Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Normalized solutions for pseudo-relativistic Schrödinger equations

  • In this paper, we consider the existence and multiplicity of normalized solutions to the following pseudo-relativistic Schrödinger equations

    {Δ+m2u+λu=ϑ|u|p2v+|u|22v,xRN, u>0, RN|u|2dx=a2,

    where N2, a,ϑ,m>0, λ is a real Lagrange parameter, 2<p<2=2NN1 and 2 is the critical Sobolev exponent. The operator Δ+m2 is the fractional relativistic Schrödinger operator. Under appropriate assumptions, with the aid of truncation technique, concentration-compactness principle and genus theory, we show the existence and the multiplicity of normalized solutions for the above problem.

    Citation: Xueqi Sun, Yongqiang Fu, Sihua Liang. Normalized solutions for pseudo-relativistic Schrödinger equations[J]. Communications in Analysis and Mechanics, 2024, 16(1): 217-236. doi: 10.3934/cam.2024010

    Related Papers:

    [1] Saravanan Shanmugam, R. Vadivel, S. Sabarathinam, P. Hammachukiattikul, Nallappan Gunasekaran . Enhancing synchronization criteria for fractional-order chaotic neural networks via intermittent control: an extended dissipativity approach. Mathematical Modelling and Control, 2025, 5(1): 31-47. doi: 10.3934/mmc.2025003
    [2] Lusong Ding, Weiwei Sun . Neuro-adaptive finite-time control of fractional-order nonlinear systems with multiple objective constraints. Mathematical Modelling and Control, 2023, 3(4): 355-369. doi: 10.3934/mmc.2023029
    [3] Hongli Lyu, Yanan Lyu, Yongchao Gao, Heng Qian, Shan Du . MIMO fuzzy adaptive control systems based on fuzzy semi-tensor product. Mathematical Modelling and Control, 2023, 3(4): 316-330. doi: 10.3934/mmc.2023026
    [4] Vladimir Djordjevic, Ljubisa Dubonjic, Marcelo Menezes Morato, Dragan Prsic, Vladimir Stojanovic . Sensor fault estimation for hydraulic servo actuator based on sliding mode observer. Mathematical Modelling and Control, 2022, 2(1): 34-43. doi: 10.3934/mmc.2022005
    [5] Yangtao Wang, Kelin Li . Exponential synchronization of fractional order fuzzy memristor neural networks with time-varying delays and impulses. Mathematical Modelling and Control, 2025, 5(2): 164-179. doi: 10.3934/mmc.2025012
    [6] Zejiao Liu, Yu Wang, Yang Liu, Qihua Ruan . Reference trajectory output tracking for Boolean control networks with controls in output. Mathematical Modelling and Control, 2023, 3(3): 256-266. doi: 10.3934/mmc.2023022
    [7] Xiaoyu Ren, Ting Hou . Pareto optimal filter design with hybrid H2/H optimization. Mathematical Modelling and Control, 2023, 3(2): 80-87. doi: 10.3934/mmc.2023008
    [8] Biresh Kumar Dakua, Bibhuti Bhusan Pati . A frequency domain-based loop shaping procedure for the parameter estimation of the fractional-order tilt integral derivative controller. Mathematical Modelling and Control, 2024, 4(4): 374-389. doi: 10.3934/mmc.2024030
    [9] Zhaoxia Duan, Jinling Liang, Zhengrong Xiang . Filter design for continuous-discrete Takagi-Sugeno fuzzy system with finite frequency specifications. Mathematical Modelling and Control, 2023, 3(4): 387-399. doi: 10.3934/mmc.2023031
    [10] Vladimir Stojanovic . Fault-tolerant control of a hydraulic servo actuator via adaptive dynamic programming. Mathematical Modelling and Control, 2023, 3(3): 181-191. doi: 10.3934/mmc.2023016
  • In this paper, we consider the existence and multiplicity of normalized solutions to the following pseudo-relativistic Schrödinger equations

    {Δ+m2u+λu=ϑ|u|p2v+|u|22v,xRN, u>0, RN|u|2dx=a2,

    where N2, a,ϑ,m>0, λ is a real Lagrange parameter, 2<p<2=2NN1 and 2 is the critical Sobolev exponent. The operator Δ+m2 is the fractional relativistic Schrödinger operator. Under appropriate assumptions, with the aid of truncation technique, concentration-compactness principle and genus theory, we show the existence and the multiplicity of normalized solutions for the above problem.



    Monotonicity and inequalities related to complete elliptic integrals of the second kind

    by Fei Wang, Bai-Ni Guo and Feng Qi. AIMS Mathematics, 2020, 5(3): 2732–2742.

    DOI: 10.3934/math.2020176

    In Acknowledgments section, the Grant number of "Project for Combination of Education and Research Training at Zhejiang Institute of Mechanical and Electrical Engineering" is missing. Here we give the complete information of this fund.

    The changes have no material impact on the conclusion of this article. The original manuscript will be updated [1]. We apologize for any inconvenience caused to our readers by this change.

    This work was partially supported by the Foundation of the Department of Education of Zhejiang Province (Grant No. Y201635387), the National Natural Science Foundation of China (Grant No. 11171307), the Visiting Scholar Foundation of Zhejiang Higher Education (Grant No. FX2018093), and the Project for Combination of Education and Research Training at Zhejiang Institute of Mechanical and Electrical Engineering (Grant No. A027120206).

    The authors thank anonymous referees for their careful corrections to, helpful suggestions to, and valuable comments on the original version of this manuscript.

    The authors declare that they have no conflict of interest.



    [1] L. Hörmander, The analysis of linear partial differential operators. III: Pseudo-differential operators, Reprint of the 1994 edition, Classics in Mathematics, Springer, Berlin, 2007.
    [2] E. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 1997.
    [3] M. Fall, V. Felli, Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst., 35 (2015), 5827–5867. https://doi.org/10.1006/jfan.1999.3462 doi: 10.1006/jfan.1999.3462
    [4] N. Aronszajn, K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble), 11 (1961), 385–475. https://doi.org/10.5802/aif.116
    [5] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions. Vol. II, Based on notes left by Harry Bateman, Reprint of the 1953 original, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981.
    [6] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A., 268 (2000), 298–305. https://doi.org/10.1016/S0375-9601(00)00201-2 doi: 10.1016/S0375-9601(00)00201-2
    [7] N. Laskin, Fractional Schrödinger equation, Phys. Rev. E., 66 (2002), 056108. https://doi.org/10.1103/PhysRevE.66.056108 doi: 10.1103/PhysRevE.66.056108
    [8] E. Lieb, H. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys., 112 (1987), 147–174. https://doi.org/10.1007/BF01217684 doi: 10.1007/BF01217684
    [9] E. Lieb, H. Yau, The stability and instability of relativistic matter, Comm. Math. Phys., 118 (1988), 177–213. https://doi.org/10.1007/BF01218577 doi: 10.1007/BF01218577
    [10] V. Ambrosio, Existence of heteroclinic solutions for a pseudo-relativistic Allen-Cahn type equation, Adv. Nonlinear Stud, 15 (2015), 395–414. https://doi.org/10.1515/ans-2015-0207 doi: 10.1515/ans-2015-0207
    [11] W. Choi, J. Seok, Nonrelativistic limit of standing waves for pseudo-relativistic nonlinear Schrödinger equations, arXiv: 1506.00791. https://doi.org/10.1063/1.4941037
    [12] V. Coti Zelati, M. Nolasco, Existence of ground states for nonlinear, pseudo-relativistic Schrödinger equations, Rend. Lincei. Mat. Appl., 22 (2011), 51–72. https://doi.org/10.4171/RLM/587 doi: 10.4171/RLM/587
    [13] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245–1260. https://doi.org/10.1080/03605300600987306 doi: 10.1080/03605300600987306
    [14] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
    [15] C. Yang, C. Tang, Sign-changing solutions for the Schrödinger-Poisson system with concave-convex nonlinearities in RN, Commun. Anal. Mech., 15 (2023), 638–657. https://doi.org/10.3934/cam.2023032
    [16] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal, 28 (1997), 1633–1659. https://doi.org/10.1016/S0362-546X(96)00021-1 doi: 10.1016/S0362-546X(96)00021-1
    [17] C. O. Alves, C. Ji, O. H. Miyagaki, Normalized solutions for a Schrödinger equation with critical growth in RN, Calc. Var. Partial Differential Equations, 61 (2022), 18. https://doi.org/10.1007/s00526-021-02123-1
    [18] N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case, J. Funct. Anal., 279 (2020), 108610. https://doi.org/10.1016/j.jfa.2020.108610 doi: 10.1016/j.jfa.2020.108610
    [19] N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differential Equations, 269 (2020), 6941–6987. https://doi.org/10.1016/j.jde.2020.05.016 doi: 10.1016/j.jde.2020.05.016
    [20] S. Deng, Q. Wu, Existence of normalized solutions for the Schrödinger equation, Commun. Anal. Mech., 15 (2023), 575–585. https://doi.org/10.3934/cam.2023028 doi: 10.3934/cam.2023028
    [21] Q. Li, W. Zou, The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical exponent in the L2-subcritical and L2-supercritical cases, Adv. Nonlinear Anal, 11 (2022), 1531–1551. https://doi.org/10.1515/anona-2022-0252 doi: 10.1515/anona-2022-0252
    [22] W. Wang, Q. Li, J. Zhou, Y. Li, Normalized solutions for p-Laplacian equations with a L2-supercritical growth, Ann. Funct. Anal., 12 (2021), 1–19. https://doi.org/10.1007/s43034-020-00101-w doi: 10.1007/s43034-020-00101-w
    [23] S. Yao, H. Chen, V.D. Raˇdulescu, J. Sun, Normalized solutions for lower critical Choquard equations with critical Sobolev perturbation, SIAM J. Math. Anal., 54 (2022), 3696–3723. https://doi.org/10.1137/21M1463136 doi: 10.1137/21M1463136
    [24] L. Jeanjean, T. Luo, Z. Wang, Multiple normalized solutions for quasi-linear Schrödinger equations, J. Differential Equations, 259 (2015), 3894–3928. https://doi.org/10.1016/j.jde.2015.05.008 doi: 10.1016/j.jde.2015.05.008
    [25] T. Bartsch, S. de Valeriola, Normalized solutions of nonlinear Schrödinger equations, Arch. Math., 100 (2013), 75–83. https://doi.org/10.48550/arXiv.1209.0950 doi: 10.48550/arXiv.1209.0950
    [26] J. Bellazzini, L. Jeanjean, T. Luo, Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc., 107 (2013), 303–339. https://doi.org/10.1112/plms/pds072 doi: 10.1112/plms/pds072
    [27] X. Luo, Normalized standing waves for the Hartree equations, J. Differential Equations, 267 (2019), 4493–4524. https://doi.org/10.1016/j.jde.2019.05.009 doi: 10.1016/j.jde.2019.05.009
    [28] C. O. Alves, C. Ji, O. H. Miyagaki, Multiplicity of normalized solutions for a Schrödinger equation with critical in RN, arXiv: 2103.07940, 2021. https://doi.org/10.48550/arXiv.2103.07940
    [29] A. Cotsiolis, N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225–236. https://doi.org/10.1016/j.jmaa.2004.03.034 doi: 10.1016/j.jmaa.2004.03.034
    [30] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
    [31] S. Dipierro, M. Medina, E. Valdinoci, Fractional elliptic problems with critical growth in the whole of Rn, Scuola Normale Superiore, 2017. https://doi.org/10.1007/978-88-7642-601-8
    [32] C. Brändle, E. Colorado, A. de Pablo, U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39–71. https://doi.org/10.48550/arXiv.2105.13632 doi: 10.48550/arXiv.2105.13632
    [33] P. Stinga, J. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092–2122. https://doi.org/10.1080/03605301003735680 doi: 10.1080/03605301003735680
    [34] V. Ambrosio, Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator, J. Math. Phys., 57 (2016), 051502. https://doi.org/10.1063/1.4949352 doi: 10.1063/1.4949352
    [35] V. Ambrosio, Concentration phenomena for a fractional relativistic Schrödinger equation with critical growth, arXiv preprint arXiv: 2105.13632, 2021. https://doi.org/10.48550/arXiv.2105.13632
    [36] P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, in: CBME Regional Conference Series in Mathematics, vol. 65, American Mathematical Society, Providence, RI, 1986.
    [37] V. Bogachev, Measure Theory, Vol. II, Springer-Verlag, Berlin, 2007.
    [38] X. Zhang, B. Zhang, D. Repovs, Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials, Nonlinear Anal, 142 (2016), 48–68. https://doi.org/10.1016/j.na.2016.04.012 doi: 10.1016/j.na.2016.04.012
    [39] L. Jeanjean, S. Lu, Nonradial normalized solutions for nonlinear scalar field equations, Nonlinearity, 32 (2019), 4942–4966. https://doi.org/10.1088/1361-6544/ab435e doi: 10.1088/1361-6544/ab435e
  • This article has been cited by:

    1. Bhuban Chandra Deuri, Marija V. Paunović, Anupam Das, Vahid Parvaneh, Ali Jaballah, Solution of a Fractional Integral Equation Using the Darbo Fixed Point Theorem, 2022, 2022, 2314-4785, 1, 10.1155/2022/8415616
    2. Nihar Kumar Mahato, Sumati Kumari Panda, Manar A. Alqudah, Thabet Abdeljawad, An existence result involving both the generalized proportional Riemann-Liouville and Hadamard fractional integral equations through generalized Darbo's fixed point theorem, 2022, 7, 2473-6988, 15484, 10.3934/math.2022848
    3. Fahim Uddin, Faizan Adeel, Khalil Javed, Choonkil Park, Muhammad Arshad, Double controlled M-metric spaces and some fixed point results, 2022, 7, 2473-6988, 15298, 10.3934/math.2022838
    4. N. K. Mahato, 2023, Chapter 16, 978-981-99-0596-6, 219, 10.1007/978-981-99-0597-3_16
    5. Rahul Rahul, Nihar Kumar Mahato, Mohsen Rabbani, Nasser Aghazadeh, EXISTENCE OF THE SOLUTION VIA AN ITERATIVE ALGORITHM FOR TWO-DIMENSIONAL FRACTIONAL INTEGRAL EQUATIONS INCLUDING AN INDUSTRIAL APPLICATION, 2023, 35, 0897-3962, 10.1216/jie.2023.35.459
    6. Nihar Kumar Mahato, Bodigiri Sai Gopinadh, , 2024, Chapter 15, 978-981-99-9545-5, 339, 10.1007/978-981-99-9546-2_15
    7. An Enhanced Darbo-Type Fixed Point Theorems and Application to Integral Equations, 2024, 11, 2395-602X, 120, 10.32628/IJSRST24116165
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1478) PDF downloads(137) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog