Citation: Alexis M. Chambers, Jessica D. Payne. The Influence of Sleep on the Consolidation of Positive Emotional Memories: Preliminary Evidence[J]. AIMS Neuroscience, 2014, 1(1): 39-51. doi: 10.3934/Neuroscience.2014.1.39
[1] | Luis Caffarelli, Antoine Mellet . Random homogenization of fractional obstacle problems. Networks and Heterogeneous Media, 2008, 3(3): 523-554. doi: 10.3934/nhm.2008.3.523 |
[2] | Joachim von Below, José A. Lubary . Isospectral infinite graphs and networks and infinite eigenvalue multiplicities. Networks and Heterogeneous Media, 2009, 4(3): 453-468. doi: 10.3934/nhm.2009.4.453 |
[3] | Delio Mugnolo . Gaussian estimates for a heat equation on a network. Networks and Heterogeneous Media, 2007, 2(1): 55-79. doi: 10.3934/nhm.2007.2.55 |
[4] | Caihong Gu, Yanbin Tang . Global solution to the Cauchy problem of fractional drift diffusion system with power-law nonlinearity. Networks and Heterogeneous Media, 2023, 18(1): 109-139. doi: 10.3934/nhm.2023005 |
[5] | Giuseppe Maria Coclite, Lorenzo di Ruvo . $ H^1 $ solutions for a modified Korteweg-de Vries-Burgers type equation. Networks and Heterogeneous Media, 2024, 19(2): 724-739. doi: 10.3934/nhm.2024032 |
[6] | Kota Kumazaki, Adrian Muntean . Local weak solvability of a moving boundary problem describing swelling along a halfline. Networks and Heterogeneous Media, 2019, 14(3): 445-469. doi: 10.3934/nhm.2019018 |
[7] | Hantaek Bae, Rafael Granero-Belinchón, Omar Lazar . On the local and global existence of solutions to 1d transport equations with nonlocal velocity. Networks and Heterogeneous Media, 2019, 14(3): 471-487. doi: 10.3934/nhm.2019019 |
[8] | Debora Amadori, Stefania Ferrari, Luca Formaggia . Derivation and analysis of a fluid-dynamical model in thin and long elastic vessels. Networks and Heterogeneous Media, 2007, 2(1): 99-125. doi: 10.3934/nhm.2007.2.99 |
[9] | Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro . Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17(1): 101-128. doi: 10.3934/nhm.2021025 |
[10] | Steinar Evje, Kenneth H. Karlsen . Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1(4): 639-673. doi: 10.3934/nhm.2006.1.639 |
The 3D incompressible resistive Hall-Magnetohydrodynamics system (Hall-MHD in short) is the following system of PDEs for
$ ut+u⋅∇u−B⋅∇B+∇p−μΔu=0, $ | (1a) |
$ Bt+u⋅∇B−B⋅∇u+curl((curlB)×B)−νΔB=0, $ | (1b) |
$ divu=0,divB=0, $ | (1c) |
where
The Hall-MHD recently has been studied intensively. The Hall-MHD can be derived from either two fluids model or kinetic models in a mathematically rigorous way [1]. Global weak solution, local classical solution, global solution for small data, and decay rates are established in [4,5,6]. There have been many follow-up results of these papers; see [7,8,12,13,14,15,16,18,29,30,31,32,34,35] and references therein.
We note that the Hall term
$ Bt+curl((curlB)×B)+ΛβB=0,divB=0, $ | (2) |
where we take
$ Bt+curl((curlB)×B)+ΛB=0,divB=0. $ | (3) |
However, we can show the existence of solutions globally in time if initial data is sufficiently small.
Theorem 1.1. Let
$ \left\|B(t)\right\|^{2}_{H^{k}}+(1-C\epsilon_{0})\int^{t}_{0}\left\|\Lambda^{\frac{1}{2}}B(s)\right\|^{2}_{H^{k}}ds\leq \left\|B_{0}\right\|^{2}_{H^{k}} \quad {{for\; all \; t > 0 .}} $ |
Moreover,
$ ‖ΛlB(t)‖L2≤C0(1+t)l,0<l≤k, $ | (4) |
where
Remark 1. The decay rate (4) is consistent with the decay rates of the linear part of (3).
Remark 2. After this work was completed, the referee pointed out that the same result is proved in [37,Theorem 1.1]. Compared to the proof in [37] where they use the Littlewood-Paley decomposition, we use the standard energy energy estimates and classical commutator estimates.
As one of a minimal modification of (3) to show the existence of unique local in time solutions, we now take a logarithmic correction of (3):
$ Bt+curl((curlB)×B)+ln(2+Λ)ΛB=0, $ | (5) |
where the Fourier symbol of
Theorem 1.2. Let
$ ‖B(t)‖Hk≤ln(1e−‖B0‖Hk−Ct),0<t<T∗=exp(−‖B0‖Hk)C. $ | (6) |
In this paper, we also deal with 2D models closely related to the
$ B(t,x,y)=(−ψy(t,x,y),ψx(t,x,y),Z(t,x,y)), $ | (7) |
we can rewrite (3) as
$ ψt+Λψ=[ψ,Z], $ | (8a) |
$ Zt+ΛZ=[Δψ,ψ], $ | (8b) |
where
Although (8) is defined in 2D and has nice cancellation properties (18), the local well-posedness seems unreachable. But, suppose that we redistribute the power of the fractional Laplacians in (8) in such a way that (8b) has the full Laplacian and (8a) is inviscid:
$ ψt=[ψ,Z],Zt−ΔZ=[Δψ,ψ]. $ | (9) |
(9) has no direct link to (2), but we may interpret (9) as the
$ E(t)=‖ψ(t)‖2H4+‖Z(t)‖2H3,E0=‖ψ0‖2H4+‖Z0‖2H3. $ | (10) |
Theorem 1.3. There exists
$ \mathcal{E}(t)\leq \frac{\mathcal{E}_{01}}{1-Ct\mathcal{E}_{0}} \quad {{for \;all}}\; \ 0 < t\leq T_{\ast} < \frac{1}{C \mathcal{E}_{0}}. $ |
Moreover, we have the following blow-up criterion:
$ \mathcal{E}(t)+ \int^{t}_{0}\left\|\nabla Z(s)\right\|^{2}_{H^{2}}ds < \infty\iff \int^{t}_{0}\left(\left\|\nabla^{2} Z(s)\right\|_{L^{\infty}} +\left\|\nabla^{2}\psi(s)\right\|^{2}_{L^{\infty}} \right)ds < \infty. $ |
Since there is no dissipative effect in the equation of
$ ψt+ψ=[ψ,Z],Zt−ΔZ=[Δψ,ψ]. $ | (11) |
In this case, we can show the existence of global in time solutions with small initial data having regularity one higher than the regularity in Theorem 1.3. Moreover, we can find decay rates of
$ F(t)=‖ψ(t)‖2H5+‖Z(t)‖2H4,F0=‖ψ0‖2H5+‖Z0‖2H4,N1(t)=‖∇ψ(t)‖2H4+‖∇Z(t)‖2H4. $ |
Theorem 1.4. There exists a constant
$ \mathcal{F}(t)+(1-C \epsilon_{0})\int^{t}_{0}\mathcal{N}_{1}(s)ds\leq \mathcal{F}_{0} \quad {{for\; all\; t > 0 .}} $ |
Moreover,
$ \left\|\psi(t)\right\|_{L^{2}}\leq \left\|\psi_{0}\right\|_{L^{2}} e^{-t}, \quad \left\|\Lambda^{k}\psi(t)\right\|_{L^{2}}\leq \mathcal{F}^{\frac{k-1}{8}}_{0}\left\|\nabla \psi_{0}\right\|^{\frac{5-k}{4}}_{L^{2}} e^{-\frac{(5-k)(1-C\epsilon_{0})}{4}t} $ |
with
As another way to redistribute the derivatives in (8), we also deal with
$ ψt−Δψ=[ψ,Z],Zt=[Δψ,ψ]. $ | (12) |
Let
Theorem 1.5. There exists
$ \mathcal{E}(t)\leq \frac{\mathcal{E}_{0}}{1-Ct\mathcal{E}_{0}} \quad {{for \;all}}\; \ 0 < t\leq T_{\ast} < \frac{1}{C \mathcal{E}_{0}}. $ |
Moreover, we have the following blow-up criterion
$ \mathcal{E}(t)+\int^{t}_{0}\left\|\nabla \psi\right\|^{2}_{H^{4}}ds < \infty \iff \int^{t}_{0}\left\|\nabla^{2}\psi\right\|^{2}_{L^{\infty}}ds. $ |
We now add a damping term to the equation of
$ ψt−Δψ=[ψ,Z],Zt+Z=[Δψ,ψ]. $ | (13) |
In this case, we can use the same regularity used in Theorem 1.5 because the dissipative effect in
Theorem 1.6. There exists a constant
$ \mathcal{E}(t)+(1-C \epsilon_{0})\int^{t}_{0}\mathcal{N}_{2}(s)ds\leq \mathcal{E}_{0} \quad {{for \;all \; t > 0 .}} $ |
Remark 3. Compared to Theorem 1.3, we only need one term in the blow-up criterion in Theorem 1.5 which is due to the dissipative effect in the equation of
All constants will be denoted by
The fractional Laplacian
$ \widehat{\Lambda^{\beta} f}(\xi) = |\xi|^{\beta}\widehat{f}(\xi). $ |
For
$ \|f\|_{H^{s}} = \|f\|_{L^{2}}+\|f\|_{\dot{H}^{s}}, \quad \|f\|_{\dot{H}^{s}} = \left\|\Lambda^{s}f\right\|_{L^{2}}. $ |
In the energy spaces, we have the following interpolations: for
$ ‖f‖˙Hs≤‖f‖θ˙Hs0‖f‖1−θ˙Hs1,s=θs0+(1−θ)s1. $ | (14) |
We begin with two inequalities in 3D:
$ ‖f‖L∞≤C‖f‖Hs,s>32, $ | (15a) |
$ ‖f‖Lp≤C‖f‖˙Hs,1p=12−s3. $ | (15b) |
We also provide the following inequalities in 2D
$ \left\|f\right\|_{L^{4}}\leq C\left\|f\right\|^{\frac{1}{2}}_{L^{2}}\left\|\nabla f\right\|^{\frac{1}{2}}_{L^{2}}, \quad \left\|f\right\|_{L^{\infty}} \leq C\left\|f\right\|^{\frac{1}{2}}_{L^{2}} \left\|\Delta f\right\|^{\frac{1}{2}}_{L^{2}} $ |
which will be used repeatedly in the proof of Theorem 1.3, Theorem 1.4, Theorem 1.5, and Theorem 1.6. We also recall
$ \left\|\nabla^{2}f\right\|_{L^{2}} = \left\|\Delta f\right\|_{L^{2}} $ |
which holds in any dimension.
We finally provide the Kato-Ponce commutator cstimate [22]
$ ‖[Λk,f]g‖L2=‖Λk(fg)−fΛkg‖L2≤C‖∇f‖L∞‖Λk−1g‖L2+C‖g‖L∞‖Λkf‖L2 $ | (16) |
and the fractional Leibniz rule [11]: for
$ ‖Λs(fg)‖Lp≤C‖Λsf‖Lp1‖g‖Lq1+C‖f‖Lp2‖Λsg‖Lq2,1p=1p1+1q1=1p2+1q2. $ | (17) |
We recall the commutator
$ Δ[f,g]=[Δf,g]+[f,Δg]+2[fx,gx]+2[fy,gy], $ | (18a) |
$ ∫f[f,g]=0, $ | (18b) |
$ ∫f[g,h]=∫g[h,f]. $ | (18c) |
We recall (3):
$ Bt+curl((curlB)×B)+ΛB=0. $ | (19) |
We first approximate (19) by putting
$ Bt+curl((curlB)×B)+ΛB=ϵΔB. $ | (20) |
We then mollify (20) as follows
$ ∂tB(ϵ)+curl(Jϵ(curlJϵB(ϵ))×JϵB(ϵ))+ΛJ2ϵB(ϵ)=ϵJ2ϵΔB(ϵ),B(ϵ)0=JϵB0, $ | (21) |
where
We begin with the
$ 12ddt‖B‖2L2+‖Λ12B‖2L2=0. $ | (22) |
We now take
$ 12ddt‖ΛkB‖2L2+‖Λ12+kB‖2L2=−∫Λkcurl((curlB)×B)⋅ΛkB=∫([Λ12+k,B]×curlB)⋅Λk−12curlB≤‖[Λ12+k,B]×curlB‖L2‖Λ12+kB‖L2. $ |
By (16) and (15a) with
$ ‖[Λ12+k,B]×curlB‖L2≤C‖∇B‖L∞‖Λk−12curlB‖L2≤C‖B‖Hk‖Λ12+kB‖2L2. $ | (23) |
So, we obtain
$ ddt‖ΛkB‖2L2+‖Λ12+kB‖2L2≤C‖B‖Hk‖Λ12+kB‖2L2. $ | (24) |
By (22) and (24),
$ \frac{d}{dt}\left\|B\right\|^{2}_{H^{k}}+\left\|\Lambda^{\frac{1}{2}}B\right\|^{2}_{H^{k}}\leq C \left\|B\right\|_{H^{k}}\left\|\Lambda^{\frac{1}{2}+k}B\right\|^{2}_{L^{2}}. $ |
If
$ ‖B(t)‖2Hk+(1−Cϵ0)∫t0‖Λ12B(s)‖2Hkds≤‖B0‖2Hkforallt>0. $ | (25) |
Let
$ Bt+ΛB+curl((curlB1)×B)−curl((curlB)×B2)=0 $ | (26) |
with
$ 12ddt‖B‖2L2+‖Λ12B‖2L2=−∫(curl((curlB1)×B))⋅B=−∫Λ12(((curlB1)×B))⋅Λ−12curlB≤C‖∇B1‖L∞‖Λ12B‖2L2+C‖∇Λ12B1‖L6‖B‖L3‖Λ12B‖L2≤C‖∇B1‖L∞‖Λ12B‖2L2+C‖Λ52B1‖L2‖Λ12B‖2L2≤C‖B1‖Hk‖Λ12B‖2L2, $ |
where we use (15b) to control
By (14), it is enough to derive the decay rate with
$ \left\|\Lambda^{k}B\right\|^{\frac{2k+1}{k}}_{L^{2}}\leq \left\|B\right\|^{\frac{1}{k}}_{L^{2}}\left\|\Lambda^{\frac{1}{2}+k}B\right\|^{2}_{L^{2}} \leq \left\|B_{0}\right\|^{\frac{1}{k}}_{L^{2}}\left\|\Lambda^{\frac{1}{2}+k}B\right\|^{2}_{L^{2}} $ |
by (14) and (22), we create the following ODE from (24)
$ \frac{d}{dt}\left\|\Lambda^{k}B\right\|^{2}_{L^{2}}+\frac{1-C\epsilon_{0}}{\left\|B_{0}\right\|^{\frac{1}{k}}_{L^{2}}}\left\|\Lambda^{k}B\right\|^{\frac{2k+1}{k}}_{L^{2}}\leq 0. $ |
By solving this ODE, we find the following decay rate
$ ‖ΛkB(t)‖L2≤((2k)k‖B0‖L2‖ΛkB0‖L2)(2k‖B0‖1kL2+(1−Cϵ0)‖ΛkB0‖1kL2t)k. $ | (27) |
We recall (5):
$ B_{t}+{\rm{curl}} \left(({\rm{curl}} \;B)\times B\right)+\ln(2+\Lambda)\Lambda B = 0, $ |
The the uniqueness part of Theorem 1.2 is the same as that of Theorem 1.1 and we only derive a priori bounds. Let
$ \left\|\sqrt{\ln(2+\Lambda)}\Lambda^{s}f\right\|^{2}_{L^{2}} = \int \left(\ln(2+|\xi|)\right)|\xi|^{2s}\left|\widehat{f}(\xi)\right|^{2}d\xi. $ |
We begin with the
$ 12ddt‖B‖2L2+‖√ln(2+Λ)Λ12B‖2L2=0. $ | (28) |
Following the computations in the proof of Theorem 1.1, we also have
$ ddt‖ΛkB‖2L2+‖√ln(2+Λ)Λ12+kB‖2L2≤C‖B‖Hk‖Λ12+kB‖2L2. $ | (29) |
For each
$ ‖Λ12+kB‖2L2=∫|ξ|≤2N|ξ|2k+1|ˆB(ξ)|2dξ+∫|ξ|≥2N|ξ|2k+1|ˆB(ξ)|2dξ≤2N∫|ξ|≤2N|ξ|2k|ˆB(ξ)|2dξ+1ln(2+2N)∫|ξ|≥2Nln(2+|ξ|)|ξ|2k+1|ˆB(ξ)|2dξ≤2N‖ΛkB‖2L2+1ln(2+2N)‖√ln(2+Λ)Λ12+kB‖2L2. $ |
So, (29) is replaced by
$ ddt‖ΛkB‖2L2+‖√ln(2+Λ)Λ12+kB‖2L2≤C2N‖ΛkB‖2L2‖B‖Hk+C‖B‖Hkln(2+2N)‖√ln(2+Λ)Λ12+kB‖2L2. $ |
We now choose
$ \frac{1}{2}\ln(2+2^{N}) < C\left\|B\right\|_{H^{k}} < \ln(2+2^{N}) $ |
and so
$ ddt‖ΛkB‖2L2≤Cexp(‖B‖Hk)‖B‖Hk‖ΛkB‖L2. $ | (30) |
By (28) and (30), we obtain
$ \frac{d}{dt}\left\|B\right\|^{2}_{H^{k}}\leq C \exp\left(\|B\|_{H^{k}}\right)\|B\|^{2}_{H^{k}} $ |
and so we have
$ \frac{d}{dt}\left\|B\right\|_{H^{k}}\leq C \exp\left(\|B\|_{H^{k}}\right)\|B\|_{H^{k}} \leq C \exp\left(\|B\|_{H^{k}}\right). $ |
By solving this ODE, we can derive (6).
We recall (9):
$ ψt=[ψ,Z], $ | (31a) |
$ Zt−ΔZ=[Δψ,ψ]. $ | (31b) |
We first approximate (31a) by putting
$ ∂tψ(ϵ)=Jϵ[Jϵψ(ϵ),JϵZ(ϵ)]+ϵJ2ϵΔψ(ϵ),∂tZ(ϵ)−ΔJ2ϵZ(ϵ)=Jϵ[ΔJϵψ(ϵ),Jϵψ(ϵ)] $ | (32) |
with
We first note that
$ 12ddt‖ψ‖2L2=∫ψ[ψ,Z]=0. $ | (33) |
We next multiply (31a) by
$ 12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖∇Z‖2L2=∫(−Δψ[ψ,Z]+Z[Δψ,ψ])=0. $ | (34) |
We also multiply (31a) by
$ 12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2=∫Δ4ψ[ψ,Z]−∫Δ3Z[Δψ,ψ]=R. $ | (35) |
We now compute the right-hand side of (35). By (18a), (18b), and (18c),
$ R=2∫Δ2ψ[Δψ,ΔZ]+4∫Δ2ψ[ψx,ΔZx]+4∫Δ2ψ[ψy,ΔZy]+4∫Δ2ψ[Δψx,Zx]+4∫Δ2ψ[Δψy,Zy]+4∫Δ2ψ[ψxx,Zxx]+8∫Δ2ψ[ψxy,Zxy]+4∫Δ2ψ[ψyy,Zyy]−2∫Δ2Z[Δψx,ψx]−2∫Δ2Z[Δψy,ψy]. $ | (36) |
So, we find that the number of derivatives acting on
$ ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2≤C∫|∇4ψ||∇4ψ||∇2Z|+C∫|∇3ψ||∇4ψ||∇3Z|+C∫|∇4ψ||∇2ψ||∇4Z|≤C‖Δ2ψ‖2L2‖∇2Z‖L∞+C‖∇3ψ‖L4‖Δ2ψ‖L2‖∇3Z‖L4+C‖Δ2ψ‖L2‖∇2ψ‖L∞‖Δ2Z‖L2≤C‖Δ2ψ‖2L2‖∇2Z‖L∞+C‖Δ2ψ‖32L2‖∇Δψ‖12L2‖Δ2Z‖L2+C‖Δ2ψ‖L2‖∇2ψ‖L∞‖Δ2Z‖L2≤CE2+14‖Δ2Z‖2L2+δ‖∇2Z‖2L∞≤CE2+12‖Δ2Z‖2L2+14‖∇Z‖2L2, $ |
where we use
$ ‖∇2Z‖2L∞≤C‖ΔZ‖L2‖Δ2Z‖L2≤C‖∇Z‖23L2‖Δ2Z‖43L2≤C‖∇Z‖2L2+C‖Δ2Z‖2L2 $ |
with
$ ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2≤CE2+12‖∇Z‖2L2. $ | (37) |
By (33), (34), and (37), we derive
$ E(t)≤E01−CtE0forall 0<t≤T∗<1CE0. $ | (38) |
Let
$ \psi_{t} = [\psi, Z_{1}]+[\psi_{2}, Z], \quad Z_{t}-\Delta Z = [\Delta\psi, \psi_{1}]+[\Delta\psi_{2}, \psi] $ |
with
$ 12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖∇Z‖2L2=−∫Δψ[ψ,Z1]−∫Δψ[ψ2,Z]+∫Z[Δψ,ψ1]+∫Z[Δψ2,ψ]=(I)+(II)+(III)+(IV). $ |
The first term is bounded using the definition of
$ \text{(I)} = \int \left(\nabla^{\perp}Z_{1}\cdot \nabla \psi\right) \Delta \psi = -\int \left(\nabla^{\perp}\partial_{l}Z_{1}\cdot \nabla \psi\right) \partial_{l} \psi\leq C \left\|\nabla^{2}Z_{1}\right\|_{L^{\infty}}\left\|\nabla \psi\right\|^{2}_{L^{2}}. $ |
We next bound
$ (II)+(III)=−∫Z[Δψ,ψ]≤C‖∇2ψ‖L∞‖∇ψ‖L2‖∇Z‖L2≤C(‖∇2ψ1‖2L∞+‖∇2ψ2‖2L∞)‖∇ψ‖2L2+14‖∇Z‖2L2. $ |
The last term is bounded as
$ \text{(IV)}\leq C \left\|\nabla^{2}\psi_{2}\right\|_{L^{\infty}}\left\|\nabla \psi\right\|_{L^{2}}\left\|\nabla Z\right\|_{L^{2}} \leq C \left\|\nabla^{2}\psi_{2}\right\|^{2}_{L^{\infty}}\left\|\nabla \psi\right\|^{2}_{L^{2}}+\frac{1}{4}\left\|\nabla Z\right\|^{2}_{L^{2}}. $ |
So, we have
$ ddt(‖∇ψ‖2L2+‖Z‖2L2)≤C(‖∇2Z1‖L∞+‖∇2ψ1‖2L∞+‖∇2ψ2‖2L∞)(‖∇ψ‖2L2+‖Z‖2L2). $ | (39) |
By (38),
$ \int^{t}_{0}\left(\left\|\nabla Z(s)\right\|^{2}_{L^{2}}+\left\|\Delta^{2} Z(s)\right\|^{2}_{L^{2}}\right)ds < \infty \quad {{\rm{for}}} \; 0 < t\leq \frac{T_{\ast}}{2} $ |
which gives the integrability of the first term in the parentheses on the right-hand side of (39). By repeating the same argument one more time, we have the uniqueness up to
Let
$ \mathcal{B}(s) = \left\|\nabla^{2}Z(s)\right\|_{L^{\infty}} +\left\|\nabla^{2}\psi(s)\right\|^{2}_{L^{\infty}} . $ |
We first deal with
$ 12ddt(‖Δψ‖2L2+‖∇Z‖2L2)+‖ΔZ‖2L2=∫Δ2ψ[ψ,Z]−∫ΔZ[Δψ,ψ]=2∫Δψ[ψx,Zx]+2∫Δψ[ψy,Zy]≤C‖∇2Z‖L∞‖Δψ‖2L2 $ |
and so we have
$ \frac{d}{dt} \left(\left\|\Delta\psi\right\|^{2}_{L^{2}}+\left\|\nabla Z\right\|^{2}_{L^{2}} \right) +\left\| \Delta Z\right\|^{2}_{L^{2}} \leq C \left\|\nabla^{2}Z\right\|_{L^{\infty}}\left\| \Delta \psi\right\|^{2}_{L^{2}}. $ |
This implies
$ ‖Δψ(t)‖2L+‖∇Z(t)‖2L2+∫t0‖ΔZ(s)‖2L2ds<∞⟺∫t0‖∇2Z(s)‖L∞ds<∞. $ | (40) |
We also deal with
$ 12ddt(‖∇Δψ‖2L2+‖ΔZ‖2L2)+‖∇ΔZ‖2L2=−∫Δ3ψ[ψ,Z]+∫Δ2Z[Δψ,ψ]=−∫Δ2ψ[Δψ,Z]−2∫Δ2ψ([ψx,Zx]+[ψy,Zy])−2∫Δψ([ψx,ΔZx]+[ψy,ΔZy])=(I)+(II)+(III). $ |
As in Section 4.1.3,
$ (I)=∫(∇∇⊥Z⋅∇Δψ)⋅∇Δψ≤C‖∇2Z‖L∞‖∇Δψ‖2L2. $ | (41) |
We next estimate
$ (II)+(III)=−4∫Δψ([Δψy,Zy]+[ψy,ΔZy]+[ψxy,Zxy]+[ψyy,Zyy])≤C∫|∇2Z||∇3ψ|2+C∫|∇2ψ||∇3ψ||∇3Z|≤C‖∇2Z‖L∞‖∇Δψ‖2L2+C‖∇2ψ‖2L∞‖∇Δψ‖2L2+12‖∇ΔZ‖2L2. $ | (42) |
By (41) and (42), we have
$ \frac{d}{dt}\left(\left\|\nabla \Delta \psi\right\|^{2}_{L^{2}}+\left\|\Delta Z\right\|^{2}_{L^{2}}\right) +\left\|\nabla \Delta Z\right\|^{2}_{L^{2}}\leq C\left(\left\|\nabla^{2} Z\right\|_{L^{\infty}} +\left\|\nabla^{2}\psi\right\|^{2}_{L^{\infty}} \right)\left\|\nabla\Delta \psi \right\|^{2}_{L^{2}} $ |
which implies
$ ‖∇Δψ(t)‖2L2+‖ΔZ(t)‖2L2+∫t0‖∇ΔZ(s)‖2L2ds<∞⟺∫t0B(s)ds<∞. $ | (43) |
We finally deal with
$ \frac{1}{2}\frac{d}{dt} \left(\left\|\Delta^{2}\psi\right\|^{2}_{L^{2}}+\left\|\nabla\Delta Z\right\|^{2}_{L^{2}} \right) +\left\|\Delta^{2}Z\right\|^{2}_{L^{2}} = \int \Delta^{4} \psi [\psi, Z] -\int\Delta^{3} Z[\Delta \psi, \psi] = \mathcal{R} $ |
with the same
$ 12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2≤C‖∇2Z‖L∞‖Δ2ψ‖2L2+C‖∇2ψ‖L∞‖Δ2Z‖L2‖Δ2ψ‖L2+C‖∇ΔZ‖L4‖∇Δψ‖L4‖Δ2ψ‖L2≤C(‖∇2Z‖L∞+‖∇2ψ‖2L∞+‖∇ΔZ‖32L2‖∇Δψ‖32L2)‖Δ2ψ‖2L2+12‖Δ2Z‖2L2 $ |
which gives
$ ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2≤C(B(s)+‖∇ΔZ‖32L2‖∇Δψ‖32L2)‖Δ2ψ‖2L2. $ | (44) |
By (40) and (43), (44) implies
$ \left\|\Delta^{2} \psi(t)\right\|^{2}_{L^{2}}+\left\|\nabla \Delta Z(t)\right\|^{2}_{L^{2}}+\int^{t}_{0} \left\|\Delta ^{2}Z(s)\right\|^{2}_{L^{2}}ds < \infty \iff \int^{t}_{0}\mathcal{B}(s)ds < \infty. $ |
We recall (11):
$ \psi_{t}+\psi = [\psi, Z], \quad Z_{t}-\Delta Z = [\Delta \psi, \psi] $ |
Since the uniqueness is already proved in Section 4.1.3 even without the damping term, we only focus on the a priori bounds and the decay rates.
We first have
$ 12ddt‖ψ‖2L2+‖ψ‖2L2=0,12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖∇ψ‖2L2+‖∇Z‖2L2=0. $ | (45) |
We now consider the highest order part:
$ 12ddt(‖∇Δ2ψ‖2L2+‖Δ2Z‖2L2)+‖∇Δ2ψ‖2L2+‖∇Δ2Z‖2L2=−∫Δ5ψ[ψ,Z]+∫Δ4Z[Δψ,ψ]. $ |
We compute the right-hand side of this. By (18a), (18b), and (18c),
$ −∫Δ5ψ[ψ,Z]+∫Δ4Z[Δψ,ψ]=2∫Δ3Z[Δψx,ψx]+2∫Δ3Z[Δψy,ψy]+2∫Δ2Z[Δ2ψx,ψx]+2∫Δ2Z[Δ2ψy,ψy]+2∫ΔZ[Δ2ψx,Δψx]+2∫ΔZ[Δ2ψy,Δψy]−∫Δ3ψ[Δψ,ΔZ]−2∫Δ3ψ[Δψx,Zx]−2∫Δ3ψ[Δψy,Zy]−2∫Δ3ψ[ψx,ΔZx]−2∫Δ3ψ[ψy,ΔZy]−2∫Δ4ψ[ψx,Zx]−2∫Δ4ψ[ψy,Zy]−∫Δ3ψ[Δ2ψ,Z]. $ | (46) |
We now count the number of derivatives hitting on
$ (6,2,4)↦(5,2,5), (5,3,4)(4,2,6)↦(5,5,2), (4,3,5)(2,2,8)↦(3,2,7)↦(4,2,6), (3,3,6)↦(5,5,2), (4,3,5)(2,4,6)↦(2,5,5), (3,4,5). $ |
The last integral is
$ \int \left(\nabla^{\perp}Z\cdot \nabla \Delta^{2}\psi\right)\Delta^{3}\psi = -\int \left(\nabla^{\perp}\partial_{l}Z\cdot \nabla \Delta^{2}\psi\right)\partial_{l}\Delta^{2}\psi $ |
and so this gives
$ (2, 5, 5), \ (3, 4, 5), \ (4, 3, 5), \ (5, 2, 5), \ (5, 3, 4). $ |
The first and the fourth cases are bounded by
$ C‖∇2Z‖L∞‖∇Δ2ψ‖2L2≤C‖∇2Z‖2L∞‖∇Δ2ψ‖2L2+16‖∇Δ2ψ‖2L2,C‖∇2ψ‖L∞‖∇Δ2Z‖2L2≤C‖∇2ψ‖L∞‖∇Δ2Z‖2L2+14‖∇Δ2Z‖2L2. $ |
The second case is bounded by
$ C‖∇3Z‖L4‖∇4ψ‖L4‖∇Δ2ψ‖L2≤C‖ΔZ‖12L2‖∇Δ2Z‖12L2‖Δ2ψ‖12L2‖∇Δ2ψ‖32L2≤C‖ΔZ‖2L2‖Δ2ψ‖2L2‖∇Δ2Z‖2L2+16‖∇Δ2ψ‖2L2. $ |
The third case is bounded by
$ C‖∇4Z‖L4‖∇3ψ‖L4‖∇Δ2ψ‖L2≤C‖Δ2Z‖12L2‖∇Δ2Z‖12L2‖Δψ‖12L2‖∇Δ2ψ‖32L2≤C‖Δψ‖2L2‖Δ2Z‖2L2‖∇Δ2Z‖2L2+16‖∇Δ2ψ‖2L2. $ |
The last one is bounded by
$ C‖∇3ψ‖L4‖∇4ψ‖L4‖∇Δ2Z‖L2≤C‖∇Δψ‖12L2‖Δ2ψ‖L2‖∇Δ2ψ‖12L2‖∇Δ2Z‖L2≤C‖∇Δψ‖L2‖∇Δ2ψ‖L2‖∇Δ2Z‖L2≤C‖∇Δψ‖2L2‖∇Δ2ψ‖2L2+14‖∇Δ2Z‖2L2. $ |
So, we obtain
$ ddt(‖∇Δ2ψ‖2L2+‖Δ2Z‖2L2)+‖∇Δ2ψ‖2L2+‖∇Δ2Z‖2L2≤C‖∇2Z‖2L∞‖∇Δ2ψ‖2L2+C‖∇2ψ‖2L∞‖∇Δ2Z‖2L2+C‖∇Δψ‖2L2‖∇Δ2ψ‖2L2+C‖ΔZ‖2L2‖Δ2ψ‖2L2‖∇Δ2Z‖2L2+C‖Δψ‖2L2‖Δ2Z‖2L2‖∇Δ2Z‖2L2 $ | (47) |
By (45) and (47),
$ \mathcal{F}'(t)+\mathcal{N}_{1}(t)\leq C \left(\mathcal{F}(t)+\mathcal{F}^{2}(t)\right)\mathcal{N}_{1}(t). $ |
So, if
$ \label{A priori damping dd} \mathcal{F}(t)+(1-C \epsilon_{0})\int^{t}_{0}\mathcal{N}_{1}(s)ds\leq \mathcal{F}_{0} \quad {{\rm{for}} \;{\rm{all}} \;t > 0 .} $ |
From (45),
$ 12ddt‖∇ψ‖2L2+‖∇ψ‖2L2=−∫Δψ[ψ,Z]=∫(∇⊥Z⋅∇ψ)Δψ=−∫(∂l∇⊥Z⋅∇ψ)∂lψ≤‖∇2Z‖L∞‖∇ψ‖2L2≤Cϵ0‖∇ψ‖2L2, $ |
we have
$ \left\|\nabla \psi(t)\right\|_{L^{2}}\leq \left\|\nabla \psi_{0}\right\|_{L^{2}} e^{-(1-C\epsilon_{0})t}. $ |
By using (14), we also obtain
$ \left\|\Lambda^{k}\psi(t)\right\|_{L^{2}}\leq \mathcal{F}^{\frac{k-1}{8}}_{0}\left\|\nabla \psi_{0}\right\|^{\frac{5-k}{4}}_{L^{2}} e^{-\frac{(5-k)(1-C\epsilon_{0})}{4}t}, \quad 1\leq k < 5. $ |
We recall (12):
$ \psi_{t}-\Delta \psi = [\psi, Z], \quad Z_{t} = [\Delta \psi, \psi]. $ |
By applying the same approximation and mollification methods in Section 4.1.1, we can show the existence of smooth solutions locally in time when
We first have
$ 12ddt‖ψ‖2L2+‖∇ψ‖2L2=0,12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖Δψ‖2L2=0. $ | (48) |
We next deal with
$ \frac{1}{2}\frac{d}{dt} \left(\left\|\Delta^{2}\psi\right\|^{2}_{L^{2}}+\left\|\nabla\Delta Z\right\|^{2}_{L^{2}} \right) +\left\|\nabla \Delta^{2} \psi\right\|^{2}_{L^{2}} = \int \Delta^{4} \psi [\psi, Z] -\int\Delta^{3} Z[\Delta \psi, \psi] = \mathcal{R} $ |
with the same
$ ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2≤C‖∇2Z‖L2‖Δ2ψ‖2L4+C‖∇ΔZ‖L2‖∇2ψ‖L∞‖∇Δ2ψ‖L2+C‖ΔZ‖L4‖∇3ψ‖L4‖∇Δ2ψ‖L2≤CE21+12‖∇Δ2ψ‖2L2 $ |
and so we have the following bound
$ ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2≤CE2. $ | (49) |
By (48) and (49), we derive
$ E(t)≤E01−CtE0forall 0<t≤T∗<1CE0. $ | (50) |
Let
$ 12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖Δψ‖2L2=−∫Δψ[ψ,Z1]−∫Δψ[ψ2,Z]+∫Z[Δψ,ψ1]+∫Z[Δψ2,ψ]=(I)+(II)+(III)+(IV). $ |
The first term three terms are bounded as
$ (I)≤‖∇Z1‖L∞‖∇ψ‖L2‖Δψ‖L2≤C‖∇Z1‖2L∞‖∇ψ‖2L2+13‖Δψ‖2L2,(II)+(III)=−∫Z[Δψ,ψ]≤C‖∇Z‖L∞‖∇ψ‖L2‖Δψ‖L2≤C(‖∇Z1‖2L∞+‖∇Z2‖2L∞)‖∇ψ‖2L2+13‖Δψ‖2L2 $ |
The last term is bounded as
$ (IV)≤C‖∇3ψ2‖L4‖∇ψ‖L4‖Z‖L2≤C‖∇3ψ2‖L4‖∇ψ‖12L2‖Δψ‖12L2‖Z‖L2≤C‖∇3ψ2‖43L4‖∇ψ‖23L2‖Z‖43L2+13‖Δψ‖2L2≤C‖∇3ψ2‖4L4‖∇ψ‖2L2+C‖Z‖2L2+13‖Δψ‖2L2≤C‖∇Δψ2‖2L2‖Δ2ψ2‖2L2‖∇ψ‖2L2+C‖Z‖2L2+13‖Δψ‖2L2. $ |
So, we have
$ ddt(‖∇ψ‖2L2+‖Z‖2L2)≤C(‖∇Z1‖2L∞+‖∇Z2‖2L∞+‖∇Δψ2‖2L2‖Δ2ψ2‖2L2)(‖∇ψ‖2L2+‖Z‖2L2). $ |
By (50), the terms in the parentheses are integrable up to
To derive the blow-up criterion, we first bound
$ 12ddt(‖Δψ‖2L2+‖∇Z‖2L2)+‖∇Δψ‖2L2=∫Δ2ψ[ψ,Z]−∫ΔZ[Δψ,ψ]=2∫Δψ[ψx,Zx]+2∫Δψ[ψy,Zy]≤C‖∇2ψ‖L∞‖∇Z‖L2‖∇Δψ‖L2≤C‖∇2ψ‖2L∞‖∇Z‖2L2+12‖∇Δψ‖2L2 $ |
and so we have
$ \frac{d}{dt} \left(\left\|\Delta\psi\right\|^{2}_{L^{2}}+\left\|\nabla Z\right\|^{2}_{L^{2}} \right) +\left\| \nabla \Delta \psi\right\|^{2}_{L^{2}} \leq C \left\|\nabla^{2}\psi\right\|^{2}_{L^{\infty}}\left\|\nabla Z\right\|^{2}_{L^{2}}. $ |
This implies
$ ‖Δψ(t)‖2L+‖∇Z(t)‖2L2+∫t0‖∇Δψ(s)‖2L2ds<∞⟺∫t0‖∇2ψ(s)‖2L∞ds<∞ $ | (51) |
We also take
$ 12ddt(‖∇Δψ‖2L2+‖ΔZ‖2L2)+‖Δ2ψ‖2L2=−∫Δ3ψ[ψ,Z]+∫Δ2Z[Δψ,ψ]=−∫Δ2ψ[Δψ,Z]−2∫Δ2ψ([ψx,Zx]+[ψy,Zy])−2∫Δψ([ψx,ΔZx]+[ψy,ΔZy])=(I)+(II)+(III). $ |
By using the computation in (41),
$ (I)=∫(∇∇⊥Z⋅∇Δψ)⋅∇Δψ≤C‖∇2Z‖L2‖∇3ψ‖2L4≤C‖∇2Z‖2L2‖∇Δψ‖2L2+16‖Δ2ψ‖2L2. $ |
We next estimate
$ (II)+(III)≤C∫|∇2Z||∇3ψ|2+C∫|∇2ψ||∇4ψ||∇2Z|≤C‖ΔZ‖2L2‖∇Δψ‖2L2+C‖∇2ψ‖2L∞‖ΔZ‖2L2+13‖Δ2ψ‖2L2 $ |
So, we have
$ ddt(‖∇Δψ‖2L2+‖ΔZ‖2L2)+‖Δ2ψ‖2L2≤C(‖∇Δψ‖2L2+‖∇2ψ‖2L∞)‖ΔZ‖2L2. $ | (52) |
By (51), (52) implies
$ ‖∇Δψ(t)‖2L2+‖ΔZ(t)‖2L2+∫‖Δ2ψ(s)‖2L2ds<∞⟺∫t0‖∇2ψ(s)‖2L∞ds<∞. $ | (53) |
We finally deal with
$ \frac{1}{2}\frac{d}{dt} \left(\left\|\Delta^{2}\psi\right\|^{2}_{L^{2}}+\left\|\nabla\Delta Z\right\|^{2}_{L^{2}} \right) +\left\|\nabla \Delta^{2} \psi\right\|^{2}_{L^{2}} = \int \Delta^{4} \psi [\psi, Z] -\int\Delta^{3} Z[\Delta \psi, \psi] $ |
where we count the number of derivatives acting on
$ 12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2≤C‖ΔZ‖2L2‖Δ2ψ‖2L2+C‖∇2ψ‖2L∞‖∇ΔZ‖2L2+C‖ΔZ‖2L4‖∇3ψ‖2L4+12‖∇Δ2ψ‖2L2≤C‖ΔZ‖2L2‖Δ2ψ‖2L2+C‖∇2ψ‖2L∞‖∇ΔZ‖2L2+C‖ΔZ‖2L2‖∇ΔZ‖2L2+C‖∇Δψ‖2L2‖Δ2ψ‖2L2+12‖∇Δ2ψ‖2L2 $ |
and so we have
$ ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2≤C(‖∇2ψ‖2L∞+‖ΔZ‖2L2)‖∇ΔZ‖2L2+C(‖∇Δψ‖2L2+‖ΔZ‖2L2)‖Δ2ψ‖2L2 $ | (54) |
By (51) and (53), (54) implies
$ \label{BW 5}‖Δ2ψ(t)‖2L2+‖∇ΔZ(t)‖2L2+∫t0‖∇Δ2ψ(s)‖2L2ds<∞⟺∫t0‖∇2ψ(s)‖2L∞ds<∞. $ |
We recall (13):
$ \psi_{t}-\Delta \psi = [\psi, Z], \quad Z_{t}+Z = [\Delta \psi, \psi]. $ |
Since the uniqueness is already proved in Section 5.1.2 even without the damping term, we only focus on the a priori bounds.
We first have
$ 12ddt‖ψ‖2L2+‖∇ψ‖2L2=0,12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖Δψ‖2L2+‖Z‖2L2=0. $ | (55) |
We also have
$ 12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2+‖∇ΔZ‖2L2=∫Δ4ψ[ψ,Z]−∫Δ3Z[Δψ,ψ]=R $ |
with the same
$ ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2+‖∇ΔZ‖2L2≤C‖∇2Z‖L2‖Δ2ψ‖2L4+C‖∇ΔZ‖L2‖∇2ψ‖L∞‖∇Δ2ψ‖L2+C‖ΔZ‖L4‖∇3ψ‖L4‖∇Δ2ψ‖L2≤C‖∇Z‖12L2‖∇ΔZ‖12L2‖∇Δψ‖12L2‖∇Δ2ψ‖32L2+C‖∇ΔZ‖L2‖∇2ψ‖L∞‖∇Δ2ψ‖L2+C‖ΔZ‖12L2‖∇ΔZ‖12L2‖Δψ‖12L2‖∇Δ2ψ‖32L2≤C(‖∇Z‖2L2‖∇Δψ‖2L2+‖ΔZ‖2L2‖Δψ‖2L2+‖∇2ψ‖2L∞)‖∇ΔZ‖2L2+12‖∇Δ2ψ‖L2. $ |
So, we obtain
$ ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2+‖∇ΔZ‖2L2≤C(‖∇Z‖2L2‖∇Δψ‖2L2+‖ΔZ‖2L2‖Δψ‖2L2+‖∇2ψ‖2L∞)‖∇ΔZ‖2L2 $ | (56) |
By (55) and (56),
$ \mathcal{E}'(t)+\mathcal{N}_{2}(t)\leq C \left(\mathcal{E}(t)+\mathcal{E}^{2}(t)\right)\mathcal{N}_{2}(t). $ |
So, if
$ \mathcal{E}(t)+(1-C \epsilon_{0})\int^{t}_{0}\mathcal{N}_{2}(s)ds\leq \mathcal{E}_{0} \quad {\rm{for}}\; {\rm{all}}\; t > 0 . $ |
H.B. was supported by NRF-2018R1D1A1B07049015. H. B. acknowledges the Referee for his/her valuable comments that highly improve the manuscript.
[1] |
Wagner U, Gais S, Born J. (2001) Emotional memory formation is enhanced across sleep intervals with high amounts of rapid eye movement sleep. Learn Memory 8: 112-119. doi: 10.1101/lm.36801
![]() |
[2] |
Hu P, Stylos-Allan M, Walker MP. (2006) Sleep facilitates consolidation of emotional declarative memory. Psychol Sci 17: 891-898. doi: 10.1111/j.1467-9280.2006.01799.x
![]() |
[3] |
Nishida M, Pearsall J, Buckner RL, Walker MP. (2009) REM sleep, prefrontal theta, and the consolidation of human emotional memory. Cereb Cortex 19:1158-1166. doi: 10.1093/cercor/bhn155
![]() |
[4] |
Payne JD, Stickgold R, Swanberg K, Kensinger EA. (2008) Sleep preferentially enhances memory for emotional components of scenes. Psychol Sci 19: 781-788. doi: 10.1111/j.1467-9280.2008.02157.x
![]() |
[5] | Payne JD, Chambers AM, Kensinger EA. (2012) Sleep promotes lasting changes in selective memory for emotional scenes. Front Integrative Neurosci 6(108): DOI:10. 3389/fnint. 2012. 00108. |
[6] |
Braun AR, Balkin TJ, Wesenten NJ, Carson RE, Varga M, Baldwin P, et al. (1997) Regional cerebral blood flow throughout the sleep-wake cycle: An H215O PET study. Brain 120:1173-1197. doi: 10.1093/brain/120.7.1173
![]() |
[7] |
Stickgold R, Hobson JA, Fosse R, Fosse M. (2001). Sleep, learning, and dreams: Off-line memory reprocessing. Science 294: 1052-1057. doi: 10.1126/science.1063530
![]() |
[8] |
Plihal W, Born J. (1999) Memory consolidation in human sleep depends on inhibition of glucocorticoid release. NeuroReport 10: 2741-2747. doi: 10.1097/00001756-199909090-00009
![]() |
[9] | Gais S, Born J. (2004) Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation. P Natl Acad Sci USA 101: 2140–2144. |
[10] |
Wagner U, Hallschmid M, Rasch B, Born J. (2006) Brief sleep after learning keeps emotional memories alive for years. Biol Psychiat 60: 788-790. doi: 10.1016/j.biopsych.2006.03.061
![]() |
[11] |
Heller AS, Johnstone T, Shackman AJ, et al. (2009) Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation. P Natl Acad Sci USA 106: 22445-22450. doi: 10.1073/pnas.0910651106
![]() |
[12] |
Gruber J, Oveis C, Keltner D, Johnson SL. (2011) A discrete emotions approach to positive emotion disturbance in depression. Cognition Emotion 25: 40-52. doi: 10.1080/02699931003615984
![]() |
[13] |
Tsuno N, Besset A, Ritchie K. (2005) Sleep and depression. J Clin Psychiat 66: 1254-1269. doi: 10.4088/JCP.v66n1008
![]() |
[14] |
Lang A, Dhillon K, Dong Q. (1995) The effects of emotional arousal and valence on television viewers' cognitive capacity and memory. J Broadcast Electron 39: 313-327. doi: 10.1080/08838159509364309
![]() |
[15] |
Hamann SB, Ely TD, Grafton ST, Kilts CD. (1999) Amygdala activity related to enhanced memory for pleasant and aversive stimuli. Nat Neurosci 2: 289-293. doi: 10.1038/6404
![]() |
[16] |
Libkumen TM, Stabler CL, Otani H. (2004) Arousal, valence, and memory for detail. Memory 12:237-247. doi: 10.1080/09658210244000630
![]() |
[17] |
Hamann S. (2001) Cognitive and neural mechanisms of emotional memory. Trends Cogn Sci 5:394-400. doi: 10.1016/S1364-6613(00)01707-1
![]() |
[18] |
Hamann SB, Ely TD, Hoffman JM, Kilts CD. (2002) Ecstasy and agony: Activation of human amygdala in positive and negative emotion. Psychol Sci 13: 135-141. doi: 10.1111/1467-9280.00425
![]() |
[19] |
Waring JD, Kensinger EA. (2009) Effects of emotional valence and arousal upon memory trade-offs with aging. Psychol Aging 24: 412-422. doi: 10.1037/a0015526
![]() |
[20] |
Waring JD, Kensinger EA. (2011) How emotion leads to selective memory: Neuroimaging evidence. Neuropsychologia 49: 1831-1842. doi: 10.1016/j.neuropsychologia.2011.03.007
![]() |
[21] |
Payne JD, Kensinger EA. (2011) Sleep leads to changes in the emotional memory trace: Evidence from fMRI. J Cogn Neurosci 23: 1285-1297. doi: 10.1162/jocn.2010.21526
![]() |
[22] | Payne JD, Kensinger EA. (2010) Sleep's role in the consolidation of emotional episodic memories. Curr Dir Psychol Sci 19: 290-295 |
[23] | Iber C, Ancoli-Israel S, Chesson AL, Quan SF, eds. (2007) The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology, and Technical Specifications. 1 Eds. , Westchester, Illinois: American Academy of Sleep Medicine. |
[24] |
Yonelinas AP. (2002) The nature of recollection and familiarity: A review of 30 years of research. J Mem Lang 46: 441-517. doi: 10.1006/jmla.2002.2864
![]() |
[25] | Yonelinas AP, Jacoby LL. (1995) The relation between remembering and knowing as bases for recognition: Effects of size congruency. J Mem Lang 34: 622–643. |