zhou SS, Page T, et al. (2010) A novel anti-influenza copper oxide containing respiratory face mask. PloS One 5: e11295. doi: 10.1371/journal.pone.0011295
    [96]  Korea Advanced Institute of Science and Technology, Recyclable nano-fiber filtered face masks a boon for supply fiasco, 2020 Available from: https://news.kaist.ac.kr/newsen/html/news/?mode=V&mng_no=6530.
    [97]  Queensland University of Technology, New mask material can remove virus-size nanoparticles, 2020 Available from: https://www.qut.edu.au/news?id=161468.
    [98]  The world's first anti-coronavirus surgical mask by Wakamono, 2020 Available from: https://wakamonobio.com/the-wakamono-mask-the-worlds-first-anti-coronavirus-surgical-mask-2/.
    [99] Tremiliosi GC, Simoes LGP, Minozzi DT, et al. (2020) Ag nanoparticles-based antimicrobial polycotton fabrics to prevent the transmission and spread of SARS-CoV-2 Preprint.
    [100] Jeremiah SS, Miyakawa K, Morita T, et al. (2020) Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochem Biophys Res Commun 533: 195-200. doi: 10.1016/j.bbrc.2020.09.018
    [101] Gheblawi M, Wang K, Viveiros A, et al. (2020) Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res 126: 1456-1474. doi: 10.1161/CIRCRESAHA.120.317015
    [102] Ni W, Yang X, Yang D, et al. (2020) Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care 24: 422. doi: 10.1186/s13054-020-03120-0
    [103] Imai Y, Kuba K, Rao S, et al. (2005) Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436: 112-116. doi: 10.1038/nature03712
    [104] Aydemir D, Ulusu NN (2020) Correspondence: Angiotensin-converting enzyme 2 coated nanoparticles containing respiratory masks, chewing gums and nasal filters may be used for protection against COVID-19 infection. Travel Med Infect Dis 37: 101697. doi: 10.1016/j.tmaid.2020.101697
    [105] Raghav PK, Mohanty S (2020) Are graphene and graphene-derived products capable of preventing COVID-19 infection? Med Hypotheses 144: 110031. doi: 10.1016/j.mehy.2020.110031
    [106] Chen YN, Hsueh YH, Hsieh CT, et al. (2016) Antiviral activity of graphene-silver nanocomposites against non-enveloped and enveloped viruses. Int J Environ Res Public Health 13: 430. doi: 10.3390/ijerph13040430
    [107] De Maio F, Palmieri V, Babini G, et al. (2021) Graphene nanoplatelet and graphene oxide functionalization of face mask materials inhibits infectivity of trapped SARS-CoV-2. iScience 24: 102788. doi: 10.1016/j.isci.2021.102788
    [108] Unal MA, Bayrakdar F, Nazir H, et al. (2021) Graphene oxide nanosheets interact and interfere with SARS-CoV-2 surface proteins and cell receptors to inhibit infectivity. Small 17: 2101483. doi: 10.1002/smll.202101483
    [109] Guardian G-Volt masks would use graphene and electrical charge to repel viruses and bacteria (2020) .Available from: https://www.dezeen.com/2020/03/06/guardian-g-volt-face-mask-graphene-coronavirus-bacteria/.
    [110] Balagna C, Perero S, Percivalle E, et al. (2020) Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceram 100006.
    [111] Pastorino B, Touret F, Gilles M, et al. (2020) Prolonged infectivity of SARS-CoV-2 in fomites. Emerg Infect Dis 26: 2256-2257. doi: 10.3201/eid2609.201788
    [112] Blevens MS, Pastrana HF, Mazzotta HC, et al. (2021) Cloth Face Masks Containing Silver: Evaluating the Status. J Chem Health Saf 1c00005.
    [113] Chen X, Chen X, Liu Q, et al. (2021) Used disposable face masks are significant sources of microplastics to environment. Environ Pollut 285: 117485. doi: 10.1016/j.envpol.2021.117485
    [114] Sullivan GL, Delgado-Gallardo J, Watson TM, et al. (2021) An investigation into the leaching of micro and nano particles and chemical pollutants from disposable face masks-linked to the COVID-19 pandemic. Water Res 196: 117033. doi: 10.1016/j.watres.2021.117033
    [115] Kang J, Zhou L, Duan X, et al. (2019) Degradation of Cosmetic microplastics via functionalized carbon nanosprings. Matter 1: 745-758. doi: 10.1016/j.matt.2019.06.004
    [116] World Health Organization COVID-19 vaccine tracker and landscape Retrieved on July 31, 2021. Available from: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
    [117] World Health Organization Status of COVID-19 Vaccines within WHO EUL/PQ evaluation process Retrieved on May 18, 2021. Available from: https://extranet.who.int/pqweb/sites/default/files/documents/Status_COVID_VAX_18May2021.pdf.
    [118] Sanders JM, Monogue ML, Jodlowski TZ, et al. (2020) Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA 323: 1824-1836. doi: 10.1001/jama.2019.20153
    [119] Pan H, Peto R, Abdool Karim Q, et al. (2020) Repurposed antiviral drugs for COVID-19 – interim WHO SOLIDARITY trial results. N Engl J Med 384: 497-511.
    [120] Tammam SN, Azzazy HM, Lamprecht A (2015) Biodegradable particulate carrier formulation and tuning for targeted drug delivery. J Biomed Nanotechnol 11: 555-577. doi: 10.1166/jbn.2015.2017
    [121] Patra JK, Das G, Fraceto LF, et al. (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 16: 71. doi: 10.1186/s12951-018-0392-8
    [122] Chakravarty M, Vora A (2020) Nanotechnology-based antiviral therapeutics. Drug Deliv Transl Res 11: 748-787. doi: 10.1007/s13346-020-00818-0
    [123] Teixeira MC, Carbone C, Souto EB (2017) Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog Lipid Res 68: 1-11. doi: 10.1016/j.plipres.2017.07.001
    [124] Roldão A, Mellado MC, Castilho LR, et al. (2010) Virus-like particles in vaccine development. Expert Rev Vaccines 9: 1149-1176. doi: 10.1586/erv.10.115
    [125] Schwarz B, Uchida M, Douglas T (2017) Biomedical and catalytic opportunities of virus-like particles in nanotechnology. Adv Virus Res 60: 1-60.
    [126] Syomin BV, Ilyin YV (2019) Virus-like particles as an instrument of vaccine production. Mol Biol 53: 323-334. doi: 10.1134/S0026893319030154
    [127] Bachmann M, Rohrer U, Kundig T, et al. (1993) The influence of antigen organization on B cell responsiveness. Science 262: 1448-1451. doi: 10.1126/science.8248784
    [128] Zabel F, Kündig TM, Bachmann MF (2013) Virus-induced humoral immunity: on how B cell responses are initiated. Curr Opin Virol 3: 357-362. doi: 10.1016/j.coviro.2013.05.004
    [129] Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10: 787-796. doi: 10.1038/nri2868
    [130] Bachmann MF, Dyer MR (2004) Therapeutic vaccination for chronic diseases: a new class of drugs in sight. Nat Rev Drug Discov 3: 81-88. doi: 10.1038/nrd1284
    [131] Zepeda-Cervantes J, Ramírez-Jarquín JO, Vaca L (2020) Interaction between virus-like particles (VLPs) and pattern recognition receptors (PRRs) from dendritic cells (DCs): toward better engineering of VLPs. Front Immunol 11: 1100. doi: 10.3389/fimmu.2020.01100
    [132] Mohsen MO, Zha L, Cabral-Miranda G, et al. (2017) Major findings and recent advances in virus–like particle (VLP)-based vaccines. Semin Immunol 34: 123-132. doi: 10.1016/j.smim.2017.08.014
    [133] Ward BJ, Gobeil P, Séguin A, et al. (2021) Phase 1 randomized trial of a plant-derived virus-like particle vaccine for COVID-19. Nat Med 27: 1071-1078. doi: 10.1038/s41591-021-01370-1
    [134] ARTES Biotechnology ARTES joins global combat against Corona, 2020 Available from: https://artes-biotechnology.biz/artes-joins-global-combat-against-corona/.
    [135] Fluckiger AC, Ontsouka B, Bozic J, et al. (2021) An enveloped virus-like particle vaccine expressing a stabilized prefusion form of the SARS-CoV-2 spike protein elicits highly potent immunity. Vaccine 39: 4988-5001. doi: 10.1016/j.vaccine.2021.07.034
    [136] Milken Institute FasterCures COVID-19 treatments and vaccine tracker (2021) .Retrieved July 31, 2021. Available from: https://covid-19tracker.milkeninstitute.org/.
    [137] Reichmuth AM, Oberli MA, Jaklenec A, et al. (2016) mRNA vaccine delivery using lipid nanoparticles. Ther Deliv 7: 319-334. doi: 10.4155/tde-2016-0006
    [138] Jackson N, Kester KE, Casimiro D, et al. (2020) The promise of mRNA vaccines: a biotech and industrial perspective. NPJ Vaccines 5: 11. doi: 10.1038/s41541-020-0159-8
    [139] Buschmann MD, Carrasco MJ, Alishetty S, et al. (2021) Nanomaterial Delivery Systems for mRNA Vaccines. Vaccines 9: 65. doi: 10.3390/vaccines9010065
    [140] Khehra N, Padda I, Jaferi U, et al. (2021) Tozinameran (BNT162b2) vaccine: The journey from preclinical research to clinical trials and authorization. AAPS PharmSciTech 22: 172. doi: 10.1208/s12249-021-02058-y
    [141] Francis AI, Ghany S, Gilkes T, et al. (2021) Review of COVID-19 vaccine subtypes, efficacy and geographical distributions. Postgrad Med J 0: 1-6.
    [142] Corbett KS, Edwards DK, Leist SR, et al. (2020) SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586: 567-571. doi: 10.1038/s41586-020-2622-0
    [143] Corbett KS, Flynn B, Foulds KE, et al. (2020) Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N Engl J Med 383: 1544-1555. doi: 10.1056/NEJMoa2024671
    [144] Baden LR, El Sahly HM, Essink B, et al. (2021) Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med 384: 403-416. doi: 10.1056/NEJMoa2035389
    [145] Keech C, Albert G, Cho I, et al. (2020) Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticles vaccine. N Engl J Med 383: 2320-2332. doi: 10.1056/NEJMoa2026920
    [146] Heath PT, Galiza EP, Baxter DN, et al. (2021) Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. N Engl J Med 385: 1172-1183. doi: 10.1056/NEJMoa2107659
    [147] Massare MJ, Patel N, Zhou B, et al. (2021) Combination respiratory vaccine containing recombinant SARS-CoV-2 spike and quadrivalent seasonal influenza hemagglutinin nanoparticles with matrix-m adjuvant Preprint.
    [148] He L, Lin X, Wang Y, et al. (2020) Self-assembling nanoparticles presenting receptor binding domain and stabilized spike as next-generation COVID-19 vaccines Preprint.
    [149] Zeng C, Hou X, Yan J, et al. (2020) Leveraging mRNA sequences and nanoparticles to deliver SARS-CoV-2 antigens in vivoAdv Mater 32: 2004452. doi: 10.1002/adma.202004452
    [150] Rao L, Xia S, Xu W, et al. (2020) Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc Natl Acad Sci 117: 27141-27147. doi: 10.1073/pnas.2014352117
    [151] Li Z, Wang Z, Dinh PUC, et al. (2021) Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung injury in a non-human primate model of COVID-19. Nat Nanotechnol 16: 942-951. doi: 10.1038/s41565-021-00923-2
    [152] Zhang Q, Honko A, Zhou J, et al. (2020) Cellular nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett 20: 5570-5574. doi: 10.1021/acs.nanolett.0c02278
    [153] Liu L, Liu Z, Chen H, et al. (2020) A translatable subunit nanovaccine for COVID-19 Preprint.
    [154] Padlan EA (1994) Anatomy of the antibody molecule. Mol Immunol 31: 169-217. doi: 10.1016/0161-5890(94)90001-9
    [155] Huang L, Muyldermans S, Saerens D (2010) Nanobodies®: proficient tools in diagnostics. Expert Rev Mol Diagn 10: 777-785. doi: 10.1586/erm.10.62
    [156] Van Audenhove I, Gettemans J (2016) Nanobodies as versatile tools to understand, diagnose, visualize and treat cancer. EBioMedicine 8: 40-48. doi: 10.1016/j.ebiom.2016.04.028
    [157] Bannas P, Hambach J, Koch-Nolte F (2017) Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front Immunol 8: 1603. doi: 10.3389/fimmu.2017.01603
    [158] Pymm P, Adair A, Chan LJ, et al. (2021) Nanobody cocktails potently neutralize SARS-CoV-2 D614G N501Y variant and protect mice. Proc Natl Acad Sci 118: e2101918118. doi: 10.1073/pnas.2101918118
    [159] Wang Y, Fan Z, Shao L, et al. (2016) Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications. Int J Nanomedicine 11: 3287-3303. doi: 10.2147/IJN.S107194
    [160] Xu J, Xu K, Jung S, et al. (2021) Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature 595: 278-282. doi: 10.1038/s41586-021-03676-z
    [161] Güttler T, Aksu M, Dickmanns A, et al. (2021) Neutralization of SARS-CoV-2 by highly potent, hyperthermostable, and mutation-tolerant nanobodies. EMBO J 40: e107985. doi: 10.15252/embj.2021107985
    [162] Sziemel AM, Hwa SH, Sigal A, et al. (2021) Development of highly potent neutralising nanobodies against multiple SARS-CoV-2 variants including the variant of concern B.1.351 Preprint.
    [163] Custódio TF, Das H, Sheward DJ, et al. (2020) Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. Nat Commun 11: 5588. doi: 10.1038/s41467-020-19204-y
    [164] Ye G, Gallant JP, Massey C, et al. (2020) The development of a novel nanobody therapeutic for SARS-CoV-2 Preprint.
    [165] Hanke L, Vidakovics Perez L, Sheward DJ, et al. (2020) An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nat Commun 11: 4420. doi: 10.1038/s41467-020-18174-5
    [166] Nambulli S, Xiang Y, Tilston-Lunel NL, et al. (2021) Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. Sci Adv 7: 0319. doi: 10.1126/sciadv.abh0319
    [167] Esparza TJ, Martin NP, Anderson GP, et al. (2020) High affinity nanobodies block SARS-CoV-2 spike receptor binding domain interaction with human angiotensin converting enzyme. Sci Rep 10: 1-13. doi: 10.1038/s41598-020-79036-0
    [168] Xiang Y, Nambulli S, Xiao Z, et al. (2020) Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2 370: 1479-1484.
    [169] Koenig PA, Das H, Liu H, et al. (2021) Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape 371: 6230.
    [170] Lu Q, Zhang Z, Li H, et al. (2021) Development of multivalent nanobodies blocking SARS-CoV-2 infection by targeting RBD of spike protein. J Nanobiotechnology 19: 33. doi: 10.1186/s12951-021-00768-w
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4198) PDF downloads(204) Cited by(4)

Article outline

Figures and Tables

Figures(3)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog