Citation: Dimitris Pinotsis, Karl Friston. Gamma Oscillations and Neural Field DCMs Can Reveal Cortical Excitability and Microstructure[J]. AIMS Neuroscience, 2014, 1(1): 18-38. doi: 10.3934/Neuroscience.2014.1.18
[1] | Cherechi Ndukwe, M. Tariq Iqbal, Xiaodong Liang, Jahangir Khan, Lawrence Aghenta . LoRa-based communication system for data transfer in microgrids. AIMS Electronics and Electrical Engineering, 2020, 4(3): 303-325. doi: 10.3934/ElectrEng.2020.3.303 |
[2] | Efthymios N. Lallas . A survey on key roles of optical switching and labeling technologies on big data traffic of Data Centers and HPC environments. AIMS Electronics and Electrical Engineering, 2019, 3(3): 233-256. doi: 10.3934/ElectrEng.2019.3.233 |
[3] | Shahzad Ashraf, Arshad Ahmad, Adnan Yahya, Tauqeer Ahmed . Underwater routing protocols: Analysis of link selection challenges. AIMS Electronics and Electrical Engineering, 2020, 4(3): 234-248. doi: 10.3934/ElectrEng.2020.3.234 |
[4] | Boualem Djehiche, Alain Tcheukam, Hamidou Tembine . Mean-Field-Type Games in Engineering. AIMS Electronics and Electrical Engineering, 2017, 1(1): 18-73. doi: 10.3934/ElectrEng.2017.1.18 |
[5] | Farhan Khan, Sing Kiong Nguang . Dual sensing scheduling algorithm for WSN based road network surveillance. AIMS Electronics and Electrical Engineering, 2021, 5(1): 38-54. doi: 10.3934/electreng.2021003 |
[6] | Vuong Quang Phuoc, Nguyen Van Dien, Ho Duc Tam Linh, Nguyen Van Tuan, Nguyen Van Hieu, Le Thai Son, Nguyen Tan Hung . An optimized LSTM-based equalizer for 100 Gigabit/s-class short-range fiber-optic communications. AIMS Electronics and Electrical Engineering, 2024, 8(4): 404-419. doi: 10.3934/electreng.2024019 |
[7] | Asim Anwar, Boon-Chong Seet, Xue Jun Li . NOMA for V2X under similar channel conditions. AIMS Electronics and Electrical Engineering, 2018, 2(2): 48-58. doi: 10.3934/ElectrEng.2018.2.48 |
[8] | Deven Nahata, Kareem Othman . Exploring the challenges and opportunities of image processing and sensor fusion in autonomous vehicles: A comprehensive review. AIMS Electronics and Electrical Engineering, 2023, 7(4): 271-321. doi: 10.3934/electreng.2023016 |
[9] | B Naresh Kumar, Jai Sukh Paul Singh . Intelligence-based optimized cognitive radio routing for medical data transmission using IoT. AIMS Electronics and Electrical Engineering, 2022, 6(3): 223-246. doi: 10.3934/electreng.2022014 |
[10] | Minglong Zhang, Iek Cheong Lam, Arun Kumar, Kin Kee Chow, Peter Han Joo Chong . Optical environmental sensing in wireless smart meter network. AIMS Electronics and Electrical Engineering, 2018, 2(3): 103-116. doi: 10.3934/ElectrEng.2018.3.103 |
A 2-$ (v, k, \lambda) $ design $ \mathcal{D} $ is a pair $ (\mathcal{P}, \mathcal{B}) $, where $ \mathcal{P} $ is a set of $ v $ points, and $ \mathcal{B} $ is a set of $ k $-subsets of $ \mathcal{P} $ called blocks, such that any 2 points are contained in exactly $ \lambda $ blocks. A flag is a point-block pair $ (\alpha, B) $ with $ \alpha\in B $. The Fisher's inequality in [8, 1.3.8] shows that the number of blocks is at least $ v $. Design $ \mathcal{D} $ is said to be non-symmetric if $ v < b $ and non-trivial if $ 2 < k < v-1 $. We always assume $ \mathcal{D} $ to be non-trivial and non-symmetric in this paper. An automorphism of $ \mathcal{D} $ is a permutation of $ \mathcal{P} $ that leaves $ \mathcal{B} $ invariant. All automorphisms of the design $ \mathcal{D} $ form a group called the full automorphism group of $ \mathcal{D} $, denoted by $ Aut(\mathcal{D}) $. Let $ G\leq Aut(\mathcal{D}) $. The design $ \mathcal{D} $ is called point (block, flag)-transitive if $ G $ acts transitively on the set of points (blocks, flags) and point-primitive if $ G $ acts primitively on $ \mathcal{P} $, that is, $ G $ does not preserve a partition of $ \mathcal{P} $ in classes of size $ c $ with $ 1 < c < v $.
For decades, works have been done on the classification of 2-designs admitting a transitive automorphism group. In 1988, Buekenhout, Delandtsheer, and Doyen first proved in [5] that the flag-transitive automorphism group of a 2-$ (v, k, 1) $ design must be of affine or almost simple type. Then, the classification of flag-transitive 2-$ (v, k, 1) $ designs was given in [6] by a six-person team, except for the case of the one-dimensional affine type. In recent years, some researchers have focused on into classifying 2-$ (v, k, \lambda) $ designs with general $ \lambda $ admitting flag-transitive automorphism group, such as [1,3,12,16,25,26,27]. Moreover, some of the works also considered classification of such designs admitting automorphism groups in a weaker condition, namely, block-transitive rather than flag-transitive [21,22,23,24].
The current paper tackles the 2-$ (v, k, \lambda) $ designs where $ \lambda $ is a prime. In [25], Zhang and Chen reduced the flag-transitive, point-primitive automorphism groups of such 2-designs either to the affine type (with an elementary abelian $ p $-group as socle) or to the almost simple type (with a nonabelian simple socle). Hence, it is possible to classify such $ 2 $-designs based on the classification of simple groups. The aim of this paper is to consider the case when the socle of the automorphism group $ G $ is an exceptional simple group of Lie type. Note that groups $ G_2(2) $, $ ^2G_2(3) $, $ ^2B_2(2) $, and $ ^2F_4(2) $ are not simple, so they are not under consideration in this work. It is also worth noting that the symmetric 2-designs with exceptional simple socle have been studied in [1,2,20]. The main result of the current paper is the following:
Theorem 1.1. Let $ \mathcal{D} $ be a non-symmetric $ 2 $-$ (v, k, \lambda) $ design with $ \lambda $ prime and $ G $ a flag-transitive automorphism group of $ \mathcal{D} $. If the socle $ T $ of $ G $ is an exceptional Lie type simple group in characteristic $ p $, then one of the following holds:
(1) $ T $ is $ {^{2}B_{2}(q)} $ with $ q = 2^{2n+1} > 2 $ and $ (v, k, \lambda) = (q^{2}+1, q, q-1) $, where $ q-1 $ is a Mersenne prime;
(2) $T $ is $ {G_{2}(q)} $, and $ (v, k, \lambda) = (\frac{q^3(q^3-1)}{2}, \frac{q^3}{2}, q+1) $ where $ q > 2 $ is even and $ q+1 $ is a Fermat prime.
Remark 1.1. For the parameters in Theorem 1.1(1), the design $\mathcal{D}$ is described in [26]. For the parameters in Theorem 1.1(2), the existence of such a design remains uncertain at this time.
We begin with some well-established results about the parameters of 2-$ (v, k, \lambda) $ designs and the automorphism groups of them. For any point $ \alpha $, we denote by $ r $ the number of blocks that contain $ \alpha $, as it is a constant.
Lemma 2.1. ([8]) For a $ 2 $-$ (v, k, \lambda) $ design $ \mathcal{D} $, it is well known that
(1) $ bk = vr $;
(2) $ \lambda(v-1) = r(k-1) $;
(3) $ \lambda v < r^2 $.
Lemma 2.2. ([8,Section 1.2]) Assume that $ G $ is an automorphism group of $ \mathcal{D} $. Then the flag-transitivity of $ G $ is equivalent to one of the following:
(1) $ G $ is point-transitive, and the point stabilizer $ G_\alpha $ is transitive on all blocks that contain $ \alpha $;
(2) $ G $ is block-transitive, and the block stabilizer $ G_B $ is transitive on the $ k $ points in block $ B $.
Lemma 2.3. [7]) Assume that $ G $ is a flag-transitive automorphism group of $ \mathcal{D} $, and $ T $ is the socle of $ G $. Then, we have
(1) $ r\mid |G_\alpha | $, where $ G_\alpha $ is the point-stabilizer of $ G $;
(2) $ r\mid \lambda d_i $, where $ d_i $ is any nontrivial subdegree of $ G $.
Assume that $ \lambda $ is a prime. Then either $ (\lambda, r) = 1 $ or $ \lambda \mid r $. For the former case, by the results of [26], we immediately obtain the following Lemma:
Lemma 3.1. Assume that $ G $ and $ \mathcal{D} $ satisfy the hypothesis of Theorem 1.1. If $ (\lambda, r) = 1 $, then $ T = {^{2}B_{2}(q)} $ with $ q = 2^{2n+1}\geq8 $, and $ \mathcal{D} $ is a $ 2 $-$ (q^{2}+1, q, q-1) $ design with $ q-1 $ a Mersenne prime. In particular, $ 2n+1 $ is prime.
Therefore, we always assume $ \lambda\mid r $ in the remaining content. Let $ r_0 = \frac{r}{\lambda} $. We get the following from Lemmas 2.1 and 2.3.
Lemma 3.2. Assume that $ \mathcal{D} $ is a $ 2 $-$ (v, k, \lambda) $ design where $ \lambda $ is a prime divisor of $ r $, and $ G $ is a flag-transitive automorphism group of $ \mathcal{D} $. Then we have
(1) $v < \lambda r_0^2 $;
(2) $r_0 $ divides the greatest common divisor of $ |G_\alpha| $, $ v-1 $ and all nontrivial subdegrees of $ G $.
Since $ G $ is point-primitive, the point stabilizer $ G_\alpha $ is a maximal subgroup of $ G $. In this section, we first deal with the case when $ G_\alpha $ is a maximal parabolic subgroup of $ G $.
Lemma 3.3. Assume that $ T = {}^{2}B_{2}(q) $ with $ q = 2^{2n+1} > 2 $. Then $ G_{\alpha} $ cannot be the maximal parabolic subgroup of $ G $.
Proof. If $ G_\alpha $ is a maximal parabolic subgroup of $ G $, we know that $ |G_\alpha| = fq^2(q-1) $ with $ f\mid (2n+1) $ from [19], and hence $ v = q^{2}+1 $. Then, according to (1) and (2) in Lemma 2.1 and the fact $ \lambda \mid r $, we further get $ k-1\mid q^2 $ and $ b = \frac{\lambda q^2(q^2+1)}{k(k-1)} $. Since $ G $ is flag-transitive, Lemma 2.2 implies that $ |G_{B}| = \frac{|G|}{b} = \frac{fk(k-1)(q-1)}{\lambda} $. All maximal subgroups of $ G $ can be read off from [19], and let $ M $ be any one of them with $ G_B\leq M $. The fact that $ |G_{B}| $ divides $ |M| $ implies that $ M $ is the maximal parabolic subgroup of $ G $, and $ k(k-1) $ divides $ \lambda q^{2} $. This forces $ k = \lambda $, for otherwise $ k(k-1)\mid q^2 $, which is a contradiction. It follows that $ G_B $ is primitive on $ B $, and so $ T_B $ is transitive on $ B $. Namely, $ |T_B:T_{\gamma, B}| = k $ for any point $ \gamma\in B $. On the other hand, since $ M $ is parabolic, there exists a point $ \alpha $ such that $ M = G_{\alpha} $. That is to say, $ T_B\leq T_\alpha $ and therefore $ T_{ \gamma, B }\leq T_{ \gamma, \alpha } $ for $ \gamma\in B $. Since the stabilizer of any two points in $ ^{2}B_{2}(q) $ is a cyclic group of order $ q-1 $ by [9, p.187], $ |T_{ \gamma, B }| $ divides $ (q-1) $. Also, $ |T:T_{ \gamma, \alpha }| $ divides $ bk $ by the flag-transitivity of $ G $. It follows that $ (k-1)\mid \lambda $, which holds only when $ \lambda = k = 2 $, for it has been proved that $ k = \lambda $ above. This is impossible as $ \mathcal{D} $ is nontrivial.
Lemma 3.4. Assume that $ T = {}^{2}G_{2}(q) $ with $ q = 3^{2n+1} > 3 $. Then $ G_{\alpha} $ cannot be the maximal parabolic subgroup of $ G $.
Proof. If $ G_\alpha $ is the maximal parabolic subgroup of $ G $, then we know that $ |G_\alpha| = fq^3(q-1) $ with $ f\mid (2n+1) $ from [11], and so $ v = q^{3}+1 $. Similar as to Lemma 3.3, we have
$ b = \frac{\lambda v(v-1)}{k (k -1)} = \frac{\lambda q ^3(q^3+1)}{k(k -1)} $ |
and $ k-1\mid q^3 $. Let $ f_1 $ be a divisor of $ f $ such that $ |G_B:T_B| = f_1 $. Then by the flag-transitivity of $ G $, we get
$ |T_{B}| = \frac{f (q-1)k(k-1)}{f_1\lambda}. $ |
Here, we also consider the maximal subgroups $ M $ of $ {}^{2}G_{2}(q) $ such that $ T_{B}\leq M $. From [11], either $ M $ is parabolic, or $ M \cong \mathbb{Z}_{2}\times PSL_{2}(q) $.
If $ M $ is a parabolic subgroup, then $ k(k-1)\mid\lambda q^3 $. Since $ k-1\mid q^3 $, we have $ k\mid \lambda $ and therefore $ \lambda = k $. It follows that $ \lambda-1\mid q^{3} $ and $ \lambda = 3^{n_1}+1 $, which forces $ \lambda = k = 2 $, for $ \lambda $ is prime. However, now we get $ b = q^3(q^3+1) > \binom{v}{2} $, which is obviously impossible. Hence, in the remaining part of the proof, we assume that $ T_{B}\leq \mathbb{Z}_{2}\times PSL_{2}(q) $.
According to the list of the maximal subgroups of $ PSL_2(q) $ in [4, Tables 8.1 and 8.2], $ T _{B} $ is isomorphic to a subgroup of $ \mathbb{Z}_{2}\times A_{4} $, $ \mathbb{Z}_{2}\times D_{q\pm 1} $, $ \mathbb{Z}_{2}\times ([q]:\mathbb{Z}_{\frac{q-1}{2}}) $ or $ \mathbb{Z}_{2}\times PSL_{2}(q_{0}) $ with $ q_{0}^{\ell} = q = 3^{2n+1} $. Obviously, the former two cases are impossible as $ k-1\mid q^3 $. Then, if $ T _{B}\lesssim \mathbb{Z}_{2}\times([q]:\mathbb{Z}_{\frac{q-1}{2}}) $, we also have $ \lambda = k $, a contradiction again. For the last case, the condition that $ |T_{B}| $ divides $ |\mathbb{Z}_{2}\times PS L_{2}(q_{0})| $ forces $ q_0 = q $, which implies that $ T_{B} $ is isomorphic to $ \mathbb{Z}_{2}\times PS L_{2}(q) $ or $ PSL_{2}(q) $. Then, by $ |T:T_B|\mid b $, we have $ k(k-1)\mid q(q+1)\lambda $. This, together with $ k-1\mid q^2 $, implies that $ k-1\mid q $ when $ \lambda\neq 3 $, and $ k-1\mid 3q $ when $ \lambda = 3 $. Furthermore, the facts that $ q+1 $ is the smallest degree of non-trivial action of $ PSL_2(q) $ since $ q $ is an odd power of 3 and that $ |T_B:T_{ \alpha, B }| $ divides $ k $ imply $ k = q+1 $. Hence, $ |T_B| = \frac{fk(k-1)(q-1)}{f_1\lambda} = \frac{q(q^2-1)}{a} $, with $ a = 1 $ or $ 2 $ when $ T_B $ is $ \mathbb{Z}_{2}\times PSL_{2}(q) $ or $ PSL_{2}(q) $, respectively. It follows that $ \lambda \mid f $ when $ T_{B} $ is $ \mathbb{Z}_{2}\times {PS}L_{2}(q) $, or $ \lambda = 2 $ when $ T_B $ is $ {PS}L_{2}(q) $.
Let $ \mathcal{R} $ be the Ree unital of order $ q $ (which is a 2-$ (q^3+1, q+1, 1) $ design). For the former case, let $ \sigma $ be the central involution of $ \mathbb{Z}_{2}\times PSL_{2}(q) $. It can be deduced from [15] that $ \sigma $ fixes a block $ \ell $ of $ \mathcal{R} $ pointwise and preserves a point-partition $ {\mathcal{S}}_{\sigma} $ of $ {\mathcal{R}}\setminus\ell $ into $ q^2-q $ blocks, each of them invariant by $ \sigma $. Now, $ \mathbb{Z}_{2}\times PSL_{2}(q) $ induces $ PSL_{2}(q) $ on $ {\mathcal{S}}_{\sigma}\cup\{\ell\} $, and $ PSL_{2}(q) $ preserves $ \ell $ acting on this one in its natural 2-transitive action of degree $ q+1 $. Further, $ PSL_{2}(q) $ partitions $ {\mathcal{S}}_{\sigma} $ into two orbits each of length $ \frac{q^2-q}{2} $. Thus, $ \ell $ is the unique $ \mathbb{Z}_{2}\times PSL_{2}(q) $-orbit of points of $ \mathcal{R} $ of length $ q+1 $. Note that $ k = q+1 $, which means $ B = \ell $. This means that $ |B^G| = |\ell^G| = q^2(q^2-q+1) $ by [6], and so $ \lambda = 1 $, which contradicts with $ \lambda $ being prime. For the latter case, the block stabilizer $ T_{\ell} $ for the Ree unital is $ \mathbb{Z}_{2}\times {PS}L_{2}(q) $, and $ \mathbb{Z}_{2} $ fixed all points in $ \ell $. However, since $ \alpha^{T_B}\subseteq\alpha^{T_{{\ell}}} $ and $ |\alpha^{T_B}| = |\alpha^{T_{{\ell}}}| = q+1 $, we have $ \alpha^{T_B} = \alpha^{T_{{\ell}}} $. This means that $ \mathbb{Z}_{2} $ fixed all points in $ B $, and so $ \mathbb{Z}_{2}\in T_B $, an obvious contradiction.
For the remaining possibility of $ T $ in $ \mathcal{T} $, where
$ \mathcal{T} = \{{^{2}F_{4}(q)}, {^{3}D_{4}(q)}, G_{2}(q), F_4(q), E_6^\epsilon(q), E_7(q), E_8(q)\}, $ |
we use the following Lemma from [14] to prove that $ G_\alpha $ cannot be the maximal parabolic subgroup. Note that in the following we denote by $ n_p $ the $ p $-part of $ n $ and $ n_{p'} $ the $ p' $-part of $ n $, i.e., $ n_p = p^t $ where $ p^t\mid n $ but $ p^{t+1}\nmid n $, and $ n_{p'} = n/n_{p} $.
Lemma 3.5. ([14]) Assume that $ T $ is a simple group of Lie type in characteristic $ p $ and acts on the set of cosets of a maximal parabolic subgroup. Then $ T $ has a unique subdegree which is a power of $ p $ except when $ T $ is $ L_d(q) $, $ \Omega^{+}_{2m}(q) $ ($ m $ is odd) or $ E_6(q) $.
Lemma 3.6. If $ T\in \mathcal{T} $, then $ G_{\alpha} $ cannot be a parabolic subgroup of $ G $.
Proof. By Lemma 3.5, for all cases where $ T\in \mathcal{T}\setminus \{E_{6}(q)\} $, there is a unique subdegree which is a power of $ p $. Then, Lemma 3.2 implies that $ r_0 $ divides $ |v-1|_p $. Since we also have $ \lambda $ divides $ |G_\alpha| $, we can easily check that $ r_0 $ is too small to satisfy the condition $ v < \lambda r_0^2 $. Therefore, we assume that $ T = E_{6}(q) $. If $ G $ contains a graph automorphism, or $ G_{\alpha}\cap T $ is $ P_{2} $ or $ P_{4} $, then there is also a unique subdegree that is a power of $ p $. However, $ r_0 $ is too small again. If $ G_{\alpha}\cap T $ is $ P_{3} $ with type $ A_{1}A_{4} $, we have $ \lambda \leq \frac{q^5-1}{q-1} $ by $ \lambda \mid |G_\alpha| $ and
$ v = \frac{(q^{3}+1)(q^{4}+1)(q^{9}-1)(q^{6}+1)(q^{4}+q^{2}+1)}{(q-1)}. $ |
Moreover, from [1, Proposition 6.3], we know that there exist two nontrivial subdegrees: $ q^{13}\frac{q^{5}-1 }{q-1} $ and $ \frac{q(q^5-1)(q^4-1)}{(q-1)^2} $. Lemma 3.2 then implies that $ r $ divides $ \lambda q\frac{q^5-1}{q-1} $. However, the condition $ v < \lambda r_0^{2} $ cannot be satisfied again. If $ G_{\alpha}\cap T $ is $ P_{1} $ with type $ D_{5} $, then
$ v = \frac{(q^{8}+q^{4}+1)(q^{9}-1)}{q-1}, $ |
and there exist two nontrivial subdegrees (see [13]): $ \frac{q(q^{3}+1)(q^{8}-1)}{(q-1)} $ and $ \frac{q^{8}(q^{4}+1)(q^{5}-1)}{(q-1)}. $ It follows that $ r\mid \lambda q(q^{4}+1) $. This, together with $ \lambda \mid |G_\alpha | $, implies that $ r^2 < \lambda^2q^2(q^4+1)^2 < \lambda v $, which is contradictive with Lemma 2.1.
In this section, we assume that $ G_\alpha $ is a non-parabolic maximal subgroup of $ G $.
Lemma 3.7. Assume that $ G $ and $ \mathcal{D} $ satisfy the hypothesis of Theorem 1.1. Then, $ |G| < |G_\alpha|^3 $.
Proof. From Lemma 2.3, we know that $ r $ divides every nontrivial subdegree of $ G $, and so $ r $ divides $ |G_{\alpha}| $. Since $ v < r^2 $ by (3) of Lemma 2.1, it follows that $ |G| < |G_\alpha|^3 $.
Lemma 3.7 implies that $ G_\alpha $ is a large maximal non-parabolic subgroup of $ G $. The type of $ G_\alpha $ can be read from [1, Table 2]. Note that Theorem 1.1(2) just corresponds to the non-parabolic case here, with $ T = G_{2}(q) $ and the type of $ G_{\alpha} $ being $ SL_3^\epsilon(q).2 $.
Lemma 3.8. Assume that $ G $ and $ \mathcal{D} $ satisfy the hypothesis of Theorem 1.1. If $ T = G_{2}(q) $ and the type of $ G_{\alpha} $ is $ SL_3^\epsilon(q).2 $ with $ \epsilon = \pm $, then $ \epsilon = - $, $ T $ is flag-transitive on $ \mathcal{D} $, and the parameters of $ \mathcal{D} $ are $ (v, b, r, k, \lambda) = (\frac{q^3(q^3-1)}{2}, (q+1)(q^6-1), (q+1)(q^3+1), \frac{q^3}{2}, q+1) $, where $ q $ is even, and $ \lambda = q+1 $ is a Fermat prime.
Proof. It is obvious that $ |T_\alpha| = 2q^3(q^2-1)(q^3-\epsilon1) $, and hence $ v = \frac{1}{2}q^{3}(q^{3}+\epsilon1). $ We first deal with the case when $ q $ is even. Since $ G_2(2) $ is not simple ($ G_2(2) \cong PSU_3(3):2 $), we assume that $ q > 2 $. From [17, Section 3, Case 8], we know that $ r $ divides $ \lambda(q^{3}- \epsilon1) $. Then, the equality $ \lambda(v-1) = r(k-1) $ from Lemma 2.1 implies that there exists an odd integer $ t $ dividing $ (q^3-\epsilon1) $ such that
$ k = t\frac{(q^3+\epsilon2)}{2}+1\; \; \; \mathrm{ and }\; \; \; r = \frac{\lambda(q^3-\epsilon1)}{t}. $ |
Obviously, the fact that $ k < r $ implies $ t < \lambda $. Moreover, by Lemma 2.1 we have
$ $
|
(3.1) |
Note also that $ (2k, q^3-\epsilon{1})\mid 3 t +\epsilon2 $, $ (2k, q^3+ {1})\mid t +\epsilon 2 $, $ (k, \frac{q^3}{2})\mid t+\epsilon {1} $, and therefore $ (2k, q^2-1)\mid (t + {\epsilon 2})(3 t + {\epsilon 2}) $. Since $ b $ is an integer, it follows from (3.1) that $ k\mid \lambda \frac{q^3}{2}(q^3-\epsilon1)(q^3+\epsilon1) $. Hence, we have
$ $
|
(3.2) |
Since $ 3t+\epsilon2\leq 5t $, it follows that $ q^3+ {\epsilon2} < 10\lambda (t+\epsilon2)(t+ \epsilon {1}) $ except when $ t = 1 $ and $ \epsilon = - $. When $ t \neq 1 $, the above together with $ t < \lambda $ further implies that $ \lambda $ cannot be a prime divisor of $ |Out(T)| $, and hence $ \lambda $ divides $ |SL_3^\epsilon(q).2| $.
In the following, we prove that $ t = 1 $. Obviously, $ t\neq 2 $, for $ t $ is odd. When $ t\geq 3 $, we have $ \frac{r}{\lambda}\leq \frac{1}{3}(q^{3}-\epsilon1) $ and $ \frac{3t}{2} < \lambda $ by $ t\frac{(q^3+ {\epsilon 2})}{2} < k\leq r\leq \lambda\frac{(q^{3}-\epsilon1)}{3} $. Now, assume that $ \lambda \mid k $. Then $ \lambda $ divides $ (2q^3(q^2-1)(q^3-\epsilon1), 2k) $, and it follows that $ \lambda \mid 4(t+ \epsilon {1})(t+ {\epsilon 2})(3t+ {\epsilon 2})^2 $. Since $ \frac{3}{2}t < \lambda $, we have $ \lambda = 3t+ {\epsilon 2, } $ or $ \epsilon = + $ and $ \lambda = \frac{3t+2}{2} $. If $ \lambda = 3t+2\epsilon $, then $ k < r $ forces $ (t, \lambda, \epsilon) = (5, 17, +) $, $ (5, 13, -) $, $ (3, 11, +) $, $ (3, 7, -) $, or $ (1, 5, +) $. Note that $ k\mid \lambda(t+ {\epsilon 2})(t+ \epsilon {1})(3t + {\epsilon 2}) $, and we check each case and know that it is impossible. If $ \lambda = \frac{3t+2}{2} $, then we get $ (t, \lambda) = (4, 7) $, which can be ruled out similarly. Hence, $ \lambda \nmid k $, and it follows (3.2) that $ t > q $. On the other hand, since $ |T:T_B|\mid b $, there exists an integer $ f_1 $ dividing $ f $ such that $ f_1 |T:T_B| = b $ and
$ |T_B| = \frac{2f_1 q^3(q^2-1)k }{ \lambda t}. $ |
Since $ \lambda \nmid k $ and $ \lambda > t > q\geq2 $, $ \lambda $ is a divisor of $ f_1 $, $ (q-1) $, $ q+1 $, or $ q $, and so $ \lambda \leq q+1 $. Since $ q < t < \frac{2}{3}\lambda $, we get a contradiction. Therefore, $ t = 1 $ as we claim.
Let $ t = 1 $. Then, $ \frac{r}{\lambda} = (q^{3}-\epsilon1) $, and $ k = \frac{(q^3+2\epsilon)}{2}+1 $ with $ q $ even. If $ \epsilon = + $, then $ r = \lambda(q^3-1) $, and $ k = \frac{q^3+4}{2} $. Since $ b $ is an integer, we get that $ q^3+4 $ divides $ \lambda q^3(q^6-1) $. It follows that $ q^3+4\mid 60\lambda $, and so $ \lambda $ divides $ q^3+4 $, which is impossible as $ \lambda $ is a prime divisor of $ 2q^3(q^2-1)(q^3-1) $. We now assume that $ \epsilon = - $. Then, $ k = \frac{q^3}{2} $ and $ b = \lambda (q^6-1) $, and $ r = \lambda (q^3+1) $ for $ q\geq 4 $. Moreover, in this case $ |T_B| = \frac{f_1q^6(q^2-1)}{\lambda} $ and we further find that $ T_B $ is contained in a maximal parabolic subgroup $ M = q^5:GL_2(q) $ of $ G_2(q) $. Since $ G $ is flag-transitive, Lemma 2.2 implies that $ |SU_3(q).2:T_{ {\alpha, B}}| $ divides $ \lambda (q^3+1) $. Using the maximal subgroup list for $ SU_3(q) $ provided in [4, Tables 8.5 and 8.6], we get that $ T_{\alpha, B} $ is isomorphic to a subgroup of $ M_1 = q^3:C_{q^2-1}. 2 $. If $ T_{\alpha, B} = M_1 $ or $ \lambda \nmid q^2-1 $, then $ T_{ {\alpha, B}} $ contains a cyclic group of order $ q^2-1 $, which contradicts $ T_{ {\alpha, B}}\leq T_B\leq q^5:GL_2(q) $. Hence, $ |M_1:T_{ {\alpha, B}}| = \lambda $ divides $ q^2-1 $. This also implies that $ T $ is flag-transitive, and so $ |T:M||M:T_B| = \lambda(q^6-1) $. It follows that $ |M:T_{ B}| = |GL_2(q):T_{ B}\cap GL_2(q)| = \lambda (q-1) $, which gives $ |T_{ B}\cap GL_2(q)| = q\frac{(q^2-1)}{\lambda} $. Then, using the list of maximal subgroups of $ SL(2, q) $ provided in [4, Tables 8.1 and 8.2], we get that $ \lambda \nmid q-1 $, and so $ \lambda\mid q+1 $, which further implies that $ \lambda = q+1 $. This is to say, if such design exists, then the design parameters tuple is $ (v, b, r, k, \lambda) = (\frac{q^3(q^3-1)}{2}, (q+1)(q^6-1), (q+1)(q^3+1), \frac{q^3}{2}, q+1) $, where $ \lambda = q+1 $ is a Fermat prime.
Now, we assume that $ q $ is odd. Then, we conclude that $ r $ divides $ \lambda\frac{(q^{3}-\epsilon1)}{2} $ from [17, Section 4, Case 1, $ i = 1 $]. Let $ rt = \lambda\frac{(q^{3}-\epsilon1)}{2} $. Similar as in the even case, we also have $ t = 1 $. That is to say, $ k = q^3+\epsilon2 +1 $ and $ r = \lambda\frac{(q^{3}-\epsilon1)}{2} $. When $ \epsilon = + $, the fact of $ k $ dividing $ \lambda q^3(q^6-1) $ $ q^3+3 $ implies that $ q^3+3 $ divides $ 24\lambda $, and so $ \lambda $ divides $ q^3+3 $, which is impossible as $ \lambda $ is a prime divisor of $ 2q^3(q^2-1)(q^3-1) $. If $ \epsilon = - $, we have $ k = q^3-1 $, and so $ b = \frac{\lambda q^3(q^3+1)}{4} $. We consider a maximal subgroup $ M $ containing $ T_B $. It is proven later that $ M\cong T_B\cong SL_3(q).2 $ and hence that is unique. The fact that $ |T:M| \mid b $ implies that $ M $ is $ SL_3(q).2 $ by [4,Tables 8.41 and 8.42] and that $ |T:M| = \frac{q^3(q^3+1)}{2} $. It follows that $ 2|M:T_B|\mid \lambda $, which forces $ \lambda = 2 $ and $ M = T_B\cong SL_3(q).2 $. Since $ T_\alpha\cong SU_3(q).2 $ and $ r = q^3+1 $, we have $ T_{ {\alpha, B}}\cong q^3.C_{q^2-1}.2 $ or $ q^3.C_{q^2-1} $. According to the maximal subgroups of $ SL_3(q) $ in [4, Tables 8.3 and 8.4], we know that $ T_{ {\alpha, B}} $ is isomorphic to a subgroup of $ q^2.GL_2(q).2 $, which is impossible.
All other types of $ G_{\alpha} $ in [1, Table 2], except two cases which we will discuss in Lemma 3.10, can be ruled out using the method stated below. First, for each possibility of $ G_\alpha $, the order of $ G_\alpha $ and the value of $ v $ can be determined. We can hence get an upper bound of $ \lambda $ according to $ \lambda \mid |G_\alpha| $. Then, to get an upper bound of $ r_0 $, we consider the divisors of $ |G_\alpha| $ in two parts: $ \prod_{i = 1}^{i_1}\Phi_i $ for which $ \Phi_i $ divides $ v $, and $ \prod_{j = 1}^{i_2}\Psi_j = |G_\alpha| / \prod_{i = 1}^{i_1}\Phi_i $. Obviously, all $ \Phi_i $ are coprime with $ v-1 $. For each $ \Psi_j $, we calculate the remainder $ \bar{\Psi}_j $ of $ \Psi_j $ divided by $ v-1 $. This implies that $ (|G_\alpha|, v-1) $ divides $ |Out(T)|\prod_{j = 1}^{i_2}\bar{\Psi}_j $, which implies that $ r_0\leq |Out(T)|\prod_{j = 1}^{i_2}\bar{\Psi}_j $. Finally, one can check that the values of $ r_0 $ for all these cases are too small to satisfy the condition that $ v < \lambda r_0^2 $. That is, no new designs arise in these cases. To be more explicit, we take $ T = E_{8}(q) $ as an example.
Lemma 3.9. Assume that $ G $ and $ \mathcal{D} $ satisfy the hypothesis of Theorem 1.1. If $ T = E_{8}(q) $ with $ q = p^e $, then $ G_{\alpha} $ cannot be a non-parabolic maximal subgroup of $ G $.
Proof. Let $ T = E_8(q) $. Then, it follows from [1, Table 2] that the type of $ G_\alpha $ is one of the following:
$ \{{A_1(q)E_7(q)},\; D_8(q),\; E_8(q^{\frac{1}{2}}),\; E_8(q^{\frac{1}{3}}),\; A_2^{\epsilon}(q)E_6^{\epsilon}(q)\; \}. $ |
For the case that $ G_\alpha $ is of type $ {A_1(q)E_7(q)} $, we have $ \lambda < q^8 $ since $ \lambda \mid |G_\alpha| $ and $ v = q^{56}(q^6+1)(q^{10}+1)(q^{12}+1)\frac{q^{30}-1}{q^{2}-1} $ by $ v = |G:G_\alpha| $. Obviously, $ q (q^6+1) \mid v $ and $ \frac{q^{30}-1}{q^2-1}\mid v $, which also implies $ \frac{q^{6}-1}{q^2-1}\mid v $ and $ \frac{q^{10}-1}{q^2-1}\mid v $. This means $ (|G_\alpha |, v-1) $ divides $ |Out(T)| (q^2-1)^5(q^8-1)(q^{14}-1)(q^{18}-1) $. Since $ r_0\mid (|G_\alpha |, v-1) $, we have $ r_0 < q^{51} $. However, Lemma 3.2 shows $ q^{112} < v < \lambda r_0^2 < q^{110} $, a contradiction.
For the case that $ G_\alpha $ is of type $ D_8(q) $, we have $ \lambda < q^7 $ and
$ v = q^{64}(q^{12}+q^6+1) (q^{16}+q^8+1) \frac{(q^{10}+1)(q^{30}-1)}{q^4-1}. $ |
Since $ v-1\equiv2(\mathrm{mod}\; q^4+1) $, $ (v-1, q^4+1) = 2 $ or $ 1 $. This, together with $ q\mid v $ and $ \frac{q^{30}-1}{q^2-1}\mid v $, implies that $ (|G_\alpha|, v-1) $ divides $ 4|Out(T)|(q^2-1)^3(q^4-1)^3 (q^{12}-1) (q^{14}-1) $. It follows that $ r_0\leq 4 |Out(T)| q^{44} < 4q^{45} $, and $ q^{128} < v < \lambda r_0^2 < 4q^{97} $, which is a contradiction.
Assume that $ G_\alpha $ is of type $ E_8(q^{\frac{1}{2}}) $. Then, $ \lambda\leq q^{15} $ and $ v = q^{60}(q+1)(q^4+1) (q^6+1)(q^7+1)(q^9+1) (q^{10}+1) (q^{12}+1)(q^{15}+1) $. Since $ q $, $ q^3+1 $, $ q^4+1 $, $ q^5+1 $, and $ q^6+1 $ are divisors of $ v $, we get that $ (|G_\alpha|, v-1) $ divides $ |Out(T)|(q-1)^2 (q^3-1)^2(q^5-1)(q^7-1)(q^9-1) (q^{15}-1) $. It follows that $ r_0 < q^{45} $, and so $ q^{124} < v < \lambda r_0^2 < q^{105} $, a contradiction again.
Assume that $ G_\alpha $ is of type $ A_2^{\epsilon}(q)E_6^{\epsilon}(q) $ or $ E_8(q^{\frac{1}{3}}) $. Then, since $ G_{\alpha} $ is non-parabolic, the Tits lemma in [18, 1.6] implies that $ p $ divides $ v = |G:G_\alpha| $, and so $ (|G_\alpha|, v-1) $ is coprime with $ p $. It follows that $ r_0\leq |G_\alpha|_{p'} $ as $ r_0 $ divides $ (|G_\alpha|, v-1) $. This implies that $ v < \lambda |Out(T)|^2 {|T_\alpha|_{p'}^{2}} $ by Lemma 3.2, which cannot be satisfied when $ G_\alpha $ is of type $ A_2^{\epsilon}(q)E_6^{\epsilon}(q) $ or $ E_8(q^{\frac{1}{3}}) $.
Lemma 3.10. Assume that $ G $ and $ \mathcal{D} $ satisfy the hypothesis of Theorem 1.1. Then the type of $ G_\alpha $ cannot be either $ (q-\epsilon1)D_5^{\epsilon}(q) $ when $ T = E_{6}^\epsilon(q) $ or $ (q-\epsilon1)E_6^{\epsilon}(q) $ when $ T = E_{7}(q) $.
Proof. Assume that $ T $ is $ E_{6}^\epsilon(q) $ and $ G_\alpha $ is of type $ (q-\epsilon1)D_5^{\epsilon}(q) $. Then, $ \lambda < 2q^4 $ as $ \lambda $ divides $ |G_\alpha| $ and $ v = \frac{q^{16}(q^9-\epsilon1)(q^{12}-1)}{(3, q-1)(q-\epsilon1)(q^4-1)} $. In addition, we know from [1, Theorem 4.1] that there exist two subdegrees: $ q^{8}(q^5-\epsilon)(q^4+1) $ and $ q^{10}(q^3+\epsilon)(q^8-1) $. Since $ r_0 $ divides the greatest common divisors of every non-trivial subdegree and $ v-1 $ (Lemma 2.3), we have $ (r_0, p) = 1 $, and so $ r_0\mid 2(q-\epsilon1)(q^4+1) $, which implies that $ r_0 $ is too small to satisfy $ v < \lambda r_0^2 $ again.
If $ T $ is $ E_7(q) $ and $ G_\alpha $ is of type $ (q-\epsilon1)E_6^{\epsilon}(q) $, we have $ \lambda \leq 2q^6 $ and $ v = q^{27}(q^5+\epsilon1) (q^9+\epsilon1) \frac{(q^{14}-1)}{q-\epsilon1} $. [1, Theorem 4.1] shows that there exist two subdegrees, which divide $ q^{12}(q^5-\epsilon)(q^9-\epsilon) $ and$ (4, q^m-1\epsilon)q^{16}(q^5-\epsilon)(\frac{q^{12}-1}{q^4-1}) $, respectively. However, by Lemma 2.3 we know that $ r_0 $ is too small again.
Proof of Theorem 1.1. It follows immediately from Lemmas 3.1–3.10.
In this paper, we figure out all possible parameters of 2-$ (v, k, \lambda) $ designs $ \mathcal{D} $ (with $ \lambda $ prime) that admit flag-transitive point-primitive automorphism groups with an exceptional Lie type socle. Our work contributes to the classification of flag-transitive 2-$ (v, k, \lambda) $ designs. In addition, the cases that the automorphism groups of such designs with classical socle will be the main focus in our future work.
Y. Zhang: Data curation, writing-review and editing; J. Shen: Writing-original draft. All authors have read and agreed to the published version of the manuscript.
The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.
The authors would like to thank the anonymous referees for corrections and valuable comments that led to the improvement of this paper.
This work is financially supported by the National Natural Science Foundation of China (Grant number: 12301020 and 12201469) and the Science and Technology Projects in Guangzhou (Grant number: 2023A04J0027).
The authors declare no conflict of interest.
[1] | Pinotsis DA, Friston KJ. (2014). Neural fields, neural masses and Bayesian modelling. In Neural Fields: Theory and Applications. S. Coombes, P. beimGraben, R. Potthast, J. Wright (Eds. ). Berlin: Springer-Verlag. |
[2] | Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K. (2008) The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields. PLoS Comput Biol 4(8): e1000092. doi:10. 1371/journal. pcbi. 1000092. |
[3] | Jirsa VK. (2004). Connectivity and dynamics of neural information processing. Neuroinformatics2: 183-204. |
[4] | Coombes S, Venkov NA, Shiau L, Bojak I, Liley DTJ, Laing CR. (2007) Modeling electrocortical activity through improved local approximations of integral neural field equations. Phys Rev E76(5 Pt 1): 051901. |
[5] | Robinson PA, Loxley PN, O'Connor SC, Rennie CJ. (2001) Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. Phys Rev E 63(4 Pt 1):041909. |
[6] | Breakspear M, Roberts JA, Terry JR, Rodrigues S, Mahant N, Robinson PA. (2006) A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb Cortex 16: 1296-1313. |
[7] |
Rodrigues S, Barton D, Szalai R, Benjamin O, Richardson MP, Terry JR. (2009) Transitions to spike-wave oscillations and epileptic dynamics in a human cortico-thalamic mean-field model. J comput neurosci 27: 507-526. doi: 10.1007/s10827-009-0166-2
![]() |
[8] |
Pinotsis DA, Hansen E, Friston KJ, Jirsa VK. (2013) Anatomical connectivity and the resting state activity of large cortical networks. NeuroImage 65: 127-138. doi: 10.1016/j.neuroimage.2012.10.016
![]() |
[9] |
Pinotsis DA, Schwarzkopf DS, Litvak V, Rees G, Barnes G, Friston KJ. (2013) Dynamic causal modelling of lateral interactions in the visual cortex. NeuroImage 66: 563-576. doi: 10.1016/j.neuroimage.2012.10.078
![]() |
[10] | Pinotsis DA, Brunet N, Bastos A, Bosman CA, Litvak V, Fries P, Friston KJ. (2014) Contrast gain-control and horizontal interactions in V1: A DCM study. NeuroImage 92C: 143-155 |
[11] | Riera JJ, Jimenez JC, Wan X, Kawashima R, Ozaki T. (2007) Nonlinear local electrovascular coupling. II: From data to neuronal masses. Hum brain mapp 28: 335-354. |
[12] | Schiff S, Sauer T. (2008) Kalman filter control of a model of spatiotemporal cortical dynamics. BMC Neurosci 5(1): 1-8. |
[13] |
Angelucci A, Bressloff PC. (2006) Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 Neurons. Prog Brain Res 154: 93-120. doi: 10.1016/S0079-6123(06)54005-1
![]() |
[14] | Burkhalter A, Bernardo KL. (1989) Organization of corticocortical connections in human visual cortex. Proc Natl Acad Sci USA 86(3): 1071-5. |
[15] | Wallace MN, Bajwa S. ( 1991) Patchy intrinsic connections of the ferret primary auditory cortex. Neuroreport 2(8): 417-20. |
[16] |
Stettler DD, Das A, Bennett J, Gilbert CD. (2002) Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36: 739-750. doi: 10.1016/S0896-6273(02)01029-2
![]() |
[17] |
Baker TI, Cowan JD. (2009) Spontaneous pattern formation and pinning in the primary visual cortex. J Physio Paris 103: 52-68. doi: 10.1016/j.jphysparis.2009.05.011
![]() |
[18] | Wen Q, Chklovskii DB. (2008) A cost–benefit analysis of neuronal morphology. J neurophysiol99: 2320-2328. |
[19] | Cherniak C. (1994) Component placement optimization in the brain. J neurosci 14: 2418-2427. |
[20] | Bassett DS, Greenfield DL, Meyer-Lindenberg A, Weinberger DR, Moore SW, Bullmore ET. (2010) Efficient physical embedding of topologically complex information processing networks in brains and computer circuits. PLoS comput biol 6(4): e1000748. doi:10. 1371/journal. pcbi. 1000748 |
[21] |
Grindrod P, Pinotsis DA. (2011) On the spectra of certain integro-differential-delay problems with applications in neurodynamics. Physica D 240: 13-20. doi: 10.1016/j.physd.2010.08.002
![]() |
[22] |
Pinotsis DA, Friston KJ. (2011) Neural fields, spectral responses and lateral connections. Neuroimage 55: 39-48. doi: 10.1016/j.neuroimage.2010.11.081
![]() |
[23] | Sceniak MP, Hawken MJ, Shapley R. (2001). Visual spatial characterization of macaque V1 neurons. J Neurophysiol 85: 1873-1887. |
[24] |
Sceniak MP, Chatterjee S, Callaway EM. (2006) Visual spatial summation in macaque geniculocortical afferents. J Neurophysiol 96: 3474-3484. doi: 10.1152/jn.00734.2006
![]() |
[25] |
Sceniak MP, Ringach DL, Hawken MJ, Shapley R. (1999) Contrast's effect on spatial summation by macaque V1 neurons. Nat neurosci 2: 733-739. doi: 10.1038/11197
![]() |
[26] |
Kapadia MK, Westheimer G, Gilbert CD. (1999) Dynamics of spatial summation in primary visual cortex of alert monkeys. Proc Natl Acad Sci USA 96: 12073-12078. doi: 10.1073/pnas.96.21.12073
![]() |
[27] | Ray S, Maunsell JH. (2010) Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron 67(5): 885-896. |
[28] | Hodgkin AL, Huxley AF. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J physiol 117(4): 500-544. |
[29] | Traub RD, Kopell N, Bibbig A, Buhl EH, LeBeau FE, Whittington MA. (2001) Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J Neurosci 21: 9478-9486. |
[30] |
Moran RJ, Stephan KE, Kiebel SJ, Rombach N, O'Connor WT, Murphy KJ, Reilly RB, Friston KJ. (2008) Bayesian estimation of synaptic physiology from the spectral responses of neural masses. Neuroimage 42: 272-84. doi: 10.1016/j.neuroimage.2008.01.025
![]() |
[31] |
Moran RJ, Stephan KE, Dolan RJ, Friston KJ. (2011) Consistent spectral predictors for dynamic causal models of steady-state responses. Neuroimage 55: 1694-1708. doi: 10.1016/j.neuroimage.2011.01.012
![]() |
[32] |
Goldstein SS, Rall W. (1974) Changes of action potential shape and velocity for changing core conductor geometry. Biophys J 14: 731-757. doi: 10.1016/S0006-3495(74)85947-3
![]() |
[33] |
Ellias SA, Grossberg S. (1975) Pattern formation, contrast control, and oscillations in the short term memory of shunting on-center off-surround networks. Biol Cybern 20: 69-98. doi: 10.1007/BF00327046
![]() |
[34] | Somers DC, Nelson SB, Sur M. (1995) An emergent model of orientation selectivity in cat visual cortical simple cells. J neurosci 15: 5448-5465. |
[35] |
Ermentrout B. (1998) Neural networks as spatio-temporal pattern-forming systems. Rep progin phys 61: 353. doi: 10.1088/0034-4885/61/4/002
![]() |
[36] |
Jansen BH, Rit VG. (1995) Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern 73: 357-66. doi: 10.1007/BF00199471
![]() |
[37] | Pinotsis D, Leite M, Friston K. (2013) On conductance-based neural field models. Front. Comput. Neurosci 7: 158. doi: 10. 3389/fncom. 2013. 00158. |
[38] |
Pinotsis DA, Moran RJ, Friston KJ. (2012) Dynamic causal modeling with neural fields. Neuroimage 59: 1261-1274. doi: 10.1016/j.neuroimage.2011.08.020
![]() |
[39] | Faulkner HJ, Traub RD, Whittington MA. (2009) Disruption of synchronous gamma oscillations in the rat hippocampal slice: A common mechanism of anaesthetic drug action. Brit pharmacol125: 483-492. |
[40] |
Moran RJ, Jung F, Kumagai T, Endepols H, Graf R, Dolan RJ, Friston KJ, Stephan KE, Tittgemeyer M. (2011) Dynamic causal models and physiological inference: a validation study using isoflurane anaesthesia in rodents. PloS one 6: e22790. doi: 10.1371/journal.pone.0022790
![]() |
[41] |
Pinotsis DA, Moran RJ, Friston KJ. (2012) Dynamic causal modeling with neural fields. NeuroImage 59: 1261-1274. doi: 10.1016/j.neuroimage.2011.08.020
![]() |
[42] |
Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. (2012) Canonical microcircuits for predictive coding. Neuron 76: 695-711. doi: 10.1016/j.neuron.2012.10.038
![]() |
[43] |
Buffalo EA, Fries P, Landman R, Buschman TJ, Desimone R. (2011) Laminar differences in gamma and alpha coherence in the ventral stream. Proc Natl Acad Sci USA 108: 11262. doi: 10.1073/pnas.1011284108
![]() |
[44] |
Haider B, Duque A, Hasenstaub AR, McCormick DA. (2006) Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J neurosci 26:4535-4545. doi: 10.1523/JNEUROSCI.5297-05.2006
![]() |
[45] |
Jansen BH, Rit VG. (1995) Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern 73:357-66. doi: 10.1007/BF00199471
![]() |
[46] |
Friston K, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W. (2007). Variational free energy and the Laplace approximation. Neuroimage 34: 220-234. doi: 10.1016/j.neuroimage.2006.08.035
![]() |
[47] |
Wilson HR, Cowan JD. (1973) Mathematical Theory of Functional Dynamics of Cortical and Thalamic Nervous-Tissue. Kybernetik 13: 55-80. doi: 10.1007/BF00288786
![]() |
[48] | Pelinovsky DE, Yakhno VG. (1996) Generation of collective-activity structures in a homogeneous neuron-like medium. I. Bifurcation analysis of static structures. Int J Bifurcat Chaos 6: 81-88. |
[49] |
Pinto DJ, Brumberg JC, Simons DJ, Ermentrout GB. (1996) A quantitative population model of whisker barrels: re-examining the Wilson-Cowan equations. J Comput Neurosci 3: 247-64. doi: 10.1007/BF00161134
![]() |
[50] |
Robinson PA, Rennie CJ, Rowe DL, O'Connor SC, Gordon E. (2005) Multiscale brain modelling. Philos T Roy Soc B 360: 1043-1050. doi: 10.1098/rstb.2005.1638
![]() |
[51] |
Coombes S. (2005) Waves, bumps, and patterns in neural field theories. Biol Cybern 93: 91-108. doi: 10.1007/s00422-005-0574-y
![]() |
[52] |
Valdes PA, Jimenez JC, Riera J, Biscay R, Ozaki T. (1999) Nonlinear EEG analysis based on a neural mass model. Biol cybern 81: 415-424. doi: 10.1007/s004220050572
![]() |
[53] | Robinson PA, Loxley PN, O'Connor SC, Rennie CJ. (2001) Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. Phys Rev E 63(4 Pt 1):041909 |
[54] |
Kopell N, Ermentrout GB, Whittington MA, Traub RD. (2000) Gamma rhythms and beta rhythms have different synchronization properties. Proc Natl Acad Sci USA 97: 1867-72. doi: 10.1073/pnas.97.4.1867
![]() |
[55] |
Jia X, Xing D, Kohn A. (2013) No consistent relationship between gamma power and peak frequency in macaque primary visual cortex. J Neurosci 33: 17-25. doi: 10.1523/JNEUROSCI.1687-12.2013
![]() |
[56] | Chambers JD, Bethwaite B, Diamond NT, Peachey T, Abramson D, Petrou S, Thomas EA. (2012) Parametric computation predicts a multiplicative interaction between synaptic strength parameters that control gamma oscillations. Front Comput Neurosci 6:53 doi:10. 3389/fncom. 2012. 00053. |
[57] |
Schwarzkopf DS, Robertson DJ, Song C, Barnes GR, Rees G. (2012) The Frequency of Visually Induced Gamma-Band Oscillations Depends on the Size of Early Human Visual Cortex. J Neurosci 32: 1507-1512. doi: 10.1523/JNEUROSCI.4771-11.2012
![]() |
[58] |
Schwarzkopf DS, Robertson DJ, Song C, Barnes GR, Rees G. (2012) The Frequency of Visually Induced Gamma-Band Oscillations Depends on the Size of Early Human Visual Cortex. J Neurosci 32: 1507-1512. doi: 10.1523/JNEUROSCI.4771-11.2012
![]() |
[59] |
Muthukumaraswamy SD, Edden RA. , Jones DK, Swettenham JB, Singh KD. (2009) Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc Natl Acad Sci 106: 8356-8361. doi: 10.1073/pnas.0900728106
![]() |
[60] |
Pinotsis DA, Friston KJ. (2011) Neural fields, spectral responses and lateral connections. Neuroimage 55: 39-48. doi: 10.1016/j.neuroimage.2010.11.081
![]() |
[61] | Gaetz W, Roberts TP. , Singh KD, Muthukumaraswamy SD. (2011) Functional and structural correlates of the aging brain: Relating visual cortex (V1) gamma band responses to age ‐related structural change. Hum Brain Mapp 33(9): 2035-46. |
[62] |
Muthukumaraswamy SD, Edden RA. , Jones DK, Swettenham JB, Singh KD. (2009) Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc Natl Acad Sci 106: 8356-8361. doi: 10.1073/pnas.0900728106
![]() |
[63] | Rubehn B, Bosman C, Oostenveld R, Fries P, Stieglitz T: A MEMS-based flexible multichannel ECoG-electrode array. J. Neural Eng 6 036003 doi:10. 1088/1741-2560/6/3/036003. |
[64] | Bosman CA, Schoffelen J-M, Brunet N, Oostenveld R, Bastos AM, Womelsdorf T, Rubehn B, Stieglitz T, De Weerd P, Fries P. (2009) Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron 75: 875-888. |
[65] | Feldman H, Friston KJ. (2010) Attention, uncertainty, and free-energy. Front Hum Neurosci 4:215. doi: 10. 3389/fnhum. 2010. 00215. |
[66] |
Kang K, Shelley M, Henrie JA, Shapley R. (2010) LFP spectral peaks in V1 cortex: network resonance and cortico-cortical feedback. J computat neurosci 29: 495-507. doi: 10.1007/s10827-009-0190-2
![]() |
[67] | Brunel N, Wang X-J. (2003) What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90: 415-430. |
[68] |
Traub RD, Jefferys JG, Whittington MA. (1997) Simulation of gamma rhythms in networks of interneurons and pyramidal cells. J comput neurosci 4: 141-150. doi: 10.1023/A:1008839312043
![]() |
[69] |
Schwarzkopf DS, Song C, Rees G. (2011) Linking perceptual experience with the functional architecture of the visual cortex. J Vis 11: 844-844. doi: 10.1167/11.11.844
![]() |
[70] |
Harvey BM, Dumoulin SO. (2011) The Relationship between Cortical Magnification Factor and Population Receptive Field Size in Human Visual Cortex: Constancies in Cortical Architecture. J Neurosci 31: 13604-13612. doi: 10.1523/JNEUROSCI.2572-11.2011
![]() |
1. | Dingmi Sun, Yimin Chen, Hao Li, Intelligent Vehicle Computation Offloading in Vehicular Ad Hoc Networks: A Multi-Agent LSTM Approach with Deep Reinforcement Learning, 2024, 12, 2227-7390, 424, 10.3390/math12030424 |