
Due to an increase in the number of users and a high demand for high data rates, researchers have resorted to boosting the capacity and spectral efficiency of the next-generation wireless communication. With a limited RF chain, hybrid analog digital precoding is an appealing alternative. The hybrid precoding approach divides the beamforming process into an analog beamforming network and a digital beamforming network of a reduced size. As a result, numerous hybrid beamforming networks have been proposed. The practical effects of signal processing in the RF domain, such as the additional power loss incurred by an analog beamforming network, were not taken into account. The effectiveness of hybrid precoding structures for massive MIMO systems was examined in this study. In particular, a viable hardware network realization with insertion loss was developed. Investigating the spectral and energy efficiency of two popular hybrid precoding structures, the fully connected structure, and the subconnected structure, it was found that in a massive MIMO, the subconnected structure always performed better than the fully connected structure. Characterizing the effect of quantized analog precoding, it was shown that the subconnected structure was able to achieve better performance with fewer feedback bits than the fully connected structure.
Citation: Tadele A. Abose, Thomas O. Olwal, Muna M. Mohammed, Murad R. Hassen. Performance analysis of insertion loss incorporated hybrid precoding for massive MIMO[J]. AIMS Electronics and Electrical Engineering, 2024, 8(2): 187-210. doi: 10.3934/electreng.2024008
[1] | Mansour Shrahili, Mohamed Kayid . Uncertainty quantification based on residual Tsallis entropy of order statistics. AIMS Mathematics, 2024, 9(7): 18712-18731. doi: 10.3934/math.2024910 |
[2] | Ramy Abdelhamid Aldallal, Haroon M. Barakat, Mohamed Said Mohamed . Exploring weighted Tsallis extropy: Insights and applications to human health. AIMS Mathematics, 2025, 10(2): 2191-2222. doi: 10.3934/math.2025102 |
[3] | H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. Nagy, A. H. Mansi, M. O. Mohamed . Bivariate Epanechnikov-exponential distribution: statistical properties, reliability measures, and applications to computer science data. AIMS Mathematics, 2024, 9(11): 32299-32327. doi: 10.3934/math.20241550 |
[4] | Mohamed Said Mohamed, Najwan Alsadat, Oluwafemi Samson Balogun . Continuous Tsallis and Renyi extropy with pharmaceutical market application. AIMS Mathematics, 2023, 8(10): 24176-24195. doi: 10.3934/math.20231233 |
[5] | Mohamed Said Mohamed, Haroon M. Barakat, Aned Al Mutairi, Manahil SidAhmed Mustafa . Further properties of Tsallis extropy and some of its related measures. AIMS Mathematics, 2023, 8(12): 28219-28245. doi: 10.3934/math.20231445 |
[6] | Refah Alotaibi, Mazen Nassar, Zareen A. Khan, Wejdan Ali Alajlan, Ahmed Elshahhat . Entropy evaluation in inverse Weibull unified hybrid censored data with application to mechanical components and head-neck cancer patients. AIMS Mathematics, 2025, 10(1): 1085-1115. doi: 10.3934/math.2025052 |
[7] | Alaa M. Abd El-Latif, Hanan H. Sakr, Mohamed Said Mohamed . Fractional generalized cumulative residual entropy: properties, testing uniformity, and applications to Euro Area daily smoker data. AIMS Mathematics, 2024, 9(7): 18064-18082. doi: 10.3934/math.2024881 |
[8] | M. Nagy, H. M. Barakat, M. A. Alawady, I. A. Husseiny, A. F. Alrasheedi, T. S. Taher, A. H. Mansi, M. O. Mohamed . Inference and other aspects for q−Weibull distribution via generalized order statistics with applications to medical datasets. AIMS Mathematics, 2024, 9(4): 8311-8338. doi: 10.3934/math.2024404 |
[9] | Areej M. AL-Zaydi . On concomitants of generalized order statistics arising from bivariate generalized Weibull distribution and its application in estimation. AIMS Mathematics, 2024, 9(8): 22002-22021. doi: 10.3934/math.20241069 |
[10] | G. M. Mansour, M. A. Abd Elgawad, A. S. Al-Moisheer, H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. O. Mohamed . Bivariate Epanechnikov-Weibull distribution based on Sarmanov copula: properties, simulation, and uncertainty measures with applications. AIMS Mathematics, 2025, 10(5): 12689-12725. doi: 10.3934/math.2025572 |
Due to an increase in the number of users and a high demand for high data rates, researchers have resorted to boosting the capacity and spectral efficiency of the next-generation wireless communication. With a limited RF chain, hybrid analog digital precoding is an appealing alternative. The hybrid precoding approach divides the beamforming process into an analog beamforming network and a digital beamforming network of a reduced size. As a result, numerous hybrid beamforming networks have been proposed. The practical effects of signal processing in the RF domain, such as the additional power loss incurred by an analog beamforming network, were not taken into account. The effectiveness of hybrid precoding structures for massive MIMO systems was examined in this study. In particular, a viable hardware network realization with insertion loss was developed. Investigating the spectral and energy efficiency of two popular hybrid precoding structures, the fully connected structure, and the subconnected structure, it was found that in a massive MIMO, the subconnected structure always performed better than the fully connected structure. Characterizing the effect of quantized analog precoding, it was shown that the subconnected structure was able to achieve better performance with fewer feedback bits than the fully connected structure.
Let Z be a random variable (RV) having probability density function (PDF) gZ(z). Shannon [33] defined entropy for a RV Z as
H(Z)=−∫∞0gZ(z)loggZ(z)dz. |
The non-additive generalization of Shannon's entropy of order η, suggested by Tsallis [37], is known as Tsallis entropy. This measure plays an important role in the uncertainty measurements of an RV Z, which is defined as
Hη(Z)=1η−1(1−∫∞0gηZ(z)dz), | (1.1) |
where 0<η≠1. When η⟶1, Tsallis entropy approaches Shannon entropy.
There are many applications of this new entropy, especially in physics [7], earthquakes [2], stock exchanges [20], plasma [23], and income distribution [35]. For more information about Tsallis entropy, we recommend reading Tsallis [38]. Several generalizations of Shannon entropy have been developed, which make these entropies sensitive to different kinds of probability distributions via the addition of a few additional parameters. A new measure of Shannon entropy, cumulative residual entropy (CRE), was introduced by Rao et al. [30] by taking into account the survival function instead of the probability density function. CRE is considered more stable and mathematically sound due to its more regular survival function (SF) than the PDF. Moreover, distribution functions exist even when probability density functions do not exist (e.g., Govindarajulu, power-Pareto, and generalized lambda distributions). CRE measure is based on SF ¯GZ(z). According to his definition, CRE is defined as
J(Z)=−∫∞0¯GZ(z)log¯GZ(z)dz. |
A cumulative residual Tsallis entropy (CRTE) of order η, which is represented by ζη(Z), was introduced by Sati and Gupta [32]. This CRTE is defined as
ζη(Z)=1η−1(1−∫∞0¯GηZ(z)dz),η>0,η≠1. | (1.2) |
When η⟶1, CRTE approaches CRE.
The CRTE may also be represented in terms of the mean residual life function of Z, which is another useful representation defined as
ζη(Z)=1ηE[m(Zη)]. | (1.3) |
Rajesh and Sunoj [31] unveiled an alternative measure for CRTE denoted by the order η, which is defined as
ξη(Z)=1η−1(∫∞0(¯GZ(z)−¯GηZ(z))dz),η>0,η≠1. | (1.4) |
The characteristics of the residual Tsallis entropy for order statistics (OSs) were studied by Shrahili and Kayid [34]. Mohamed [24] recently conducted a study on the CRTE and its dynamic form, which is based on the Farlie-Gumbel-Morgenstern (FGM) family. When prior information is presented in the form of marginal distributions, it is advantageous to model bivariate data using marginal distributions. The FGM family is one of these families that has been the subject of a significant amount of study. The FGM family is represented by the bivariate cumulative distribution function (CDF) GZ,X(z,x)=GZ(z)GX(x)[1+θ(1−GZ(z))(1−GX(x))], −1≤θ≤1, where GZ(z) and GX(x) are the marginal CDFs of two RVs Z and X, respectively. Literature indicates that several modifications have been implemented in the FGM family to increase the correlation between its marginals. Extensive families have been the subject of a great number of studies, each of which has a unique point of view. Examples of these studies are Barakat et al. [6], Abd Elgawad and Alawady [1], Alawady et al. [4], Chacko and Mary [10], Husseiny et al. [17,18], and Nagy et al. [26]. It was demonstrated by Huang and Kotz [15] that a single iteration may result in a doubling of the correlation between marginals in FGM. This was established through the use of a single iteration. The joint CDF iterated FGM (IFGM) family with a single iteration is denoted by IFGM(γ,ω) and defined as
GZ,X(z,x)=GZ(z)GX(x)[1+γ¯GZ(z)¯GX(x)+ωGZ(z)GX(x)¯GZ(z)¯GX(x)]. | (1.5) |
The corresponding joint PDF (JPDF) is given by
gZ,X(z,x)=gZ(z)gX(x)[1+γ(1−2GZ(z))(1−2GX(x))+ωGZ(z)GX(x)(2−3GZ(z))(2−3GX(x))]. | (1.6) |
Classical FGM can clearly be regarded as a special case of the IFGM(γ,ω) family (1.5)–(1.6) by putting ω=0. If the two marginals GZ(z) and GX(x) are continuous, Huang and Kotz [15] showed that the natural parameter space Ω (which is the admissible set of the parameters γ and ω that makes GZ,X(z,x) is a genuine CDF) is convex, where Ω={(γ,ω):−1≤γ≤1;−1≤γ+ω;ω≤3−γ+√9−6γ−3γ22}. Additionally, if the marginals are uniform, the correlation coefficient is ρ=γ3+ω12. Finally, the maximal correlation coefficient attained for this family is maxρ=0.434, versus maxρ=13=0.333 achieved for γ=1 in the original FGM [16]. The JPDF of the IFGM copula is plotted in Figure 1. Figure 1 illustrates subfigures that exhibit unique parameter values. Each subfigure from (a) to (f) had the parameter values arranged in a vector form (γ,ω).
As a unifying model for ascendingly ordered RVs, generalized order statistics (GOSs) have drawn more and more attention. The GOSs model was first presented by Kamps [21]. It is made up of several pertinent models of ordered RVs, such as order statistics (OSs), record values, sequential OSs (SOSs), and progressive censored type-Ⅱ OSs (POS-II). The RVs Z(r,n,˜m,κ),r=1,2,...,n, are called GOSs based on a continuous CDF GZ(z) with the PDF gZ(z), if their JPDF has the form
f(˜m,κ)1,...,n:n(z1,...,zn)=κGγn−1Z(zn)gZ(zn)n−1∏i=1γiGγi−γi+1−1Z(zi)gZ(zi), |
where G−1(0)≤z1≤...≤zn≤G−1(1), κ>0,γi=n+κ−i+∑n−1t=imt>0,i=1,…,n−1, and ˜m=(m1,m2,…,mn−1)∈R. In this paper, we assume that the parameters γ1,…,γn−1, and γn=κ, are pairwise different, i.e., γt≠γs,t≠s,t,s=1,2,...,n. We obtain a very wide subclass of GOSs that contains m-GOSs (where m1=...=mn−1=m), OSs, POS-II, and SOSs. The PDF of the rth GOS and the JPDF of the rth and sth GOSs, 1≤r<s≤n, respectively, are given by Kamps and Cramer [22].
fZ(r,n,˜m,κ)(z)=Crr∑i=1αi;r¯Gγi−1Z(z)gZ(z),z∈R,1≤r≤n, | (1.7) |
fZ(r,n;˜m,κ),Z(s,n;˜m,κ)(z,x)=Cs[s∑i=r+1αi;r;s(¯GZ(x)¯GZ(z))γi][r∑i=1αi;r¯GγiZ(z)]gZ(z)¯GZ(z)gZ(x)¯GZ(x),z<x, | (1.8) |
where ¯G=1−G is (SF) of G, Cr=r∏i=1γi,αi;r=r∏j=1j≠i1γj−γi,1≤i≤r≤n, and αi;r;s=s∏j=r+1j≠i1γj−γi,r+1≤i≤s≤n.
When dealing with selection and prediction difficulties, the meaning of concomitants is a vital tool. The idea of concomitants of OSs (COSs) was first proposed by David [11]. Refer to David and Nagaraja [12] for a comprehensive understanding of the COS. Many studies have been published on the concomitants of the GOSs (CGOSs) model. Researchers such as Alawady et al. [5], Beg and Ahsanullah [8], and Domma and Giordano [13] have studied this issue. The CGOSs models, however, have only been studied in a restricted number of studies when γt≠γs,t≠s,t,s=1,2,...,n. These include Abd Elgawad and Alawady [1], and Mohie El-Din et al. [25].
Let (Zi,Xi),i=1,2,...,n, be a random sample from a continuous bivariate CDF GZ,X(z,x). If we denote Z(r,n,˜m,κ) as the rth GOS of the Z sample values, then the X values associated with Z(r,n,˜m,κ) is called the concomitant of the rth GOS and is denoted by X[r,n,˜m,κ],r=1,2,...,n. The PDF of the concomitant of rth GOS is given by
g[r,n,˜m,κ](x)=∫∞−∞gX|Z(x|z)fZ(r,n,˜m,κ)(z)dz. | (1.9) |
More generally, for 1≤r<s≤n, the JPDF of the concomitants of rth and sth GOSs is given by
g[r,s,n,˜m,κ](x1,x2)=∫∞−∞∫x1−∞gX|Z(x1|z1)gX|Z(x2|z2)fZ(r,n,˜m,κ),Z(s,n,˜m,κ)(z1,z2)dz2dz1. | (1.10) |
Motivation and the purpose of the work
Mohamed [24] exhibited CRTE features in CGOSs that were based on FGM. Suter et al. [36] conducted another study that examined Tsallis entropy in CGOSs resulting from FGM. We generalize the previous articles by investigating Tsallis measures in CGOS from IFGM in more general scenarios. The objectives that inspired this study are as follows: Tsallis entropy measures based on CGOSs with interesting features are introduced in a broad framework. We considered sub models through a comprehensive numerical analysis, including OSs, record values, and k-record values. An in-depth analysis of reaching satisfactory results using the nonparametric estimate of these measures. More sophistication and flexibility are provided by the suggested distribution (IFGM) for modeling complicated data sets. This is why we used actual data in our analysis.
The arrangement of this paper is organized as follows: In Section 2, we obtain some characterization results on concomitants X[r,n,˜m,k] based on IFGM(γ,ω) as Tsallis entropy, CRTE, and alternate measure of CRTE. In Section 3, we extend and compute some examples of information measures for the concomitants X[r,n,˜m,k] from IFGM(γ,ω). We use the empirical method in combination with CGOS based on the IFGM family, to estimate the CRTE in Section 4. Finally, in Section 5, a bivariate real-world data set has been probed, and we examine the Tsallis entropy and CRTE. Finally, Section 6 concludes the work.
In this section, we derived Tsallis entropy, CRTE, and an alternative measure CRTE for CGOS based on the IFGM(γ,ω) family. First, we will point out some important results that we will use in deducing these measures. Husseiny et al. [17] derived the PDF, CDF, and SF for the concomitant X[r,n,˜m,k] of the rth GOS, respectively, as follows:
g[r,n,˜m,k](x)=(1+δ(˜m,k)r,n:1)gX(x)+(δ(˜m,k)r,n:2−δ(˜m,k)r,n:1)gV1(x)−δ(˜m,k)r,n:2gV2(x), | (2.1) |
G[r,n,˜m,k](x)=GX(x)[1+δ(˜m,k)r,n:1(1−GX(x))+δ(˜m,k)r,n:2(GX(x)−G2X(x))], | (2.2) |
and
¯G[r,n,˜m,k](x)=¯GX(x)[1−δ(˜m,k)r,n:1GX(x)−δ(˜m,k)r,n:2G2X(x)], | (2.3) |
where Vi∼Gi+1X,i=1,2, δ(˜m,k)r,n:1=γCr−1r∑i=1ai(r)(1−γi1+γi) and δ(˜m,k)r,n:2=ωCr−1r∑i=1ai(r)(1−γi1+γi)(3−γi2+γi).
Theorem 2.1. Tsallis entropy of concomitants of the rth GOS based on the IFGM(γ,ω) is given by
Hη[r,n,˜m,k](x)=1η−1(1−N(η)∑j=0j∑p=0(ηj)(jp)(δ(˜m,k)r,n:1)j−p(δ(˜m,k)r,n:2)pEU[(gX(G−1X(U)))η−1(1−2U)j−p(2U−3U2)p]), |
where N(x)=∞, if x is non-integer, and N(x)=x, if x is integer, and U is a uniform RV on (0, 1).
Proof. Using (1.1) and (2.1), Tsallis entropy is provided by
Hη[r,n,˜m,k](x)=1η−1(1−∫∞0gη[r,n,˜m,k](x)dx)=1η−1(1−∫∞0gηX(x)(1+δ(˜m,k)r,n:1(1−2GX(x))+δ(˜m,k)r,n:2GX(x)(2−3GX(x)))ηdx)=1η−1(1−N(η)∑j=0j∑p=0(ηj)(jp)(δ(˜m,k)r,n:1)j−p(δ(˜m,k)r,n:2)pE[gη−1X(x)(1−2GX(x))j−p(2GX(x)−3GX(x)2)p]). | (2.4) |
Remark 2.1. If ˜m=0 and k=1. The Tsallis entropy of the concomitant of the rth OS based on the IFGM(γ,ω) is given by
Hη[r:n](x)=1η−1(1−N(η)∑j=0j∑p=0(ηj)(jp)(Ω1,r:n)j−p(Ω2,r:n)pE[gη−1X(x)(1−2GX(x))j−p(2GX(x)−3GX(x)2)p]) |
where Ω1,r:n=γ(n−2r+1)n+1 and Ω2,r:n=ω[r(2n−3r+1)(n+1)(n+2)], (cf. Husseiny et al. [17]).
Remark 2.2. If ˜m=−1 and k=1. Tsallis entropy of the concomitant of the nth upper record value based on IFGM(γ,ω) is given by
Hη[n](x)=1η−1(1−N(η)∑j=0j∑p=0(ηj)(jp)(Δn:1)j−p(Δn:2)pE[gη−1X(x)(1−2GX(x))j−p(2GX(x)−3GX(x)2)p]), |
where Δn:1=γ(2−(n−1)−1) and Δn:2=ω(2−(n−2)−3−(n−1)−1).
Remark 2.3. Tsallis entropy for the concomitant of the nth upper k-record value based on IFGM(γ,ω) is given by
Hη[n,k](x)=1η−1(1−N(η)∑j=0j∑p=0(ηj)(jp)(∇n,k:1)j−p(∇n,k:2)pE[gη−1X(x)(1−2GX(x))j−p(2GX(x)−3GX(x)2)p]), |
where ∇n,k:1=γ(2(kk+1)n−1) and ∇n,k:2=ω(4(kk+1)n−3(kk+2)n−1). (cf. Nagy and Alrasheedi [27]).
Theorem 2.2. CRTE for CGOS based on the IFGM(γ,ω) is given by
ζη[r,n,˜m,k](x)=1η−1(1−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)i−sEU[(U)2i−s(1−U)ηgX(G−1X(U))]), |
where U is a uniform RV on (0, 1).
Proof. Using (1.2) and (2.3), then CRTE is provided by
ζη[r,n,˜m,k](x)=1η−1(1−∫∞0¯Gη[r,n,˜m,k](x)dx)=1η−1(1−∫∞0¯GηX(x)[1−GX(x)(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2GX(x))]ηdx)=1η−1(1−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)i−sE[g−1X(x)(1−GX(x))η(GX(x))2i−s]). | (2.5) |
Remark 2.4. If ˜m=0 and k=1. The CRTE of the concomitant of the rth OS based on the IFGM(γ,ω) is given by
ζη[r:n](x)=1η−1(1−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(Ω1,r:n)s(Ω2,r:n)i−sE[g−1X(x)(1−GX(x))η(GX(x))2i−s]). |
Remark 2.5. If ˜m=−1 and k=1. CRTE of the concomitant of the nth upper record value based on the IFGM(γ,ω) is given by
ζη[n](x)=1η−1(1−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(Δn:1)s(Δn:2)i−sE[g−1X(x)(1−GX(x))η(GX(x))2i−s]). |
Remark 2.6. CRTE of the concomitant of the nth upper k-record value based on the IFGM(γ,ω) is given by
ζη[n,k](x)=1η−1(1−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(∇n,k:1)s(∇n,k:2)i−sE[g−1X(x)(1−GX(x))η(GX(x))2i−s]). |
For the concomitant X[r,n,˜m,k] of the rth GOS, the moment of X[r,n,˜m,k] based on the IFGM(γ,ω) (cf. Husseiny et al. [17]) is given by
μ[r,n,˜m,k](x)=(1+δ(˜m,k)r,n:1)μX+(δ(˜m,k)r,n:2−δ(˜m,k)r,n:1)μV1−δ(˜m,k)r,n:2μV2. | (2.6) |
Theorem 2.3. The alternative measure of CRTE for CGOS based on IFGM(γ,ω) is given by
ξη[r,n,˜m,k](x)=1η−1(μ[r,n,˜m,k](x)−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)i−sEU[(U)2i−s(1−U)ηgX(G−1X(U))]), |
where U is a uniform RV on (0, 1).
Proof. Using (1.4) and (2.6), the alternative measure of CRTE is provided by
ξη[r,n,˜m,k](x)=1η−1(∫∞0(¯G[r,n,˜m,k](x)−¯Gη[r,n,˜m,k](x))dx)=1η−1(μ[r,n,˜m,k](x)−∫∞0¯GηX(x)[1−GX(x)(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2GX(x))]ηdx)=1η−1(μ[r,n,˜m,k](x)−N(η)∑i=0i∑s=0(ηi)(sp)(−1)2i−s(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)i−sE[g−1X(x)(1−GX(x))η(GX(x))2i−s]). | (2.7) |
Theorem 2.4. Let X[r,n,˜m,k] be a CGOS based on a continuous CDF GX(x) with the PDF gX(x). For all η>0, we have
ξη[r,n,˜m,k](x)=E(Xη[r,n,˜m,k])+E(Hη[r,n,˜m,k](X)), |
where
Hη[r,n,˜m,k](u)=∫u0m′[r,n,˜m,k](x)¯Gη−1[r,n,˜m,k](x)dx,u>0. |
Proof. Using (1.3) and m[r,n,˜m,k](x)λ[r,n,˜m,k](x)=1+m′[r,n,˜m,k](x), where
λ[r,n,˜m,k](x)=g[r,n,˜m,k](x)¯G[r,n,˜m,k](x). |
Then, we obtain
ξη[r,n,˜m,k](x)=∫∞0m[r,n,˜m,k](x)λ[r,n,˜m,k](x)¯Gη[r,n,˜m,k](x)dx=E(Xη[r,n,˜m,k])+∫∞0m′[r,n,˜m,k](x)¯Gη[r,n,˜m,k](x)dx, |
for all η>0. Upon using Fubini's theorem, we obtain
∫∞0m′[r,n,˜m,k](x)¯Gη[r,n,˜m,k](x)dx=∫∞0m′[r,n,˜m,k](x)dx∫∞xg[r,n,˜m,k](u)¯Gη−1[r,n,˜m,k](x)dudx=∫∞0g[r,n,˜m,k](u)∫u0m′[r,n,˜m,k](x)¯Gη−1[r,n,˜m,k](x)dxdu. |
This gives the desired result.
Remark 2.7. If ˜m=0 and k=1. The alternative measure of CRTE for concomitant of the rth OSs based on the IFGM(γ,ω) is given by
ξη[r:n](x)=1η−1(μ[r:n](x)−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(Ω1,r:n)s(Ω2,r:n)i−sE[g−1X(x)(1−GX(x))η(GX(x))2i−s]). |
Remark 2.8. If ˜m=−1 and k=1. The alternative measure of CRTE for concomitant of the nth upper record value based on the IFGM(γ,ω) is given by
ξη[n](x)=1η−1(μ[n](x)−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(Δn:1)s(Δn:2)i−sE[g−1X(x)(1−GX(x))η(GX(x))2i−s]). |
Remark 2.9. The alternative measure of CRTE for concomitant of the nth upper k-record value based on the IFGM(γ,ω) is given by
ξη[n,k](x)=1η−1(μ[n,k](x)−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(∇n,k:1)s(∇n,k:2)i−sE[g−1X(x)(1−GX(x))η(GX(x))2i−s]). |
In this section, we study the Tsallis entropy, CRTE, and alternate measure of CRTE for CGOS in IFGM(γ,ω) for some popular distributions. We consider the extended Weibull (EW) family of distributions, which was developed by Gurvich et al. [14], as a case study. The CDF of EW is given by
GX(x)=1−e−τH(x;ε),x>0,τ>0, |
where H(x;ε) is a differentiable, nonnegative, continuous, and monotonically increasing function when x depends on the parameter vector ε. Also, H(x;ε)⟶0+ as x⟶0+ and H(x;ε)⟶+∞ as x⟶+∞. This CDF is denoted by EW (τ,ε) and has the following PDF:
gX(x)=τh(x;ε)e−τH(x;ε),x>0, |
where h(x;ε) is the derivative of H(x;ε) with respect to x. Several important models are included in the EW, including the Rayleigh, Pareto, Weibull, uniform, and exponential distributions (ED). For further details about this family, see Jafari et al. [19].
Example 3.1. Consider two variables, Z and X, that possess ED from IFGM (represented by IFGM-ED) (i.e. GX(x)=1−e−θx,x,θ>0). Based on (2.4), we get the Tsallis entropy in X[r,n,˜m,k] as follows:
Hη[r,n,˜m,k](x)=1η−1(1−N(η)∑j=0j∑p=0j−p∑l=0p∑u=0(ηj)(jp)(j−pl)(pu)(−1)l+u(2)j−p−l(3)p−u(δ(˜m,k)r,n:1)j−p(δ(˜m,k)r,n:2)pθη−1β(1+p,η+j−u−1)). |
Example 3.2. Consider Z and X to be power distributions derived from IFGM (i.e. GX(x)=xc,0≤x≤1,c>0). Then Hη[r,n,˜m,k](x) is given by
Hη[r,n,˜m,k](x)=1η−1(1−N(η)∑j=0j∑p=0j−p∑t=0p∑w=0(ηj)(jp)(j−pt)(pw)(−1)t(2)t+p−w(−3)w(δ(˜m,k)r,n:1)j−p(δ(˜m,k)r,n:2)pcη1−η+c(t+p+w+η)). |
Example 3.3. Suppose that Z and X have EW based on IFGM with (i.e. GX(x)=1−e−τH(x;ε),x>0,τ>0,). Then, we have the Tsallis entropy in X[r,n,˜m,k] as follows:
H(EW)η[r,n,˜m,k](x)=1η−1(1−N(η)∑j=0j∑p=0(ηj)(jp)(δ(˜m,k)r,n:1)j−p(δ(˜m,k)r,n:2)pE[[(τh(x;ε))e(−τH(x;ε))]η−1(2e(−τH(x;ε))−1)j−p(4e(−τH(x;ε))−3(e(−τH(x;ε)))2−1)p]). |
Example 3.4. Assume that Z and X both possess IFGM-ED. Based on (2.5), we obtain the CRTE in X[r,n,˜m,k] as follows:
ζη[r,n,˜m,k](x)=1θ(η−1)(1−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)i−sβ(2i−s+1,η)). |
Example 3.5. Assume that the uniform distributions of Z and X come from an IFGM (i.e. GX(x)=x,0≤x≤1). Based on (2.5), we obtain the CRTE in X[r,n,˜m,k] as follows:
ζη[r,n,˜m,k](x)=1η−1(1−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)i−sβ(2i−s+1,η+1)). |
Example 3.6. Let us say that Z and X have EW according to IFGM. From (2.5), we get the CRTE in X[r,n,˜m,k] as follows:
ζ(EW)η[r,n,˜m,k](x)=1η−1(1−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)i−sE[(τh(x;ε)e−τH(x;ε))−1(e−τH(x;ε))η(1−e−τH(x;ε))2i−s]). |
Example 3.7. Assume that Z and X both possess IFGM-ED. Based on (2.7), we have the alternate measure of CRTE in X[r,n,˜m,k] as follows:
ξη[r,n,˜m,k](x)=1θ(η−1)((1−δ(˜m,k)r,n:12−δ(˜m,k)r,n:23)−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)i−sβ(2i−s+1,η)). |
Example 3.8. Assume that the uniform distributions of Z and X come from IFGM. Based on (2.7), we obtain the alternate measure of CRTE in X[r,n,˜m,k] as follows:
ξη[r,n,˜m,k](x)=1(η−1)(12(1−δ(˜m,k)r,n:13−δ(˜m,k)r,n:26)−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)i−sβ(2i−s+1,η+1)). |
Example 3.9. Let us say that Z and X have EW, according to IFGM. Based on (2.7), we obtain the alternate measure of CRTE in X[r,n,˜m,k] as follows:
ξη[r,n,˜m,k](x)=1η−1(μEW[r,n,˜m,k](x)−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)i−sE[(τh(x;ε)e−τH(x;ε))−1(e−τH(x;ε))η(1−e−τH(x;ε))2i−s]). |
As shown in Tables 1–4 of the IFGM-ED, the Tsallis entropy and the CRTE for X[r:n] and X[n] are presented. After running the numbers through MATHEMATICA version 12, we can deduce the following properties from Tables 1–4.
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||||
n | r | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | r | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
3 | 1 | 0.23536 | 0.23456 | 0.22795 | 0.22733 | 3 | 1 | 0.11068 | 0.10937 | 0.10798 | 0.10707 |
3 | 2 | 0.24673 | 0.2466 | 0.24559 | 0.24551 | 3 | 2 | 0.09946 | 0.09588 | 0.09301 | 0.09149 |
3 | 3 | 0.24888 | 0.24907 | 0.24972 | 0.24974 | 3 | 3 | 0.00306 | 0.04804 | 0.06282 | 0.06771 |
7 | 1 | 0.22023 | 0.21907 | 0.21008 | 0.20928 | 7 | 1 | 0.11495 | 0.11308 | 0.11223 | 0.11183 |
7 | 2 | 0.23621 | 0.23526 | 0.22701 | 0.2262 | 7 | 2 | 0.11074 | 0.109 | 0.1068 | 0.10522 |
7 | 3 | 0.24371 | 0.2432 | 0.23845 | 0.23797 | 7 | 3 | 0.10794 | 0.10384 | 0.09844 | 0.09471 |
7 | 4 | 0.2471 | 0.2469 | 0.24523 | 0.24506 | 7 | 4 | 0.09989 | 0.09348 | 0.08732 | 0.08372 |
7 | 5 | 0.24852 | 0.24852 | 0.24852 | 0.24852 | 7 | 5 | 0.0751 | 0.0751 | 0.0751 | 0.0751 |
7 | 6 | 0.24902 | 0.24916 | 0.24969 | 0.24971 | 7 | 6 | 0.00542 | 0.04396 | 0.05796 | 0.06282 |
7 | 7 | 0.24903 | 0.24935 | 0.24993 | 0.24993 | 7 | 7 | -0.17228 | -0.0084 | 0.02783 | 0.03836 |
9 | 1 | 0.21557 | 0.21442 | 0.20583 | 0.20508 | 9 | 1 | 0.1167 | 0.11456 | 0.11364 | 0.11326 |
9 | 2 | 0.23139 | 0.23026 | 0.22071 | 0.21979 | 9 | 2 | 0.11187 | 0.11031 | 0.10888 | 0.1079 |
9 | 3 | 0.24007 | 0.23928 | 0.23201 | 0.23126 | 9 | 3 | 0.10984 | 0.10723 | 0.10341 | 0.10059 |
9 | 4 | 0.24474 | 0.24428 | 0.24 | 0.23955 | 9 | 4 | 0.10703 | 0.10192 | 0.09523 | 0.09064 |
9 | 5 | 0.24717 | 0.24696 | 0.24514 | 0.24496 | 9 | 5 | 0.09999 | 0.09288 | 0.08576 | 0.08151 |
9 | 6 | 0.24838 | 0.24834 | 0.24803 | 0.24801 | 9 | 6 | 0.0826 | 0.07875 | 0.07607 | 0.07475 |
9 | 7 | 0.24893 | 0.24901 | 0.24938 | 0.2494 | 9 | 7 | 0.04208 | 0.05741 | 0.06448 | 0.06724 |
9 | 8 | 0.2491 | 0.24929 | 0.24985 | 0.24986 | 9 | 8 | -0.04679 | 0.02525 | 0.04694 | 0.05386 |
9 | 9 | 0.24901 | 0.24937 | 0.24994 | 0.24993 | 9 | 9 | -0.22959 | -0.02309 | 0.01896 | 0.03111 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||
n | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
2 | 0.24877 | 0.249 | 0.24973 | 0.24976 | 2 | 0.00145 | 0.05054 | 0.06565 | 0.07051 |
3 | 0.24895 | 0.24931 | 0.24993 | 0.24993 | 3 | -0.1754 | -0.00544 | 0.03056 | 0.04099 |
4 | 0.24888 | 0.24934 | 0.24994 | 0.24993 | 4 | -0.33831 | -0.04564 | 0.00606 | 0.0216 |
5 | 0.24878 | 0.24933 | 0.24994 | 0.24992 | 5 | -0.44823 | -0.06915 | -0.00781 | 0.01218 |
6 | 0.24872 | 0.24932 | 0.24993 | 0.24992 | 6 | -0.51214 | -0.0817 | -0.01496 | 0.00829 |
7 | 0.24868 | 0.24931 | 0.24993 | 0.24992 | 7 | -0.54667 | -0.08814 | -0.01851 | 0.00677 |
8 | 0.24866 | 0.2493 | 0.24993 | 0.24991 | 8 | -0.56464 | -0.09139 | -0.02027 | 0.00617 |
9 | 0.24865 | 0.2493 | 0.24993 | 0.24991 | 9 | -0.57382 | -0.09301 | -0.02113 | 0.00593 |
10 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 10 | -0.57846 | -0.09382 | -0.02156 | 0.00582 |
11 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 11 | -0.58079 | -0.09423 | -0.02177 | 0.00577 |
12 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 12 | -0.58196 | -0.09443 | -0.02188 | 0.00575 |
13 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 13 | -0.58255 | -0.09453 | -0.02193 | 0.00574 |
14 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 14 | -0.58284 | -0.09458 | -0.02196 | 0.00573 |
15 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 15 | -0.58299 | -0.09461 | -0.02197 | 0.00573 |
16 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 16 | -0.58306 | -0.09462 | -0.02198 | 0.00573 |
17 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 17 | -0.5831 | -0.09463 | -0.02198 | 0.00573 |
18 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 18 | -0.58312 | -0.09463 | -0.02198 | 0.00573 |
19 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 19 | -0.58313 | -0.09463 | -0.02198 | 0.00573 |
20 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 20 | -0.58313 | -0.09463 | -0.02198 | 0.00573 |
21 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 21 | -0.58314 | -0.09463 | -0.02198 | 0.00573 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||||
n | r | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | r | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
3 | 1 | 0.43317 | 0.43238 | 0.42624 | 0.42568 | 3 | 1 | 0.09714 | 0.09603 | 0.0952 | 0.09477 |
3 | 2 | 0.40404 | 0.40318 | 0.39702 | 0.39651 | 3 | 2 | 0.10007 | 0.09975 | 0.09955 | 0.09945 |
3 | 3 | 0.32162 | 0.32909 | 0.36567 | 0.3678 | 3 | 3 | 0.10199 | 0.10251 | 0.10277 | 0.10289 |
7 | 1 | 0.44158 | 0.4411 | 0.4375 | 0.43719 | 7 | 1 | 0.09509 | 0.09389 | 0.09302 | 0.09258 |
7 | 2 | 0.43401 | 0.43307 | 0.42539 | 0.42465 | 7 | 2 | 0.0972 | 0.09578 | 0.09466 | 0.09406 |
7 | 3 | 0.42314 | 0.42183 | 0.41092 | 0.40986 | 7 | 3 | 0.09882 | 0.09775 | 0.0969 | 0.09645 |
7 | 4 | 0.40648 | 0.40515 | 0.3949 | 0.39398 | 7 | 4 | 0.10011 | 0.09958 | 0.0992 | 0.09901 |
7 | 5 | 0.37863 | 0.37863 | 0.37863 | 0.37863 | 7 | 5 | 0.10115 | 0.10115 | 0.10115 | 0.10115 |
7 | 6 | 0.32728 | 0.33319 | 0.36347 | 0.36531 | 7 | 6 | 0.10201 | 0.10245 | 0.10267 | 0.10277 |
7 | 7 | 0.22427 | 0.25007 | 0.35054 | 0.35503 | 7 | 7 | 0.10273 | 0.10352 | 0.10409 | 0.10451 |
9 | 1 | 0.44288 | 0.44248 | 0.43956 | 0.43931 | 9 | 1 | 0.09461 | 0.09351 | 0.09273 | 0.09234 |
9 | 2 | 0.43748 | 0.4367 | 0.4304 | 0.4298 | 9 | 2 | 0.09643 | 0.09495 | 0.09378 | 0.09317 |
9 | 3 | 0.43039 | 0.42925 | 0.41959 | 0.41864 | 9 | 3 | 0.09791 | 0.09651 | 0.09538 | 0.09476 |
9 | 4 | 0.42075 | 0.41932 | 0.40741 | 0.40626 | 9 | 4 | 0.09911 | 0.09808 | 0.09725 | 0.09682 |
9 | 5 | 0.40701 | 0.40558 | 0.3944 | 0.39339 | 9 | 5 | 0.10012 | 0.09954 | 0.09911 | 0.0989 |
9 | 6 | 0.3863 | 0.38566 | 0.38127 | 0.38092 | 9 | 6 | 0.10097 | 0.10083 | 0.10074 | 0.1007 |
9 | 7 | 0.353 | 0.35534 | 0.36876 | 0.36968 | 9 | 7 | 0.10169 | 0.10194 | 0.10208 | 0.10214 |
9 | 8 | 0.29611 | 0.30699 | 0.35753 | 0.3603 | 9 | 8 | 0.10232 | 0.10288 | 0.10318 | 0.10332 |
9 | 9 | 0.1942 | 0.22695 | 0.34802 | 0.35309 | 9 | 9 | 0.10286 | 0.10373 | 0.10449 | 0.10513 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||
n | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
2 | 0.31766 | 0.32626 | 0.3671 | 0.3694 | 2 | 0.10198 | 0.10254 | 0.10284 | 0.10297 |
3 | 0.21824 | 0.24603 | 0.35185 | 0.35646 | 3 | 0.10272 | 0.10355 | 0.10418 | 0.10466 |
4 | 0.13412 | 0.18248 | 0.34541 | 0.35144 | 4 | 0.10305 | 0.10408 | 0.10545 | 0.10682 |
5 | 0.07755 | 0.14133 | 0.34267 | 0.34947 | 5 | 0.1032 | 0.10439 | 0.10658 | 0.10897 |
6 | 0.04423 | 0.11758 | 0.34147 | 0.34867 | 6 | 0.10327 | 0.10456 | 0.10737 | 0.11053 |
7 | 0.02598 | 0.10473 | 0.34094 | 0.34833 | 7 | 0.10331 | 0.10466 | 0.10785 | 0.11149 |
8 | 0.01638 | 0.098 | 0.34069 | 0.34818 | 8 | 0.10332 | 0.10471 | 0.10812 | 0.11203 |
9 | 0.01144 | 0.09456 | 0.34057 | 0.34812 | 9 | 0.10333 | 0.10474 | 0.10826 | 0.11231 |
10 | 0.00893 | 0.09281 | 0.34052 | 0.34809 | 10 | 0.10334 | 0.10475 | 0.10833 | 0.11246 |
11 | 0.00766 | 0.09193 | 0.34049 | 0.34807 | 11 | 0.10334 | 0.10476 | 0.10837 | 0.11253 |
12 | 0.00702 | 0.09148 | 0.34048 | 0.34806 | 12 | 0.10334 | 0.10476 | 0.10838 | 0.11257 |
13 | 0.0067 | 0.09126 | 0.34047 | 0.34806 | 13 | 0.10334 | 0.10477 | 0.10839 | 0.11259 |
14 | 0.00654 | 0.09115 | 0.34047 | 0.34806 | 14 | 0.10334 | 0.10477 | 0.1084 | 0.1126 |
15 | 0.00646 | 0.09109 | 0.34046 | 0.34806 | 15 | 0.10334 | 0.10477 | 0.1084 | 0.1126 |
16 | 0.00642 | 0.09107 | 0.34046 | 0.34806 | 16 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
17 | 0.0064 | 0.09105 | 0.34046 | 0.34806 | 17 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
18 | 0.00639 | 0.09105 | 0.34046 | 0.34806 | 18 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
19 | 0.00639 | 0.09104 | 0.34046 | 0.34806 | 19 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
20 | 0.00639 | 0.09104 | 0.34046 | 0.34806 | 20 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
21 | 0.00639 | 0.09104 | 0.34046 | 0.34806 | 21 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
22 | 0.00638 | 0.09104 | 0.34046 | 0.34806 | 22 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
● When γ=0.9, η=5, and θ=0.5, the value of Hη[r:n](x) goes up as n goes up. When γ=−0.5, η=10, and θ=1, the value of Hη[r:n](x) goes down as n goes up. But Hη[r:n](x) stays the same for all ω values when n=7 and r=5 (look at Table 1).
● We see that when γ is 0.9, η is 5, and θ is 0.5, and when γ is -0.5, η is 10, and θ is 1, the value of Hη[n](x) goes down as n goes up, and it almost stays the same when n=10 (look at Table 2).
● When γ=0.9, η=5, and θ=0.5, the value of ζη[r:n](x) goes down as n goes up. On the other hand, when γ=−0.5, η=10, and θ=1, the value of ζη[r:n](x) goes up as n goes up. It gets bigger as n gets bigger, but ζη[r:n](x) stays the same for all ω values when n=7 and r=5 (look at Table 3).
● When γ=0.9, η=5, and θ=0.5, the value of ζη[n](x) goes down as n goes up. When γ=−0.5, η=10, and θ=1, the value of ζη[n](x) goes up as n goes up, and the value of ζη[n](x) stays the same at n=22 (look at Table 4).
For the purpose of calculating the CRTE for concomitant X[r,n,˜m,k], we employ empirical estimators in this section. Next, we'll examine the issue of estimating the CRTE for CGOS using the empirical CRTE. Consider the IFGM sequence (Zi,Xi) for each i=1,2,...,n. In accordance with (2.7), the emperical CRTE of the set X[r,n,˜m,k] can be computed as follows:
ˆξη[r,n,˜m,k](x)=1η−1(∫∞0(ˆ¯G[r,n,˜m,k](x)−ˆ¯Gη[r,n,˜m,k](x))dx)=1η−1(∫∞0((1−ˆGX(x))[1−ˆGX(x)(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2ˆGX(x))]−(1−ˆGX(x))η[1−ˆGX(x)(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2ˆGX(x))]η)dx)=1η−1n−1∑j=1∫x(j+1)x(j)((1−ˆGX(x))[1−ˆGX(x)(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2ˆGX(x))]−(1−ˆGX(x))η[1−ˆGX(x)(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2ˆGX(x))]ηdx)=1η−1n−1∑j=1Δj((1−jn)[1−jn(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2jn)]−(1−jn)η[1−jn(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2jn)]η), |
where for any CDF G(.), the symbol ˆG(.) stands for the empirical CDF of G(.), and Δj=x(j+1)−x(j), j=1,2...,n−1, are the sample spacings based on ordered random samples of Xj.
Example 4.1. Define a random sample from the IFGM-ED as (Zi,Xi), where i ranges from 1 to n. The sample spacings, denoted by Δj, are considered to be independent RVs. Furthermore, Δj exhibits the ED with a mean of 1θ(n−j), where j ranges from 1 to n−1. For additional information, refer to Chandler [9] and Pyke [29]. Then the expected value and variance of the empirical CRTE in X⋆[r] are given by
E[ˆξη(X⋆[r])]=1θ(η−1)n−1∑j=11(n−j)((1−jn)[1−jn(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2jn)]−(1−jn)η[1−jn(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2jn)]η), | (4.1) |
Var[ˆξη(X⋆[r])]=1θ2(η−1)2n−1∑j=11(n−j)2((1−jn)[1−jn(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2jn)]−(1−jn)η[1−jn(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2jn)]η)2. | (4.2) |
Example 4.2. Again, for completeness, we study here the empirical CRTE of the concomitant X⋆[r] of the rth upper record value Z⋆r based on the IFGM copula. In this case, the sample spacings Δj, j=1,2,...,n−1, are independent, and each of them has the beta distribution with parameters 1 and n. According to Pyke [29], the expectation and variance of the empirical CRTE of the concomitant X⋆[r] are as follows:
E[ˆξη(X⋆[r])]=1(η−1)(n+1)n−1∑j=1((1−jn)[1−jn(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2jn)]−(1−jn)η[1−jn(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2jn)]η), |
Var[ˆξη(X⋆[r])]=n(η−1)(n+1)2(n+2)n−1∑j=1((1−jn)[1−jn(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2jn)]−(1−jn)η[1−jn(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2jn)]η)2. |
Figures 2 and 3 illustrate the relationship between CRTE and empirical CRTE in X[r:n] from IFGM-ED (γ,ω), at n=50. Figures 2 and 3 can be used to obtain the following properties:
(1) When the θ values are increased, the CRTE and the empirical CRTE have values that are practically identical to one another.
(2) At most ω and γ values, CRTE and empirical CRTE have identical results, particularly when ω=0 for all r values.
This section includes analyses of a real-world data set. The data set relates to n=50 simulated simple computer series systems consisting of a processor and a memory. The data was gathered and analyzed based on Oliveira et al. [28]. The data set contains n=50 simulated rudimentary computer systems with processors and memory. An operating computer will be able to operate when both parts are working properly (the processors and memory). Assume the system is nearing the end of its lifecycle. The degeneration advances rapidly in a short period of time [3]. In a short time (in hours), the degeneration advances rapidly. In the case of the first component, a deadly shock can destroy either it or the second component at random, due to the system's greater vulnerability to shocks. We fit the ED to the processor lifetime and memory lifetime separately. As an illustration of the data, Figures 4 and 5 provide a basic statistical analysis. The maximum likelihood estimates of the scale parameters (θi),i=1,2, are 1.24079 and 1.08616, γ=0.175473, and ω=2.16024. Table 5 examines the Tsallis entropy and CRTE for IFGM-ED(0.17543, 2.16024). For the concomitants X[r:50], r=1,2,24,25,49,50, i.e., the lower and upper extremes' concomitants, and the central values' concomitants. We observe that the Hη[r:50](x) and ζη[r:50](x) have maximum values at extremes.
r | 1 | 2 | 24 | 25 | 49 | 50 |
H5[r:50](x) | 0.0736041 | 0.066275 | 0.0909935 | 0.100391 | 0.23817 | 0.238162 |
ζ5[r:50](x) | 0.189322 | 0.188401 | 0.177055 | 0.177312 | 0.192772 | 0.193385 |
Given its simplicity and adaptability, IFGM surpasses most FGM generalizations, even though its efficiency is similar to some of those generalizations (such as the Huang\textendash Kotz FGM) in that it has a similar range of correlation coefficients. The CDFs used in this work were consistently formed by linearly combining simpler distributions, due to the advantages they offer. Tsallis entropy and its associated measures for concomitant were derived from IFGM, and a numerical analysis was conducted to uncover certain characteristics of these measures based on GOSs. Special cases were also extracted from this study, for example, OSs, record values, and k-record values. Furthermore, non-parametric estimators of CRTE were derived. The outcomes of an empirical examination of the CRTE are distinct. Finally, an illustrative analysis of a bivariate real-world data set was performed, and the proposed method performs exceptionally well. In the future work, some bivariate distribution families will be considered, including the Huang-kotz, Cambanis, and Sarmanov families, as well as various applications of the CRTE in CGOS. Additionally, we will investigate the quantile function based on Tsallis measures from concomitants. Also, for the estimation problem, we will discuss at least two estimation methods for this model: maximum likelihood and Besyain. Further, a Monte Carlo simulation will be conducted to test the estimator's performance against the empirical measure as well as the exact formula presented in this paper.
I. A. Husseiny: Conceptualization, Writing original draft, Formal analysis, Software, Investigation, Methodology, Supervision; M. Nagy: Validation, Resources, Writing-review & editing, Data curation, Methodology; A. H. Mansi: Writing-review & editing, Investigation; M. A. Alawady: Conceptualization, Formal analysis, Writing original draft, Software, Investigation, Methodology, Supervision. All authors have read and agreed to the published version of the manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research was conducted under a project titled "Researchers Supporting Project", funded by King Saud University, Riyadh, Saudi Arabia under grant number (RSPD2024R969).
The authors are grateful to the editor and anonymous referees for their insightful comments and suggestions, which helped to improve the paper's presentation.
This research was conducted under a project titled "Researchers Supporting Project", funded by King Saud University, Riyadh, Saudi Arabia under grant number (RSPD2024R969).
The authors declare no conflict of interest.
[1] |
Swindlehurst AL, Ayanoglu E, Heydari P, Capolino F (2014) Millimeter-wave massive MIMO: The next wireless revolution? IEEE Commun Mag 52: 56–62. https://doi.org/10.1109/MCOM.2014.6894453 doi: 10.1109/MCOM.2014.6894453
![]() |
[2] |
Karjalainen J, Nekovee M, Benn H, Kim W, Park J, Sungsoo H (2014) Challenges and Opportunities of mm-Wave Communication in 5G Networks. Proceedings of the 2014 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), 372–376. https://doi.org/10.4108/icst.crowncom.2014.255604 doi: 10.4108/icst.crowncom.2014.255604
![]() |
[3] |
Marzetta TL (2010) Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE T Wirel Commun 9: 3590–3600. https://doi.org/10.1109/TWC.2010.092810.091092 doi: 10.1109/TWC.2010.092810.091092
![]() |
[4] |
Larsson EG, Edfors O, Tufvesson F, Marzetta TL (2014) Massive MIMO for next generation wireless systems. IEEE Commun Mag 52: 186–195. https://doi.org/10.1109/MCOM.2014.6736761 doi: 10.1109/MCOM.2014.6736761
![]() |
[5] |
Xie H, Wang B, Gao F, Jin S (2016) A full-space spectrum-sharing strategy for massive MIMO cognitive radio systems. IEEE J Sel Areas Commun 34: 2537–2549. https://doi.org/10.1109/JSAC.2016.2605238 doi: 10.1109/JSAC.2016.2605238
![]() |
[6] |
Feng W, Gao F, Shi R, Ge N, Lu J (2015) Dynamic-cell-based macro coordination for massively distributed MIMO systems. Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), 1–6. https://doi.org/10.1109/GLOCOM.2015.7417293 doi: 10.1109/GLOCOM.2015.7417293
![]() |
[7] |
Ayach OE, Rajagopal S, Abu-Surra S, Pi Z, Heath RW (2014) Spatially sparse precoding in millimeter wave MIMO systems. IEEE T Wirel Commun 13: 1499–1513. https://doi.org/10.1109/TWC.2014.011714.130846 doi: 10.1109/TWC.2014.011714.130846
![]() |
[8] |
Roh W, Seol JY, Park J, Lee B, Lee J, Kim Y, et al. (2014) Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Commun Mag 52: 106–113. https://doi.org/10.1109/MCOM.2014.6736750 doi: 10.1109/MCOM.2014.6736750
![]() |
[9] |
Han S, Chih-Lin I, Xu Z, Rowell C (2015) Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun Mag 53: 186–194. https://doi.org/10.1109/MCOM.2015.7010533 doi: 10.1109/MCOM.2015.7010533
![]() |
[10] |
Gao X, Dai L, Han S, Chih-Lin I, Heath RW (2016) Energy-efficient hybrid analog and digital precoding for mmwave MIMO systems with large antenna arrays. IEEE J Sel Areas Commun 34: 998–1009. https://doi.org/10.1109/JSAC.2016.2549418 doi: 10.1109/JSAC.2016.2549418
![]() |
[11] |
Liang L, Xu W, Dong X (2014) Low-complexity hybrid precoding in massive multiuser MIMO systems. IEEE Wireless Commun Lett 3: 653–656. https://doi.org/10.1109/LWC.2014.2363831 doi: 10.1109/LWC.2014.2363831
![]() |
[12] |
Wan S, Zhu H, Kang K, Qian H (2021) On the Performance of Fully-Connected and Sub-Connected Hybrid Beamforming System. IEEE T Veh Technol 70: 11078–11082. https://doi.org/10.1109/TVT.2021.3109300 doi: 10.1109/TVT.2021.3109300
![]() |
[13] | Ngo HQ (2015) Massive MIMO: Fundamentals and System Designs. Vol. 1642, Linköping University Electronic Press: Linköping, Sweden. https://doi.org/10.3384/lic.diva-112780 |
[14] |
Luo Z, Luo L, Zhang X, Liu H (2022) Robust Hybrid Beamforming for Multi-user Millimeter Wave Systems with Sub-connected Structure. International Conference on Communications and Networking in China. https://doi.org/10.1007/978-3-031-34790-0_9 doi: 10.1007/978-3-031-34790-0_9
![]() |
[15] |
Hu Y, Qian H, Kang K, Luo X, Zhu H (2023) Joint Precoding Design for Sub-Connected Hybrid Beamforming System. IEEE T Wirel Commun. https://doi.org/10.1109/TWC.2023.3287229 doi: 10.1109/TWC.2023.3287229
![]() |
[16] |
Yu X, Zhang J, Letaief KB (2018) A Hardware-Efficient Analog Network Structure for Hybrid Precoding in Millimeter Wave Systems. IEEE J Sel Top Signal Process 12: 282–297. https://doi.org/10.1109/JSTSP.2018.2814009 doi: 10.1109/JSTSP.2018.2814009
![]() |
[17] |
Zhang Y, Du J, Chen Y, Li X, Rabie KM, Khkrel R (2020) Dual-Iterative Hybrid Beamforming Design for Millimeter-Wave Massive Multi-User MIMO Systems With Sub-Connected Structure. IEEE T Veh Technol 69: 13482–13496. https://doi.org/10.1109/TVT.2020.3029080 doi: 10.1109/TVT.2020.3029080
![]() |
[18] |
Garcia-Rodriguez A, Venkateswaran V, Rulikowski P, Masouros C (2016) Hybrid analog-digital precoding revisited under realistic RF modeling. IEEE Wireless Commun Lett 5: 528–531. https://doi.org/10.1109/LWC.2016.2598777 doi: 10.1109/LWC.2016.2598777
![]() |
[19] |
Venkateswaran V, Krishnan R (2016) Hybrid Analog and Digital Precoding: From Practical RF System Models to Information Theoretic Bounds. 2016 IEEE Globecom Workshops (GC Wkshps). https://doi.org/10.1109/GLOCOMW.2016.7848924 doi: 10.1109/GLOCOMW.2016.7848924
![]() |
[20] |
Song X, Kuhne T, Caire G (2019) Fully-Connected vs. Sub-Connected Hybrid Precoding Architectures for mmWave MU-MIMO. ICC 2019-2019 IEEE International Conference on Communications (ICC). https://doi.org/10.1109/ICC.2019.8761521 doi: 10.1109/ICC.2019.8761521
![]() |
[21] |
Ribeiro LN, Schwarz S, Rupp M, de Almeida AL (2018) Energy Efficiency of mmWave Massive MIMO Precoding with Low-Resolution DACs. IEEE Journal of Selected Topics in Signal Processing 12: 298‒312. https://doi.org/10.1109/JSTSP.2018.2824762 doi: 10.1109/JSTSP.2018.2824762
![]() |
[22] |
Kolawole O, Papazafeiropoulos A, Ratnarajah T (2018) Impact of Hardware Impairments on mmWave MIMO Systems with Hybrid Precoding. Proceedings of the IEEE Wireless Communication and Networking Conference. https://doi.org/10.1109/WCNC.2018.8377045 doi: 10.1109/WCNC.2018.8377045
![]() |
[23] |
Sheikh TA, Bora J, Hussain MA (2021) Capacity maximizing in massive MIMO with linear precoding for SSF and LSF channel with perfect CSI. Digit Commun Netw 7: 92‒99. https://doi.org/10.1016/j.dcan.2019.08.002 doi: 10.1016/j.dcan.2019.08.002
![]() |
[24] |
Sheikh TA, Bora J, Hussain MA (2019) Combined user and antenna selection in massive MIMO using precoding technique. International Journal of Sensors Wireless Communications and Control 9: 214‒223. https://doi.org/10.2174/2210327908666181112144939 doi: 10.2174/2210327908666181112144939
![]() |
[25] |
Sheikh TA, Bora J, Hussain MA (2018) Sum-rate performance of massive MIMO systems in highly scattering channel with semi-orthogonal and random user selection. Radioelectronics and Communications Systems 61: 547‒555. https://doi.org/10.3103/S0735272718120026 doi: 10.3103/S0735272718120026
![]() |
[26] | Papoulis A, Unnikrishna Pillai S (2012) Probability, Random Variables, and Stochastic Processes, North America: McGraw-Hill, New York, United States. |
[27] |
Venkateswaran V, Pivit F, Guan L (2016) Hybrid RF and digital beamformer for cellular networks: Algorithms, microwave architectures, and measurements. IEEE T Microw Theory Technol 64: 2226–2243. https://doi.org/10.1109/TMTT.2016.2569583 doi: 10.1109/TMTT.2016.2569583
![]() |
[28] | Pozar DM (2009) Microwave Engineering, John Wiley & Sons: Hoboken, NJ, USA. |
[29] |
Alkhateeb A, Leus G, Heath RW (2015) Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE T Wireless Commun 14: 6481–6494. https://doi.org/10.1109/TWC.2015.2455980 doi: 10.1109/TWC.2015.2455980
![]() |
[30] |
Fozooni M, Matthaiou M, Jin S, Alexandropoulos GC (2016) Massive MIMO relaying with hybrid processing. Proceedings of the 2016 IEEE International Conference on Communications (ICC), 1–6. https://doi.org/10.1109/ICC.2016.7510972 doi: 10.1109/ICC.2016.7510972
![]() |
[31] |
Du J, Xu W, Shen H, Dongy X, Zhao C (2017) Quantized Hybrid Precoding for Massive Multiuser MIMO with Insertion Loss. GLOBECOM 2017-2017 IEEE Global Communications Conference. https://doi.org/10.1109/GLOCOM.2017.8254815 doi: 10.1109/GLOCOM.2017.8254815
![]() |
[32] |
Du J, Xu W, Shen H, Dong X, Zhao C (2018) Hybrid Precoding Architecture for Massive Multiuser MIMO with Dissipation: Sub-Connected or Fully-Connected Structures? IEEE T Wirel Commun 17: 5465‒5479. https://doi.org/10.1109/TWC.2018.2844207 doi: 10.1109/TWC.2018.2844207
![]() |
[33] |
Ratnam VV, Molisch AF, Bursalioglu OY, Papadopoulos HC (2018) Hybrid beamforming with selection for multiuser massive mimo systems. IEEE T Signal Process 66: 4105–4120. https://doi.org/10.1109/TSP.2018.2838557 doi: 10.1109/TSP.2018.2838557
![]() |
[34] | Wei N (2007) MIMO Techniques for UTRA Long Term Evolution, Citeseer: Princeton, NJ, USA. |
[35] |
Liu J, Bentley E (2017) Hybrid-beamforming-based millimeter-wave cellular network optimization. IEEE J Sel Area Commun 37: 2799‒2813. https://doi.org/10.23919/WIOPT.2017.7959916 doi: 10.23919/WIOPT.2017.7959916
![]() |
[36] |
Méndez-Rial R, Rusu C, González-Prelcic N, Alkhateeb A, Heath RW (2016) Hybrid mimo architectures for millimeter wave communications: Phase shifters or switches? IEEE Access 4: 247–267. https://doi.org/10.1109/ACCESS.2015.2514261 doi: 10.1109/ACCESS.2015.2514261
![]() |
[37] |
Jedda H, Ayub MM, Munir J, Mezghani A, Nossek JA (2015) Power-and spectral efficient communication system design using 1-bit quantization. Proceedings of the 2015 International Symposium on Wireless Communication Systems (ISWCS), 296–300 https://doi.org/10.1109/ISWCS.2015.7454349 doi: 10.1109/ISWCS.2015.7454349
![]() |
[38] |
Jing J, Xiaoxue C, Yongbin X (2016) Energy-efficiency based downlink multi-user hybrid beamforming for millimeter wave massive mimo system. J China Univ Posts Telecommun 23: 53–62. https://doi.org/10.1016/S1005-8885(16)60045-6 doi: 10.1016/S1005-8885(16)60045-6
![]() |
[39] |
Zhang Y, Yang Y, Dai L (2016) Energy efficiency maximization for device-to-device communication underlying cellular networks on multiple bands. IEEE Access 4: 7682–7691. https://doi.org/10.1109/ACCESS.2016.2623758 doi: 10.1109/ACCESS.2016.2623758
![]() |
[40] |
Abose TA, Olwal TO, Hassen MR, Bekele ES (2022) Performance Analysis and Comparisons of Hybrid Precoding Scheme for Multi-user mmWave Massive MIMO System. 2022 3rd International Conference for Emerging Technology (INCET), 1‒6. https://doi.org/10.1109/INCET54531.2022.9824401 doi: 10.1109/INCET54531.2022.9824401
![]() |
1. | Ghada Mohammed Mansour, Haroon Mohamed Barakat, Islam Abdullah Husseiny, Magdy Nagy, Ahmed Hamdi Mansi, Metwally Alsayed Alawady, Measures of cumulative residual Tsallis entropy for concomitants of generalized order statistics based on the Morgenstern family with application to medical data, 2025, 22, 1551-0018, 1572, 10.3934/mbe.2025058 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||||
n | r | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | r | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
3 | 1 | 0.23536 | 0.23456 | 0.22795 | 0.22733 | 3 | 1 | 0.11068 | 0.10937 | 0.10798 | 0.10707 |
3 | 2 | 0.24673 | 0.2466 | 0.24559 | 0.24551 | 3 | 2 | 0.09946 | 0.09588 | 0.09301 | 0.09149 |
3 | 3 | 0.24888 | 0.24907 | 0.24972 | 0.24974 | 3 | 3 | 0.00306 | 0.04804 | 0.06282 | 0.06771 |
7 | 1 | 0.22023 | 0.21907 | 0.21008 | 0.20928 | 7 | 1 | 0.11495 | 0.11308 | 0.11223 | 0.11183 |
7 | 2 | 0.23621 | 0.23526 | 0.22701 | 0.2262 | 7 | 2 | 0.11074 | 0.109 | 0.1068 | 0.10522 |
7 | 3 | 0.24371 | 0.2432 | 0.23845 | 0.23797 | 7 | 3 | 0.10794 | 0.10384 | 0.09844 | 0.09471 |
7 | 4 | 0.2471 | 0.2469 | 0.24523 | 0.24506 | 7 | 4 | 0.09989 | 0.09348 | 0.08732 | 0.08372 |
7 | 5 | 0.24852 | 0.24852 | 0.24852 | 0.24852 | 7 | 5 | 0.0751 | 0.0751 | 0.0751 | 0.0751 |
7 | 6 | 0.24902 | 0.24916 | 0.24969 | 0.24971 | 7 | 6 | 0.00542 | 0.04396 | 0.05796 | 0.06282 |
7 | 7 | 0.24903 | 0.24935 | 0.24993 | 0.24993 | 7 | 7 | -0.17228 | -0.0084 | 0.02783 | 0.03836 |
9 | 1 | 0.21557 | 0.21442 | 0.20583 | 0.20508 | 9 | 1 | 0.1167 | 0.11456 | 0.11364 | 0.11326 |
9 | 2 | 0.23139 | 0.23026 | 0.22071 | 0.21979 | 9 | 2 | 0.11187 | 0.11031 | 0.10888 | 0.1079 |
9 | 3 | 0.24007 | 0.23928 | 0.23201 | 0.23126 | 9 | 3 | 0.10984 | 0.10723 | 0.10341 | 0.10059 |
9 | 4 | 0.24474 | 0.24428 | 0.24 | 0.23955 | 9 | 4 | 0.10703 | 0.10192 | 0.09523 | 0.09064 |
9 | 5 | 0.24717 | 0.24696 | 0.24514 | 0.24496 | 9 | 5 | 0.09999 | 0.09288 | 0.08576 | 0.08151 |
9 | 6 | 0.24838 | 0.24834 | 0.24803 | 0.24801 | 9 | 6 | 0.0826 | 0.07875 | 0.07607 | 0.07475 |
9 | 7 | 0.24893 | 0.24901 | 0.24938 | 0.2494 | 9 | 7 | 0.04208 | 0.05741 | 0.06448 | 0.06724 |
9 | 8 | 0.2491 | 0.24929 | 0.24985 | 0.24986 | 9 | 8 | -0.04679 | 0.02525 | 0.04694 | 0.05386 |
9 | 9 | 0.24901 | 0.24937 | 0.24994 | 0.24993 | 9 | 9 | -0.22959 | -0.02309 | 0.01896 | 0.03111 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||
n | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
2 | 0.24877 | 0.249 | 0.24973 | 0.24976 | 2 | 0.00145 | 0.05054 | 0.06565 | 0.07051 |
3 | 0.24895 | 0.24931 | 0.24993 | 0.24993 | 3 | -0.1754 | -0.00544 | 0.03056 | 0.04099 |
4 | 0.24888 | 0.24934 | 0.24994 | 0.24993 | 4 | -0.33831 | -0.04564 | 0.00606 | 0.0216 |
5 | 0.24878 | 0.24933 | 0.24994 | 0.24992 | 5 | -0.44823 | -0.06915 | -0.00781 | 0.01218 |
6 | 0.24872 | 0.24932 | 0.24993 | 0.24992 | 6 | -0.51214 | -0.0817 | -0.01496 | 0.00829 |
7 | 0.24868 | 0.24931 | 0.24993 | 0.24992 | 7 | -0.54667 | -0.08814 | -0.01851 | 0.00677 |
8 | 0.24866 | 0.2493 | 0.24993 | 0.24991 | 8 | -0.56464 | -0.09139 | -0.02027 | 0.00617 |
9 | 0.24865 | 0.2493 | 0.24993 | 0.24991 | 9 | -0.57382 | -0.09301 | -0.02113 | 0.00593 |
10 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 10 | -0.57846 | -0.09382 | -0.02156 | 0.00582 |
11 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 11 | -0.58079 | -0.09423 | -0.02177 | 0.00577 |
12 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 12 | -0.58196 | -0.09443 | -0.02188 | 0.00575 |
13 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 13 | -0.58255 | -0.09453 | -0.02193 | 0.00574 |
14 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 14 | -0.58284 | -0.09458 | -0.02196 | 0.00573 |
15 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 15 | -0.58299 | -0.09461 | -0.02197 | 0.00573 |
16 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 16 | -0.58306 | -0.09462 | -0.02198 | 0.00573 |
17 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 17 | -0.5831 | -0.09463 | -0.02198 | 0.00573 |
18 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 18 | -0.58312 | -0.09463 | -0.02198 | 0.00573 |
19 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 19 | -0.58313 | -0.09463 | -0.02198 | 0.00573 |
20 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 20 | -0.58313 | -0.09463 | -0.02198 | 0.00573 |
21 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 21 | -0.58314 | -0.09463 | -0.02198 | 0.00573 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||||
n | r | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | r | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
3 | 1 | 0.43317 | 0.43238 | 0.42624 | 0.42568 | 3 | 1 | 0.09714 | 0.09603 | 0.0952 | 0.09477 |
3 | 2 | 0.40404 | 0.40318 | 0.39702 | 0.39651 | 3 | 2 | 0.10007 | 0.09975 | 0.09955 | 0.09945 |
3 | 3 | 0.32162 | 0.32909 | 0.36567 | 0.3678 | 3 | 3 | 0.10199 | 0.10251 | 0.10277 | 0.10289 |
7 | 1 | 0.44158 | 0.4411 | 0.4375 | 0.43719 | 7 | 1 | 0.09509 | 0.09389 | 0.09302 | 0.09258 |
7 | 2 | 0.43401 | 0.43307 | 0.42539 | 0.42465 | 7 | 2 | 0.0972 | 0.09578 | 0.09466 | 0.09406 |
7 | 3 | 0.42314 | 0.42183 | 0.41092 | 0.40986 | 7 | 3 | 0.09882 | 0.09775 | 0.0969 | 0.09645 |
7 | 4 | 0.40648 | 0.40515 | 0.3949 | 0.39398 | 7 | 4 | 0.10011 | 0.09958 | 0.0992 | 0.09901 |
7 | 5 | 0.37863 | 0.37863 | 0.37863 | 0.37863 | 7 | 5 | 0.10115 | 0.10115 | 0.10115 | 0.10115 |
7 | 6 | 0.32728 | 0.33319 | 0.36347 | 0.36531 | 7 | 6 | 0.10201 | 0.10245 | 0.10267 | 0.10277 |
7 | 7 | 0.22427 | 0.25007 | 0.35054 | 0.35503 | 7 | 7 | 0.10273 | 0.10352 | 0.10409 | 0.10451 |
9 | 1 | 0.44288 | 0.44248 | 0.43956 | 0.43931 | 9 | 1 | 0.09461 | 0.09351 | 0.09273 | 0.09234 |
9 | 2 | 0.43748 | 0.4367 | 0.4304 | 0.4298 | 9 | 2 | 0.09643 | 0.09495 | 0.09378 | 0.09317 |
9 | 3 | 0.43039 | 0.42925 | 0.41959 | 0.41864 | 9 | 3 | 0.09791 | 0.09651 | 0.09538 | 0.09476 |
9 | 4 | 0.42075 | 0.41932 | 0.40741 | 0.40626 | 9 | 4 | 0.09911 | 0.09808 | 0.09725 | 0.09682 |
9 | 5 | 0.40701 | 0.40558 | 0.3944 | 0.39339 | 9 | 5 | 0.10012 | 0.09954 | 0.09911 | 0.0989 |
9 | 6 | 0.3863 | 0.38566 | 0.38127 | 0.38092 | 9 | 6 | 0.10097 | 0.10083 | 0.10074 | 0.1007 |
9 | 7 | 0.353 | 0.35534 | 0.36876 | 0.36968 | 9 | 7 | 0.10169 | 0.10194 | 0.10208 | 0.10214 |
9 | 8 | 0.29611 | 0.30699 | 0.35753 | 0.3603 | 9 | 8 | 0.10232 | 0.10288 | 0.10318 | 0.10332 |
9 | 9 | 0.1942 | 0.22695 | 0.34802 | 0.35309 | 9 | 9 | 0.10286 | 0.10373 | 0.10449 | 0.10513 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||
n | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
2 | 0.31766 | 0.32626 | 0.3671 | 0.3694 | 2 | 0.10198 | 0.10254 | 0.10284 | 0.10297 |
3 | 0.21824 | 0.24603 | 0.35185 | 0.35646 | 3 | 0.10272 | 0.10355 | 0.10418 | 0.10466 |
4 | 0.13412 | 0.18248 | 0.34541 | 0.35144 | 4 | 0.10305 | 0.10408 | 0.10545 | 0.10682 |
5 | 0.07755 | 0.14133 | 0.34267 | 0.34947 | 5 | 0.1032 | 0.10439 | 0.10658 | 0.10897 |
6 | 0.04423 | 0.11758 | 0.34147 | 0.34867 | 6 | 0.10327 | 0.10456 | 0.10737 | 0.11053 |
7 | 0.02598 | 0.10473 | 0.34094 | 0.34833 | 7 | 0.10331 | 0.10466 | 0.10785 | 0.11149 |
8 | 0.01638 | 0.098 | 0.34069 | 0.34818 | 8 | 0.10332 | 0.10471 | 0.10812 | 0.11203 |
9 | 0.01144 | 0.09456 | 0.34057 | 0.34812 | 9 | 0.10333 | 0.10474 | 0.10826 | 0.11231 |
10 | 0.00893 | 0.09281 | 0.34052 | 0.34809 | 10 | 0.10334 | 0.10475 | 0.10833 | 0.11246 |
11 | 0.00766 | 0.09193 | 0.34049 | 0.34807 | 11 | 0.10334 | 0.10476 | 0.10837 | 0.11253 |
12 | 0.00702 | 0.09148 | 0.34048 | 0.34806 | 12 | 0.10334 | 0.10476 | 0.10838 | 0.11257 |
13 | 0.0067 | 0.09126 | 0.34047 | 0.34806 | 13 | 0.10334 | 0.10477 | 0.10839 | 0.11259 |
14 | 0.00654 | 0.09115 | 0.34047 | 0.34806 | 14 | 0.10334 | 0.10477 | 0.1084 | 0.1126 |
15 | 0.00646 | 0.09109 | 0.34046 | 0.34806 | 15 | 0.10334 | 0.10477 | 0.1084 | 0.1126 |
16 | 0.00642 | 0.09107 | 0.34046 | 0.34806 | 16 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
17 | 0.0064 | 0.09105 | 0.34046 | 0.34806 | 17 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
18 | 0.00639 | 0.09105 | 0.34046 | 0.34806 | 18 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
19 | 0.00639 | 0.09104 | 0.34046 | 0.34806 | 19 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
20 | 0.00639 | 0.09104 | 0.34046 | 0.34806 | 20 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
21 | 0.00639 | 0.09104 | 0.34046 | 0.34806 | 21 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
22 | 0.00638 | 0.09104 | 0.34046 | 0.34806 | 22 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
r | 1 | 2 | 24 | 25 | 49 | 50 |
H5[r:50](x) | 0.0736041 | 0.066275 | 0.0909935 | 0.100391 | 0.23817 | 0.238162 |
ζ5[r:50](x) | 0.189322 | 0.188401 | 0.177055 | 0.177312 | 0.192772 | 0.193385 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||||
n | r | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | r | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
3 | 1 | 0.23536 | 0.23456 | 0.22795 | 0.22733 | 3 | 1 | 0.11068 | 0.10937 | 0.10798 | 0.10707 |
3 | 2 | 0.24673 | 0.2466 | 0.24559 | 0.24551 | 3 | 2 | 0.09946 | 0.09588 | 0.09301 | 0.09149 |
3 | 3 | 0.24888 | 0.24907 | 0.24972 | 0.24974 | 3 | 3 | 0.00306 | 0.04804 | 0.06282 | 0.06771 |
7 | 1 | 0.22023 | 0.21907 | 0.21008 | 0.20928 | 7 | 1 | 0.11495 | 0.11308 | 0.11223 | 0.11183 |
7 | 2 | 0.23621 | 0.23526 | 0.22701 | 0.2262 | 7 | 2 | 0.11074 | 0.109 | 0.1068 | 0.10522 |
7 | 3 | 0.24371 | 0.2432 | 0.23845 | 0.23797 | 7 | 3 | 0.10794 | 0.10384 | 0.09844 | 0.09471 |
7 | 4 | 0.2471 | 0.2469 | 0.24523 | 0.24506 | 7 | 4 | 0.09989 | 0.09348 | 0.08732 | 0.08372 |
7 | 5 | 0.24852 | 0.24852 | 0.24852 | 0.24852 | 7 | 5 | 0.0751 | 0.0751 | 0.0751 | 0.0751 |
7 | 6 | 0.24902 | 0.24916 | 0.24969 | 0.24971 | 7 | 6 | 0.00542 | 0.04396 | 0.05796 | 0.06282 |
7 | 7 | 0.24903 | 0.24935 | 0.24993 | 0.24993 | 7 | 7 | -0.17228 | -0.0084 | 0.02783 | 0.03836 |
9 | 1 | 0.21557 | 0.21442 | 0.20583 | 0.20508 | 9 | 1 | 0.1167 | 0.11456 | 0.11364 | 0.11326 |
9 | 2 | 0.23139 | 0.23026 | 0.22071 | 0.21979 | 9 | 2 | 0.11187 | 0.11031 | 0.10888 | 0.1079 |
9 | 3 | 0.24007 | 0.23928 | 0.23201 | 0.23126 | 9 | 3 | 0.10984 | 0.10723 | 0.10341 | 0.10059 |
9 | 4 | 0.24474 | 0.24428 | 0.24 | 0.23955 | 9 | 4 | 0.10703 | 0.10192 | 0.09523 | 0.09064 |
9 | 5 | 0.24717 | 0.24696 | 0.24514 | 0.24496 | 9 | 5 | 0.09999 | 0.09288 | 0.08576 | 0.08151 |
9 | 6 | 0.24838 | 0.24834 | 0.24803 | 0.24801 | 9 | 6 | 0.0826 | 0.07875 | 0.07607 | 0.07475 |
9 | 7 | 0.24893 | 0.24901 | 0.24938 | 0.2494 | 9 | 7 | 0.04208 | 0.05741 | 0.06448 | 0.06724 |
9 | 8 | 0.2491 | 0.24929 | 0.24985 | 0.24986 | 9 | 8 | -0.04679 | 0.02525 | 0.04694 | 0.05386 |
9 | 9 | 0.24901 | 0.24937 | 0.24994 | 0.24993 | 9 | 9 | -0.22959 | -0.02309 | 0.01896 | 0.03111 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||
n | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
2 | 0.24877 | 0.249 | 0.24973 | 0.24976 | 2 | 0.00145 | 0.05054 | 0.06565 | 0.07051 |
3 | 0.24895 | 0.24931 | 0.24993 | 0.24993 | 3 | -0.1754 | -0.00544 | 0.03056 | 0.04099 |
4 | 0.24888 | 0.24934 | 0.24994 | 0.24993 | 4 | -0.33831 | -0.04564 | 0.00606 | 0.0216 |
5 | 0.24878 | 0.24933 | 0.24994 | 0.24992 | 5 | -0.44823 | -0.06915 | -0.00781 | 0.01218 |
6 | 0.24872 | 0.24932 | 0.24993 | 0.24992 | 6 | -0.51214 | -0.0817 | -0.01496 | 0.00829 |
7 | 0.24868 | 0.24931 | 0.24993 | 0.24992 | 7 | -0.54667 | -0.08814 | -0.01851 | 0.00677 |
8 | 0.24866 | 0.2493 | 0.24993 | 0.24991 | 8 | -0.56464 | -0.09139 | -0.02027 | 0.00617 |
9 | 0.24865 | 0.2493 | 0.24993 | 0.24991 | 9 | -0.57382 | -0.09301 | -0.02113 | 0.00593 |
10 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 10 | -0.57846 | -0.09382 | -0.02156 | 0.00582 |
11 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 11 | -0.58079 | -0.09423 | -0.02177 | 0.00577 |
12 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 12 | -0.58196 | -0.09443 | -0.02188 | 0.00575 |
13 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 13 | -0.58255 | -0.09453 | -0.02193 | 0.00574 |
14 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 14 | -0.58284 | -0.09458 | -0.02196 | 0.00573 |
15 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 15 | -0.58299 | -0.09461 | -0.02197 | 0.00573 |
16 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 16 | -0.58306 | -0.09462 | -0.02198 | 0.00573 |
17 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 17 | -0.5831 | -0.09463 | -0.02198 | 0.00573 |
18 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 18 | -0.58312 | -0.09463 | -0.02198 | 0.00573 |
19 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 19 | -0.58313 | -0.09463 | -0.02198 | 0.00573 |
20 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 20 | -0.58313 | -0.09463 | -0.02198 | 0.00573 |
21 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 21 | -0.58314 | -0.09463 | -0.02198 | 0.00573 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||||
n | r | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | r | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
3 | 1 | 0.43317 | 0.43238 | 0.42624 | 0.42568 | 3 | 1 | 0.09714 | 0.09603 | 0.0952 | 0.09477 |
3 | 2 | 0.40404 | 0.40318 | 0.39702 | 0.39651 | 3 | 2 | 0.10007 | 0.09975 | 0.09955 | 0.09945 |
3 | 3 | 0.32162 | 0.32909 | 0.36567 | 0.3678 | 3 | 3 | 0.10199 | 0.10251 | 0.10277 | 0.10289 |
7 | 1 | 0.44158 | 0.4411 | 0.4375 | 0.43719 | 7 | 1 | 0.09509 | 0.09389 | 0.09302 | 0.09258 |
7 | 2 | 0.43401 | 0.43307 | 0.42539 | 0.42465 | 7 | 2 | 0.0972 | 0.09578 | 0.09466 | 0.09406 |
7 | 3 | 0.42314 | 0.42183 | 0.41092 | 0.40986 | 7 | 3 | 0.09882 | 0.09775 | 0.0969 | 0.09645 |
7 | 4 | 0.40648 | 0.40515 | 0.3949 | 0.39398 | 7 | 4 | 0.10011 | 0.09958 | 0.0992 | 0.09901 |
7 | 5 | 0.37863 | 0.37863 | 0.37863 | 0.37863 | 7 | 5 | 0.10115 | 0.10115 | 0.10115 | 0.10115 |
7 | 6 | 0.32728 | 0.33319 | 0.36347 | 0.36531 | 7 | 6 | 0.10201 | 0.10245 | 0.10267 | 0.10277 |
7 | 7 | 0.22427 | 0.25007 | 0.35054 | 0.35503 | 7 | 7 | 0.10273 | 0.10352 | 0.10409 | 0.10451 |
9 | 1 | 0.44288 | 0.44248 | 0.43956 | 0.43931 | 9 | 1 | 0.09461 | 0.09351 | 0.09273 | 0.09234 |
9 | 2 | 0.43748 | 0.4367 | 0.4304 | 0.4298 | 9 | 2 | 0.09643 | 0.09495 | 0.09378 | 0.09317 |
9 | 3 | 0.43039 | 0.42925 | 0.41959 | 0.41864 | 9 | 3 | 0.09791 | 0.09651 | 0.09538 | 0.09476 |
9 | 4 | 0.42075 | 0.41932 | 0.40741 | 0.40626 | 9 | 4 | 0.09911 | 0.09808 | 0.09725 | 0.09682 |
9 | 5 | 0.40701 | 0.40558 | 0.3944 | 0.39339 | 9 | 5 | 0.10012 | 0.09954 | 0.09911 | 0.0989 |
9 | 6 | 0.3863 | 0.38566 | 0.38127 | 0.38092 | 9 | 6 | 0.10097 | 0.10083 | 0.10074 | 0.1007 |
9 | 7 | 0.353 | 0.35534 | 0.36876 | 0.36968 | 9 | 7 | 0.10169 | 0.10194 | 0.10208 | 0.10214 |
9 | 8 | 0.29611 | 0.30699 | 0.35753 | 0.3603 | 9 | 8 | 0.10232 | 0.10288 | 0.10318 | 0.10332 |
9 | 9 | 0.1942 | 0.22695 | 0.34802 | 0.35309 | 9 | 9 | 0.10286 | 0.10373 | 0.10449 | 0.10513 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||
n | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
2 | 0.31766 | 0.32626 | 0.3671 | 0.3694 | 2 | 0.10198 | 0.10254 | 0.10284 | 0.10297 |
3 | 0.21824 | 0.24603 | 0.35185 | 0.35646 | 3 | 0.10272 | 0.10355 | 0.10418 | 0.10466 |
4 | 0.13412 | 0.18248 | 0.34541 | 0.35144 | 4 | 0.10305 | 0.10408 | 0.10545 | 0.10682 |
5 | 0.07755 | 0.14133 | 0.34267 | 0.34947 | 5 | 0.1032 | 0.10439 | 0.10658 | 0.10897 |
6 | 0.04423 | 0.11758 | 0.34147 | 0.34867 | 6 | 0.10327 | 0.10456 | 0.10737 | 0.11053 |
7 | 0.02598 | 0.10473 | 0.34094 | 0.34833 | 7 | 0.10331 | 0.10466 | 0.10785 | 0.11149 |
8 | 0.01638 | 0.098 | 0.34069 | 0.34818 | 8 | 0.10332 | 0.10471 | 0.10812 | 0.11203 |
9 | 0.01144 | 0.09456 | 0.34057 | 0.34812 | 9 | 0.10333 | 0.10474 | 0.10826 | 0.11231 |
10 | 0.00893 | 0.09281 | 0.34052 | 0.34809 | 10 | 0.10334 | 0.10475 | 0.10833 | 0.11246 |
11 | 0.00766 | 0.09193 | 0.34049 | 0.34807 | 11 | 0.10334 | 0.10476 | 0.10837 | 0.11253 |
12 | 0.00702 | 0.09148 | 0.34048 | 0.34806 | 12 | 0.10334 | 0.10476 | 0.10838 | 0.11257 |
13 | 0.0067 | 0.09126 | 0.34047 | 0.34806 | 13 | 0.10334 | 0.10477 | 0.10839 | 0.11259 |
14 | 0.00654 | 0.09115 | 0.34047 | 0.34806 | 14 | 0.10334 | 0.10477 | 0.1084 | 0.1126 |
15 | 0.00646 | 0.09109 | 0.34046 | 0.34806 | 15 | 0.10334 | 0.10477 | 0.1084 | 0.1126 |
16 | 0.00642 | 0.09107 | 0.34046 | 0.34806 | 16 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
17 | 0.0064 | 0.09105 | 0.34046 | 0.34806 | 17 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
18 | 0.00639 | 0.09105 | 0.34046 | 0.34806 | 18 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
19 | 0.00639 | 0.09104 | 0.34046 | 0.34806 | 19 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
20 | 0.00639 | 0.09104 | 0.34046 | 0.34806 | 20 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
21 | 0.00639 | 0.09104 | 0.34046 | 0.34806 | 21 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
22 | 0.00638 | 0.09104 | 0.34046 | 0.34806 | 22 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
r | 1 | 2 | 24 | 25 | 49 | 50 |
H5[r:50](x) | 0.0736041 | 0.066275 | 0.0909935 | 0.100391 | 0.23817 | 0.238162 |
ζ5[r:50](x) | 0.189322 | 0.188401 | 0.177055 | 0.177312 | 0.192772 | 0.193385 |