Citation: Zhongxian Men, Tony S. Wirjanto. A new variant of estimation approach to asymmetric stochastic volatilitymodel[J]. Quantitative Finance and Economics, 2018, 2(2): 325-347. doi: 10.3934/QFE.2018.2.325
[1] | Britnee Crawford, Christopher Kribs-Zaleta . A metapopulation model for sylvatic T. cruzi transmission with vector migration. Mathematical Biosciences and Engineering, 2014, 11(3): 471-509. doi: 10.3934/mbe.2014.11.471 |
[2] | Jin Zhong, Yue Xia, Lijuan Chen, Fengde Chen . Dynamical analysis of a predator-prey system with fear-induced dispersal between patches. Mathematical Biosciences and Engineering, 2025, 22(5): 1159-1184. doi: 10.3934/mbe.2025042 |
[3] | Zhilan Feng, Robert Swihart, Yingfei Yi, Huaiping Zhu . Coexistence in a metapopulation model with explicit local dynamics. Mathematical Biosciences and Engineering, 2004, 1(1): 131-145. doi: 10.3934/mbe.2004.1.131 |
[4] | Pan Zheng . On a two-species competitive predator-prey system with density-dependent diffusion. Mathematical Biosciences and Engineering, 2022, 19(12): 13421-13457. doi: 10.3934/mbe.2022628 |
[5] | Tracy L. Stepien, Erica M. Rutter, Yang Kuang . A data-motivated density-dependent diffusion model of in vitro glioblastoma growth. Mathematical Biosciences and Engineering, 2015, 12(6): 1157-1172. doi: 10.3934/mbe.2015.12.1157 |
[6] | Zhiyin Gao, Sen Liu, Weide Li . Biological control for predation invasion based on pair approximation. Mathematical Biosciences and Engineering, 2022, 19(10): 10252-10274. doi: 10.3934/mbe.2022480 |
[7] | James T. Cronin, Jerome Goddard II, Amila Muthunayake, Ratnasingham Shivaji . Modeling the effects of trait-mediated dispersal on coexistence of mutualists. Mathematical Biosciences and Engineering, 2020, 17(6): 7838-7861. doi: 10.3934/mbe.2020399 |
[8] | José Luis Díaz Palencia, Abraham Otero . Modelling the interaction of invasive-invaded species based on the general Bramson dynamics and with a density dependant diffusion and advection. Mathematical Biosciences and Engineering, 2023, 20(7): 13200-13221. doi: 10.3934/mbe.2023589 |
[9] | Fu-Yuan Tsai, Feng-BinWang . Mathematical analysis of a chemostat system modeling the competition for light and inorganic carbon with internal storage. Mathematical Biosciences and Engineering, 2019, 16(1): 205-221. doi: 10.3934/mbe.2019011 |
[10] | Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008 |
[1] |
Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econometrics 31: 307–327. doi: 10.1016/0304-4076(86)90063-1
![]() |
[2] |
Bauwens L, Lubrano M (1998) Bayesian inference on GARCH models using the Gibbs sampler. Economet J 1: C23–C26. doi: 10.1111/1368-423X.11003
![]() |
[3] |
Broto C, Ruiz E (2004) Estimation methods for stochastic volatility models: a survey. J Econ Surv 18: 613–649. doi: 10.1111/j.1467-6419.2004.00232.x
![]() |
[4] | Carnero A, Pena D, Ruiz E (2003) Persistence and kurtosis in GARCH and stochastic volatility models J Financ Economet 2: 319–342. |
[5] | Chib S, Greenberg E (1995) Understanding the Metropolis-Hastings Algorithm. American Statistician 49: 327–335. |
[6] |
Chib S, Nardarib F, Shephard N (2006) Analysis of high dimensional multivariate stochastic volatility models. J Econometrics 134: 341–371. doi: 10.1016/j.jeconom.2005.06.026
![]() |
[7] |
Dobigeon N, Tourneret J (2010) Bayesian orthogonal component analysis for sparse representation. IEEE T Signal Proces 58: 2675–2685. doi: 10.1109/TSP.2010.2041594
![]() |
[8] |
Diebold FX, Guther TA, Tay AS (1998) Evaluating density forecasts with applications to financial risk management. Int Econ Rev 39: 863–883. doi: 10.2307/2527342
![]() |
[9] |
Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50: 987–1007. doi: 10.2307/1912773
![]() |
[10] |
Eraker B, Johannes M, Polson N (2003) The Impact ofJumps inVolatility and Returns. J Financ 58: 1269–1300. doi: 10.1111/1540-6261.00566
![]() |
[11] |
Geweke J (1993) Bayesian treatment of the independent Student-t linear model. J Appl Econom 8: S19–S40. doi: 10.1002/jae.3950080504
![]() |
[12] | Harvey AC, Shephard N (1996) Estimation of an asymmetric stochastic volatility model for asset returns. J Bus Econ Stat 14: 42-434. |
[13] |
Jacquier E, Polson NG, Rossi PE (2004) Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. J Econometrics 122: 185–212. doi: 10.1016/j.jeconom.2003.09.001
![]() |
[14] |
Kawakatsu H (2007) Numerical integration-based Gaussian mixture filters for maximum likelihood estimation of asymmetric stochastic volatility models. Economet 10: 342–358. doi: 10.1111/j.1368-423X.2007.00211.x
![]() |
[15] |
Kim S, Shephard N, Chib S (1998) Stochastic volatility: Likelihood inference and comparison with ARCH models. Rev Econ Stud 65: 361–393. doi: 10.1111/1467-937X.00050
![]() |
[16] | Liesenfeld R, Richard J (2003) Univariate and multivariate stochastic volatility models: estimation and diagnostics. J Empiri Financ 45: 505–531. |
[17] |
Melino A, Turnbull SM (1990) Pricing foreign currencyoptions with stochastic volatility. J Econometrics 45: 239–265. doi: 10.1016/0304-4076(90)90100-8
![]() |
[18] | Men Z (2012) Bayesian Inference for Stochastic Volatility Models. Ph.D. thesis, Department of Statistics and Actuarial Science at the University of Waterloo. |
[19] |
Men Z, McLeish D, Kolkiewicz A, et al. (2017) Comparison of Asymmetric Stochastic Volatility Models under Di erent Correlation Structures. J Appl Stat 44: 1350–1368. doi: 10.1080/02664763.2016.1204596
![]() |
[20] |
Men Z, Kolkiewicz A, Wirjanto TS (2015) Bayesian Analysis of Asymmetric Stochastic Conditional Duration Model. J Forecasting 34: 36–56. doi: 10.1002/for.2317
![]() |
[21] |
Mira A, Tierney L (2002) E ciency and Convergence Properties of Slice Samplers. Scand J Stat 29: 1–12. doi: 10.1111/1467-9469.00267
![]() |
[22] |
Neal RN (2003) Slice sampling. Annals Stat 31: 705–767. doi: 10.1214/aos/1056562461
![]() |
[23] |
Omori Y, Chib S, Shephard N, et al. (2007) Stochastic volatility with leverage: Fast and e cient likelihood inference. J Econometrics 140: 425–449. doi: 10.1016/j.jeconom.2006.07.008
![]() |
[24] | Pitt MK, Shephard N (1999a) Time varying covariances: A factor stochastic volatility approach. Bayesian Stat 6: 547–570. |
[25] | Pitt M, Shephard N (1999b) Filtering via simulation: Auxiliary particle filters. J Am Stat Assoc 94: 590–599. |
[26] |
Roberts GO, Rosenthal JS (1999) Convergence of Slice Sampler Markov Chains. J R Stat Soc B 61: 643–660. doi: 10.1111/1467-9868.00198
![]() |
[27] |
Shephard N, Pitt MK (1997) Likelihood Analysis of non-Gaussian Measurement Time Series. Biometrika 84: 653–667. doi: 10.1093/biomet/84.3.653
![]() |
[28] | Taylor SJ (1986) Modelling Financial Time Series, Chichester: Wiley. |
[29] |
Wirjanto TS, Kolkiewicz A, Men Z (2016) Bayesian Analysis of a Threshold Stochastic Volatility Model. J Forecasting 35: 462–476. doi: 10.1002/for.2397
![]() |
[30] |
Yu J (2005) On leverage in a stochastic volatility model. J Econometrics 127: 165–178. doi: 10.1016/j.jeconom.2004.08.002
![]() |
[31] | Yu J, Meyer R (2006) Multivariate stochastic volatility models: Bayesian estimation and model comparison. Economet Rev 51: 2218–2231. |
[32] |
Zhang X, King L (2008) Box-Cox stochastic volatility models with heavy-tails and correlated errors. J Empiri Financ 15: 549–566. doi: 10.1016/j.jempfin.2007.05.002
![]() |
1. | Yunshyong Chow, Sophia R.-J. Jang, Nai-Sher Yeh, Dynamics of a population in two patches with dispersal, 2018, 24, 1023-6198, 543, 10.1080/10236198.2018.1428962 | |
2. | Flávia T. Giordani, Jacques A. L. Silva, Asymptotic transversal stability for synchronized attractors in a metapopulation model, 2015, 38, 01704214, 4804, 10.1002/mma.3395 | |
3. | Yunshyong Chow, Sophia R.-J. Jang, Coexistence in a discrete competition model with dispersal, 2013, 19, 1023-6198, 615, 10.1080/10236198.2012.663361 | |
4. | 雨青 陈, Dynamic Properties of a Class of Discrete Population Model, 2019, 08, 2324-7991, 1463, 10.12677/AAM.2019.88171 | |
5. | Chunqing Wu, Shengming Fan, Patricia J. Y. Wong, Theoretical Studies on the Effects of Dispersal Corridors on the Permanence of Discrete Predator-Prey Models in Patchy Environment, 2014, 2014, 1085-3375, 1, 10.1155/2014/140902 | |
6. | Flávia Tereza Giordani, Fermín S. V. Bazán, Luciano Bedin, Coupling and Parameter Estimation for a Discrete Single-Species Metapopulation Model, 2025, 11, 2349-5103, 10.1007/s40819-025-01903-z |