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Abstract: This paper shows how gamma oscillations can be combined with neural population 
models and dynamic causal modeling (DCM) to distinguish among alternative hypotheses regarding 
cortical excitability and microstructure. This approach exploits inter-subject variability and 
trial-specific effects associated with modulations in the peak frequency of gamma oscillations. 
Neural field models are used to evaluate model evidence and obtain parameter estimates using 
invasive and non-invasive gamma recordings. Our overview comprises two parts: in the first part, we 
use neural fields to simulate neural activity and distinguish the effects of post synaptic filtering on 
predicted responses in terms of synaptic rate constants that correspond to different timescales and 
distinct neurotransmitters. We focus on model predictions of conductance and convolution based 
field models and show that these can yield spectral responses that are sensitive to biophysical 
properties of local cortical circuits like synaptic kinetics and filtering; we also consider two different 
mechanisms for this filtering: a nonlinear mechanism involving specific conductances and a linear 
convolution of afferent firing rates producing post synaptic potentials. In the second part of this paper, 
we use neural fields quantitatively—to fit empirical data recorded during visual stimulation. We 
present two studies of spectral responses obtained from the visual cortex during visual perception 
experiments: in the first study, MEG data were acquired during a task designed to show how activity 
in the gamma band is related to visual perception, while in the second study, we exploited high 
density electrocorticographic (ECoG) data to study the effect of varying stimulus contrast on cortical 
excitability and gamma peak frequency.  
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1. Introduction  

This paper shows how recordings of gamma oscillations—under different experimental 
conditions or from different subjects—can be combined with a class of population models called 
neural fields and dynamic causal modeling (DCM) to distinguish among alternative hypotheses 
regarding cortical structure and function. This approach exploits inter-subject variability and 
trial-specific effects associated with modulations in the peak frequency of gamma oscillations. It 
draws on the computational power of Bayesian model inversion, when applied to neural field models 
of cortical dynamics. Bayesian model comparison allows one to adjudicate among different 
mechanistic hypotheses about cortical excitability, synaptic kinetics and the cardinal topographic 
features of local cortical circuits. It also provides optimal parameter estimates that quantify 
neuromodulation and the spatial dispersion of axonal connections or summation of receptive fields in 
the visual cortex. 

This paper provides an overview of a family of neural field models that have been recently 
implemented using the DCM toolbox of the academic freeware Statistical Parametric 
Mapping (SPM). The SPM software is a popular platform for analyzing neuroimaging data, used by 
several neuroscience communities worldwide. DCM allows for a formal (Bayesian) statistical 
analysis of cortical network connectivity, based upon realistic biophysical models of brain responses. 
It is this particular feature of DCM—the unique combination of generative models with optimization 
techniques based upon (variational) Bayesian principles—that furnishes a novel way to 
characterize functional brain architectures. In particular, it provides answers to questions about how 
the brain is wired and how it responds to different experimental manipulations. The role of neural 
fields in this general framework has been discussed elsewhere, see [1]. Neural fields have a long and 
illustrious history in mathematical neuroscience, see e.g. [2] for a review. These models include 
horizontal intrinsic connections within layers or laminae of the cortical sheet and prescribe the time 
evolution of cell activity—such as mean depolarization or (average) action potential density.  

Our overview comprises two parts: in the first part, we use neural fields to simulate neural 
activity and distinguish the effects of post synaptic filtering on predicted responses in terms of 
synaptic rate constants that correspond to different timescales and distinct neurotransmitters. This 
application of neural fields follows the tradition of many studies, in which neural fields (and mean 
field models in general) have been used to explain cortical activity based on qualitative changes of 
models activity induced by changes in model parameters, like synaptic efficacy and connection 
strengths, see e.g.[3–8] . We will focus on the links between beta and gamma oscillations – mediated 
by the lateral propagation of neuronal spiking activity—using a field model that incorporates 
canonical cortical microcircuitry, where each population or layer has a receptor complement based 
on findings in cellular neuroscience. 

In the second part of this paper, we follow a different route, and use neural fields 
quantitatively—that is to fit empirical data recorded during visual stimulation, see e.g. [9–12]. We 
focus on neuromodulatory effects and discuss particular applications of DCMs with neural fields to 
explain invasive and non-invasive data. We present two studies of spectral responses obtained from 
the visual cortex during visual perception experiments: in the first study, MEG data were acquired 
during a task designed to show how activity in the gamma band is related to visual perception. This 
experiment tried to determine the spectral properties of an individual's gamma response, and how 
this relates to underlying visual cortex microcircuitry. In the second study, we exploited high 
density—spatially resolved—data from multi-electrode electrocorticographic (ECoG) arrays to study 
the effect of varying stimulus contrast on cortical excitability and gamma peak frequency. These data 
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were acquired at the Ernst Strüngmann Institute for Neuroscience, in collaboration with the Max 
Planck Society in Frankfurt.  

2. Gamma oscillations and lateral connections in the primary visual cortex 

Below, we first discuss the anatomy of the visual cortex in relation to gamma oscillations and 
the synaptic kinetics of underlying neuronal sources. We then turn to simulations of neural field 
models that can yield predictions of observed gamma activity. 

2.1. V1 receptive fields depend upon the anatomy of the visual cortex and stimulus contrast 

The functional specialization of visual (and auditory) cortex is reflected in its patchy or modular 
organization—in which local cortical structures share common response properties. This 
organization may be mediated by a patchy distribution of horizontal intrinsic connections that can 
extend up to 8 mm, linking neurons with similar receptive fields: see e.g. [13–15]. The existence of 
patchy connections in different cortical areas (and species) has been established with tracer studies in 
man, macaque and cat: [14], [16] and [15] respectively. It has been shown that such connections can 
have profound implications for neural field dynamics: see [17]. The precise form of such connections 
may be explained by self-organization under functional and structural constraints; for example, 
minimizing the length of myelinated axons to offset the cost of transmitting action potentials [18,19]. 
Generic constraints of this sort have been used to motivate general principles of connectivity; namely, 
that evolut ion attempts to optimize a trade-off between metabolic cost and topological  
complexity [20]. In short, sensory cortices can be characterized by a patchy organization that is  
conserved over the cortex and which allows for both convergence and divergence of cortical 
connections. Given the conservation of this horizontal connectivity, synaptic densities can be 
approximated by isotropic distributions with an exponential decay over the cortical surface. These 
can be combined to form patchy distributions, using connectivity kernels with non-central peaks to 
model sparse intrinsic connections in cortical circuits that mediate horizontal interactions [21]. In this 
case, neurons are assumed to receive signals both from their immediate neighbors and remote 
populations that share the same functional selectivity [22]. We will see below that using such 
connectivity configurations, dynamic causal modelling of non-invasive MEG data can identify the 
parameters of lateral interactions within a bounded cortical patch or manifold in the primary visual 
cortex V1. 

Lateral connections in V1 mediate the receptive fields of local populations, whose form is 
usually assumed to comprise an excitatory centre and an inhibitory surround. The particular 
configuration of these fields has been shown to be contrast-sensitive, see [23,24]. Also in [25], the 
authors recorded single units in V1 when monkeys fixated a point on the screen and were shown 
patches of drifting gratings at various contrasts and sizes. Using a difference of Gaussians model—to 
fit the spatial extent of contributions of the excitatory centre and inhibitory surround—they showed 
that at higher contrasts, the excitatory centre of receptive fields in V1 had a smaller stimulus 
summation field. The authors found that—at lower contrasts—V1 receptive fields were 2.3 times 
larger than at higher contrasts. These results suggest that receptive fields are not invariant to stimulus 
properties. Similarly, [26] recorded from superficial cells in monkey V1 while they presented 
oriented bars of varying lengths. They found that V1 receptive fields were on average about 4 times 
larger at low contrast compared to high contrast, when they were presented in isolation; and about 
twice as large when they were presented in the context of a textured background. The authors 
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conclude that the excitatory-inhibitory balance between the classical and non-classical receptive field 
is not static but can be modulated by stimulus context. At high contrast, neurons are strongly 
inhibited when a stimulus falls outside the classical receptive field and encroaches on the 
non-classical receptive field. At lower contrast, V1 receptive fields have enhanced spatial summation, 
indicating that inhibition relative to excitation may be reduced. 

It is also known that gamma band oscillations (30–100 Hz) in V1 are sensitive to stimulus 
properties like contrast and stimulus size [27]. Crucially, with increasing contrast, gamma 
oscillations increase in peak frequency. In summary, experimental studies show that gamma peak 
frequency, stimulus contrast and the excitatory-inhibitory balance between the classical and 
non-classical receptive field are intimately related. Below, we will address these relationships using 
Bayesian model comparison of dynamic causal models that embody different hypotheses about 
contrast-specific changes in the connectivity architectures that underlie receptive fields and induced 
responses. 

2.2. Neural fields predict visually induced oscillations 

Neural fields are based on partial differential equations that embody two operations: the first 
pertains to a description of propagating afferent input—often in the form of a wave equation. The 
second transforms the input to postsynaptic depolarization and may come in two flavors: one is 
based upon convolution operators, while the second entails nonlinear equations, in which changes in 
postsynaptic potential involve the product of synaptic conductances and potential differences 
associated with different channel types. In the first (convolution) case, postsynaptic depolarization is 
modeled as a (generally linear) convolution of presynaptic spiking input that can be formulated in 
terms of linear differential equations. In the second (conductance) case, the equations of motion for 
neuronal states are necessarily nonlinear and second-order (with respect to hidden neuronal states), in 
accord with electromagnetic laws and are reminiscent of single cell conductance models [28].  

Gamma and beta band and oscillations have been found to depend on neuronal interactions 
mediated by both gap junctions and synaptic transmission [29]. In the case of convolution models, 
these effects are modeled collectively by intrinsic connectivity constants. In the context of DCM, 
these quantities have been shown to accurately reflect neurotransmitter density and synaptic efficacy 
[30]. In [31] a third ligand-gated ion channel was included to model conductances controlled by the 
NMDA receptor. This is a nice example of a more biologically realistic description of neuronal 
interactions that considers neurotransmitter and other conductance-specific mechanisms. This 
biological realism entails the use of conductance based models at the cost of increased computational 
demands, in relation to the convolution models.  

Here, we consider both classes of neural fields described above in a unified setting. These 
models describe spatially extended sources occupying bounded manifolds (patches) in different 
layers that lie beneath the cortical surface. The dynamics of cortical sources conform to 
integrodifferential equations, such as the Wilson-Cowan or Amari equations, where coupling is 
parameterised by matrix-valued coupling kernels—namely, smooth (analytic) connectivity matrices 
that also depend on time and space. Neural field models can be written in the following general form: 
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where interactions among populations — within and across macrocolumns — are described by the 
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connectivity kernel ( )K x (we will see examples of this kernel later). We also use θ  to denote the 
parameters of the model. 

Here, 1( , ) [ ( , ), , ( , )]T n
nV x t v x t v x t= ∈K ¡ is an 1n×  vector of hidden neuronal states in each 

layer in Equation (1); both this vector and the input ( , ) nU x t ∈¡  are explicit functions of both space 
and time. ( , ) nM x t ∈¡  is an 1n×  vector of presynaptic firing rates, : n nF →¡ ¡  is a nonlinear 
mapping from postsynaptic depolarization to presynaptic firing rates at each point on the cortical 
manifold and G is a column vector.  

The function h in Equation (1) may involve synaptic conductances (nonlinear filtering) or 
describe a linear convolution of afferent firing rate ( , )M x t . This firing rate obeys the 
integrodifferential equation (second equality in Equation 1) and results from convolving afferent 
firing rate in space and time, while considering local conduction delays (parameterized by υ —the 
inverse speed at which spikes propagate along connections). We now consider the alternative forms 
of models denoted by the function h (see Figures 1 and 2): 

 

Figure 1. A conductance-based neural field model. This schematic summarizes the 

equations of motion or state equations that specify a conductance based neural field 
model of a single source. This model contains three populations, each associated 

with a specific cortical layer. These equations describe changes in expected neuronal 
states (e.g., voltage or depolarization) that subtend observed local field potentials or 

EEG signals. These changes occur as a result of propagating presynaptic input 
through synaptic dynamics. Mean firing rates within each layer are then 

transformed through a nonlinear (sigmoid) voltage-firing rate function to provide 
(presynaptic) inputs to other populations. These inputs are weighted by connection 

strengths and are gated by the states of synaptic ion channels. 
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When ( , , , , )kh h V U M g θ= depends on synaptic conductances ( , )kg x t  modeling distinct 
membrane channel types, the resulting neural field model described by Equation (1) is formally 
related to conductance models that consider the geometry and topography of neuronal  
interactions [32–35]. In this case, the populations comprising the local cortical network described by 
Equation 1 can be viewed as a set of coupled RC circuits, where channels open in proportion to 
presynaptic input and close in proportion to the number already open (see Figure 1). Changes in 
conductance produce changes in depolarization in proportion to the potential difference between 
transmembrane potential and a reversal potential kv  that depends upon the channel type. Open 
channels result in hyperpolarizing or depolarizing currents depending on whether the transmembrane 
potential is above or below the reversal potential. These currents are supplemented with exogenous 
current to produce changes in the transmembrane potential (scaled by the membrane capacitance C). 

For a Jansen and Rit cortical source [36],the neuronal states at a location x on a cortical patch 
evolve according to the system of differential equations in Figure 1 [37], where we have assumed 
that the density distributions of axonal arbors decay in a simple exponential manner and the 
parameters ijα  and ijc  encode the strength (analogous to the total number of synaptic connections) 
and extent (spatial precision) of intrinsic connections between the cortical layers. Also, the rate 
constants kλ  characterize the response of each channel type to afferent input. The parameters of 
this model are provided in Table 1. 

Table 1. Parameters of conductance-based neural field model. 

Parameter Physiological interpretation Value 

Lg  Leakage conductance 1 (mV) 

13 23 31 12 32, , , ,α α α α α  Amplitude of intrinsic connectivity 
kernels 

(1/10,1,1/2,1/10,1)*3/10 
 

ijc  Intrinsic connectivity decay constant 1 (mm-1) 

, ,L E Iv v v  Reversal potential -70,60,-90 (mV) 

Rv  Threshold potential -40 (mV) 

C  Membrane capacitance 8 (pFnS-1) 

S Conduction speed .3 m/s 

,λ λ%  Postsynaptic rate constants  1/4, 1/16 (ms-1) 

l  Radius of cortical patch 7 (mm) 
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Figure 2. A convolution based on neuronal field model. This schematic summarizes 

the equations of motion or state equations that specify a convolution neural mass 
model using the format of Figure 1. Here the differential equations effectively 

mediate a linear convolution of presynaptic activity to produce postsynaptic 
depolarization. Average firing rates within each sub-population are then 
transformed through a nonlinear (sigmoid) voltage-firing rate function ( )σ ⋅  to 

provide inputs to other populations. These inputs are weighted by connection 

strengths. 

Alternatively, one can assume that the function h does not depend on synaptic conductances, 
that is ( , , , )h h V U M θ= . In this case, h prescribes a linear convolution of presynaptic activity to 
produce postsynaptic depolarization (see Figure 2). Firing rates within each sub-population are then 
transformed through the nonlinear voltage-f ring rate function to provide inputs to other populations. 
These inputs are weighted by connection strengths. For the case that h is given by an alpha kernel, 
the analogous equations to those in Figure 1 for the case of convolution models are shown in 
Figure 2, see also [38]. We used the same parameters for both models: see Table 1; where additional 
parameters for the convolution based model are provided in Table 2 below. 
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Table 2. Parameters of convolution-based neural field model. 

(Other parameters as in Table 1) 

Parameter Physiological interpretation Prior mean 

,E IH H  Maximum postsynaptic depolarisations 8 (mV) 

13 23 31 12 32, , , ,α α α α α  Amplitude of intrinsic connectivity kernels (1/2, 1, 1/2,1,1)*3/10 

The crucial difference between conductance and convolution models is that in conductance 
models, the parameters characterize the response of each population to distinct excitatory and 
inhibitory inputs: in other words, there is a set of synaptic rate constants (each corresponding to a 
distinct channel) associated with each population. The corresponding dynamics are defined over 
timescales that result from the parameters used and rest on the nonlinear interaction between 
membrane potential and conductance. These timescales are crucial in pharmacological manipulations 
that selectively affect one sort of current in a receptor specific fashion. This means that 
conductance-based models allow one to perform a detailed study of synaptic function at the level of 
specific neurotransmitter systems [39,40]. In contrast, in convolution models, passive membrane 
dynamics and dendritic effects are summarized by lumped parameters that model the rate that 
depolarization increases to a maximum and synaptic efficacy (or maximum postsynaptic potential) 
respectively. However, this sort of description neglects the timescales of synaptic currents that are 
implicit in conductance based models: in the Equations of Figure 1, these timescales are 
characterized in terms of the rate constants λ  and C ; namely, channel response and membrane 
capacitance.  

In the remainder of this section, we consider simulations of the conductance and convolution- 
based models above. Our aim here was to illustrate changes in responses with changes in the model 
parameters. A range of anaesthetics has been shown to increase inhibitory neurotransmission. This 
effect has been attributed to allosteric activators that sensitize GABAA receptors. In the context of 
our models, these effects correspond to an increase of the strength of inhibitory input to pyramidal 
cells 32a . We focused on spectral responses in the alpha and beta range as this is the frequency range 
of interest for many applications involving drug effects. Spectral responses can be summarized in 
terms of transfer functions as shown in Figure 3 for a range of physiological parameters. 

These transfer functions can be obtained in a straightforward manner from the dynamical 
equations describing cortical activity (like the equations of Figures 1 or 2) and can be regarded as a 
representation of cortical dynamics in the Fourier domain. They represent the spectral density that 
would be seen if the models were driven by independent fluctuations. These characterizations 
assume a linearization around the fixed point and therefore do not capture the nonlinear behavior of 
these models. This means that a change in the parameters only changes the system’s flow (and 
implicitly the Jacobian and associated transfer functions); however, in the case of conductance-based 
models it also changes the expansion point. 
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Figure 3. Transfer functions associated with convolution and conductance based 

field models. The excitatory time constant and the connection driving pyramidal 
cells were varied over a log-scaling range of 10% and 36% and between 10% and 

270% respectively (from top to bottom and left to right). The images format 
summarizes the transfer function in terms of its peak frequency. The transfer 

functions in the smaller graphs can be regarded as the spectral response that would 
be seen if the model was driven by independent (white) fluctuations.  

Transfer functions specify predicted cross-spectral densities associated with the neural field 
models. These functions depend on spatial and synaptic parameters that determine the spectral 
properties of observed activity (like peak frequency and power). The predicted responses become 
therefore functions of the model parameters and can be written in the following generic form: 
 

*( , ) ( , ) ( , ) ( , )lm l u m
k

g T k g k T kω θ ω ω ω= ∑
)                                        (2) 

where the indices l and m denote different sensors and * denotes the conjugate transpose matrix. The 
predicted cross spectra between two sensors are a function of the power of underlying neuronal 
fluctuations ( , )ug ω θ  and transfer functions ( , )lT k ω  that depend upon model parameters θ . These 
parameters quantify the neuronal architecture mediating responses and the appropriate observation 
function. In the empirical studies below, we will use Equation (2) to generate model predictions of 
observed spectra of neuronal fluctuations that are modeled as a mixture of white and colored 
components. Here, we will consider a single sensor and cortical source driven by white noise input; 
in this case, the cross spectral density of Equation (2) reduces to a transfer function ( , )lT k ω  which 
is the Fourier transform of the impulse response or first-order Volterra kernel associated with the 
equations in Figures (1) and (2). We used the transfer function to characterize LFP responses under 
different values of the inhibitory intrinsic connectivity, 32a  and excitatory time constant, 1/ λ , of 
the inhibitory populations. The varied needs to parameters between 10% and 36% and between 10% 
and 270% respectively [37]: The resulting transfer functions are shown in Figure 3, which also 
reports the peak frequency of the spectral response as a function of the two model parameters (the 
peak frequency corresponds to maximum system response and is shown in image format).  
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A common profile of responses can be seen in both conductance and convolution models, with an 
increase of peak frequencies with smaller inhibitory time constants. In other words, as the strength of 
inhibition increases, activity becomes progressively faster (power shifts to higher frequencies). Some 
of the responses obtained for the convolution model seem to suggest that the bandwidth changes 
substantially with centre frequency, which is not observed for gamma frequencies. Conversely, 
convolution and conductance mass models showed quantitatively different changes in power, with 
convolution models showing decreases with increasing inhibition, while conductance models show the 
opposite effect. In the next section, we use neural field models of this sort to predict empirical data – 
and use those data to provide estimates of intrinsic connectivity generating observed spectral peaks. 

3. Visual perception, neurotransmitter effects and the underlying cortical microcircuitry 

In this section, we focus on convolution models and discuss two applications in the context 
Bayesian modelling of neuroimaging data obtained via magnetoencephalography and 
electrocorticography. We first provide a quick overview of neural fields as probabilistic generative 
models of cortical responses: 

3.1. Neural fields as probabilistic mappings from synaptic parameters to observed responses 

The modeling of electrophysiological signals depends upon models of how they are generated 
in source space and how the resulting (hidden) neuronal states are detected by sensors. Following 
[41], we use a likelihood model relating hidden neuronal states to observed cross spectra yg  over 
sensors that sample from the cortical surface. This likelihood model assumes the measured signal is a 
mixture of predicted spectra, channel and Gaussian observation noise. 

( ) ( , ) ( , )

( , )

Re( ) ~ (0, ( , ))
Im( ) ~ (0, ( , ))

y n y

n
n n

g g g

g

ω ω θ ω θ ε

β
ω θ α

ω

ε ω λ

ε ω λ

= + +

= +

Σ

Σ

)

N        

N

                                        (3)                                     

The first equality expresses the data features ( )yg ω  as a mixture of predictions and prediction 
errors yε  with covariance ( , )ω λΣ . The predictions are a mixture of predicted cross spectra 

( , )g ω µ
)  and channel noise ( , )ng ω µ . Equation (3) provides the basis for our generative model and 

entails free parameters controlling the spectra of the inputs and channel noise { , , , }n u n uα α β β θ⊂ . 
Gaussian assumptions about the observation error mean that we have a probabilistic mapping from 
the unknown parameters to observed (spectral) data features. Inversion of this model means 
estimating, probabilistically, the free parameters from the data.  

At the neuronal level, we consider a neural field model based on the canonical microcircuit. 
This model differs slightly from the Jansen and Rit model considered above [9,42] in that the 
pyramidal cell population is split into superficial and deep subpopulations. In the original model (not 
shown) only one pyramidal cell population was considered; however, there are important differences 
between superficial and deep pyramidal cells—in particular, they are thought to be the sources of 
forward and backward connections in cortical hierarchies. This distinction effectively requires the 
introduction of a fourth population and associated synaptic parameters. The modelling of distinct 
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(sources of) forward and backward connections in cortical hierarchies and has proved useful when 
trying to explain several aspects of distributed cortical computations in theoretical 
neurobiology [42,43].  As above, this model provides the particular form of the predicted spectra by 
prescribing the associated transfer functions, cf. [9]. 

In general, when mapping neuronal circuitry to a tractable model, we are bound by 
computational efficiency and numerical stability. This usually calls for a balanced co-activation of 
inhibitory and excitatory inputs to neuronal populations (this cortical gain control is thought to 
underlie real cortical function, see e.g. [44]). The anatomical motivation for the Jansen and Rit 
microcircuitry is described in [45] . Furthermore, the canonical microcircuit is a parsimonious (and 
dynamically stable) model that also draws from the theoretical constraints implied by the message 
passing of predictive coding. The precise form of this model rests on combining different populations 
to simplify the model and ensure efficient model inversion, see [42]. 

In brief, we assume that the measured signal is a mixture of predicted spectra, channel and 
observation noise. Then, Equation (3) prescribes a probabilistic mapping between model parameters 
(effective connectivity) and spectral characterizations (functional connectivity) that provides a useful 
link between the generative modeling of biophysical time series and dynamical systems theory. In 
this setting, neuronal field models prescribe a likelihood function; this function—taken together with 
the priors over the model parameters—specifies a dynamic causal model that can be inverted using 
standard variational procedures, such as Variational Laplace [46]. Variational Laplace approximates 
model evidence with a variational free energy and optimizes the posterior density over model 
parameters with respect to this free energy. The resulting (approximate) posterior density and 
(approximate) log-evidence are used for inference on parameters and models respectively.  In other 
words, one can compare different models (e.g., neural field and mass models) using their 
log-evidence and make inferences about (changes in) model parameters, under the model selected.  

In motivating neural field models it is generally assumed that the visual cortex is tiled with 
macrocolumns and that the response of each local source or patch can be described in terms of a 
receptive field with rotational symmetry. This receptive field depends upon the topography of the 
neuronal connections and its orientation axis coincides with the coordinates of the field model. 
Below, we use parameters encoding the range of inhibitory and excitatory source components to 
characterize spatial summation of receptive fields based on gamma activity. Furthermore, we will 
examine estimates of neuronal parameters to characterize the excitatory and inhibitory post-synaptic 
potentials (EPSPs, IPSPs) elicited by horizontal connections under different levels of visual contrast. 
The underlying assumption here is that the cortex acts as a dynamic filter of visual stimuli – that 
shows rapid nonlinear adaptation and where the local centre-surround interactions determine the 
frequency of gamma oscillations [26]. In a second empirical study, we will consider contrast-specific 
effects and simultaneously optimize responses obtained from all conditions across sites that show 
stimulus induced responses. The exact locations of each site on the cortical patch are also optimized 
during model inversion or fitting of the cross spectral data. These data inform the spatial sensitivity 
of the recording sites by allowing for conduction delays and other spatial effects including the 
relative location of the sensors.  

Our approach follows standard treatments of neural field models (see e.g. [47–51]). Our aim 
here is not to provide a systematic characterisation of the neural f eld model; for this we refer the 
reader to earlier work, e.g. [52,53]. Instead, we discuss below two studies that use recordings of 
gamma oscillations to disclose the neurobiological underpinnings of visual processing. Both studies 
exploit insights from similar models like PING or ING (see e.g. [29,54–56]), to enable hypotheses 
testing and parameter inference: in our first study, we use the excitatory drive to inhibitory 
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interneurons as a useful marker of cortical excitability; while in our second study, we look at 
trial-specific modulations of intrinsic connection strengths among pyramidal and spiny stellate cells 
and inhibitory interneurons under different levels of stimulus contrast. 

3.2. Gamma oscillations explain intersubject variability in a visual perception study 

The first study we review [9] used the generative model of spectral densities described above 
and recordings of gamma responses obtained from the visual cortex during a perception 
experiment [57]. Our focus was on mechanistic accounts of intersubject variability in peak  
gamma frequency. Data were obtained during a study of how activity in the gamma band is related to 
visual perception [58]. In this earlier work, the surface of the primary visual cortex was estimated 
using retinotopic mapping and was found to correlate with individual gamma peak frequencies. 
Interestingly, a similar visual MEG experiment found a correlation between gamma peak frequency 
and resting GABA concentration, as measured with MR spectroscopy [59].  

In this study, we wanted to identify the origins of individual gamma peak variability and 
understand whether this variability can be attributed to cortical structure or function (the level of 
cortical inhibition as expressed by resting GABA concentration). The generative model we used (the 
connectivity kernel ( )K x  in Equation (1) ) embodied a canonical microcircuit model [9,42] 
allowing for patchy horizontal connectivity, see [21,60]. This neural field DCM was particularly 
useful to discern the roles of cortical anatomy and function as it parameterizes both structure and 
functional excitation-inhibition balance. Our model included parameters describing the dispersion of 
lateral or horizontal connections—which we associate with columnar width—and kinetic parameters 
describing the synaptic drive that various populations are exposed to. These two attributes of the 
field model stand in for structural and functional explanations for observed spectral responses. 

We first considered the relationship between individual differences in GABA concentration or 
peak gamma frequency [61,62] and parameters describing synaptic transmission: 
Muthukumaraswamy and colleagues have showed that individual differences in gamma oscillation 
frequency are positively correlated with resting GABA concentration in visual cortex—as measured 
with magnetic resonance spectroscopy. Furthermore, they showed that fMRI responses are inversely 
correlated with resting GABA and that gamma oscillation frequency is inversely correlated with the 
magnitude of the BOLD response. These results were taken to suggest that the excitation/inhibition 
balance in visual cortex is reflected in peak gamma frequencies at rest. We addressed this hypothesis 
by looking for correlations involving the connections to inhibitory interneurons. We found that 
posterior estimates of the excitatory connections between deep pyramidal cells and inhibitory 
interneurons correlated negatively with gamma peak (Pearson r = −0.37, p = 0.03, 30 d.f, two-tailed 
test). This confirms the hypothesis that inter-subject variation in inhibitory drive in visual cortex is 
associated with characteristic differences in the peak frequency of gamma oscillations—and provides 
a mechanistic link from a synaptic level description to spectral behavior that can be measured 
noninvasively.  

We then turned to the interplay between various mechanisms underlying inter-subject variability 
in gamma peak frequency. Previous studies suggested two possible causes: as described above, 
Muthukumaraswamy et al, (2009) suggest that peak gamma frequency is determined by the level of 
inhibition in V1, while in the study of [57], the authors found a correlation between V1 size and peak 
gamma frequency and suggested that the size of V1 and associated differences in microanatomy 
could be determinants of peak gamma frequency. This suggests that both GABA concentration and 
V1 size can influence gamma frequency; however, they these factors may or may not be causally 
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linked.  
Biophysical parameters estimated using our neural field DCM provide an opportunity to 

investigate alternative explanations of phenotypic variation, like gamma peak frequency: both the 
excitatory drive to inhibitory neurons ( 23a ) and macrocolumn width could mediate differences in 
peak gamma frequency. We therefore looked at the correlations over subjects between peak gamma 
frequency (f), V1 surface area and the posterior estimates of these parameters. These correlations are 
summarized in Table 3: 

Table 3. Correlations between key model parameters, V1 size and peak gamma 

frequency (N = 32). 

 Width 1 V size  23a  f  

Width Pearson correlation 

       Significance 

      

   1 
 
      

   

1 V size  Pearson correlation 

             Significance 

             

  0.364 
  0.02 
       

  1 
 
     

  

23a Pearson correlation 

      Significance 

 -0.32 
 0.037 

       

  -0.099 
  0.295 
       

 1 
 
      

 

f  Pearson correlation 

      Significance 
  0.271 
  0.06 

 0.286 
 0.056 

 -0.379 
 0.016      

 1 

Interestingly, the partial correlation between 23a  and gamma peak remained significant when 
controlling for V1 size and width 1/ abc  (r = −0.332, p = 0.037). This suggests that the correlation 
between gamma peak and V1 inhibition cannot be accounted for completely by the spatial (structural) 
parameters (at the microscopic or macroscopic level).  

Some of the correlations reported in Table 3 are weak and only reached trend significance. This 
might relate to fact that MEG data have low spatial resolution and Bayesian inference fails to find 
more evidence for field models, relative to their neural mass counterparts, see [9]. The lead fields, 
inherent in non-invasive MEG recordings, are necessarily broader and suppress temporal dynamics 
that are expressed in high spatial frequencies, see [9] for a further discussion. 

3.3. Explaining putative mechanisms for stimulus-specific gamma peak variability 

In our second study [10], neuronal signals were recorded while a monkey first fixated its gaze 
(in a window with 1o radius) and later released a lever when it detected a color change at fixation. 
During the fixation period, a stimulus was presented at 4o eccentricity. Crucially, the contrast of the 
stimulus varied between trials. Details of the task and the surgical procedures are described 
elsewhere [63,64]. We analyzed the activity before the fixation color change and the subsequent 
behavioral response. We obtained model predictions using a canonical microcircuit field model with 
local exponentially decaying synaptic densities, see also [42]. Gamma peak frequency fell between 
48 and 60 Hz and contrast levels varied between 0 and 82% of the maximum contrast that could be 
used. There were 9 contrast conditions; where the first two contrast levels elicited no prominent 
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gamma peak. Bipolar differences were extracted from ECoG sensors covering a large part of the 
primate brain.  

Our goal in this study was to delineate the mechanisms underlying contrast specific effects. We 
tested these effects by allowing for trial-specific changes in model parameters. In particular, we 
considered a family of DCMs that allowed for contrast dependent changes in the strength of 
recurrent connections, the strength of intrinsic connections or the extent of intrinsic connections (or 
combinations thereof) and asked which model can best explain spectral responses for different 
contrast conditions, see Figure 4. The ability of each model to explain induced responses was 
evaluated in terms of their Bayesian model evidence; which provides a principled way to evaluate 
competing or complementary models or hypotheses. 

 

Figure 4. Results of Bayesian Model Comparison. The model involving modulations 
of all parameters (model 7) has the highest evidence with a relative log evidence of 

17 with respect to the model that allows for modulations in all but the extent 
parameters (model 6). The first three models correspond to hypotheses (i), (ii) and 

(iii) while models 4 and 5 to combinations (i) + (ii) and (ii) + (iii). The right panel 
shows the corresponding model posterior probabilities. These results suggest that 

we can be almost certain that all three synaptic mechanisms contribute to the 
formation of cross spectral data features. 

The first set of parameters comprised the gains of neural populations that are thought to encode 
precision errors. These gain parameters correspond to the precision (inverse variance or reliability) of 
prediction errors in predictive coding. This fits comfortably with neurobiological theories of 
attention under predictive coding and the hypothesis that contrast manipulation amounts to changes 
in the precision of sensory input, as reviewed in [65]. These changes affect hierarchical processing in 
the brain and control the interaction between bottom up sensory information and top down 
modulation: here, we focus on the sensory level of the visual hierarchy. 

The second set of parameters comprised intrinsic connection strengths among pyramidal and 
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spiny stellate cells and inhibitory interneurons. This speaks to variations in cortical excitability, 
which modulates the contributions of different neuronal populations under varying contrast 
conditions—and a fixed dispersion of lateral connections. This hypothesis fits comfortably well with 
studies focusing on the activation of reciprocally connected networks of excitatory and inhibitory 
neurons, including PING/ ING models [66–68]. 

The last set included the spatial extent of excitatory and inhibitory connections. From single cell 
recordings, it is known that as the boundary between classical and non-classical receptive field 
depends crucially upon contrast [26]. As stimulus contrast is decreased, the excitatory region 
becomes larger and the inhibitory flanks become smaller. The hypothesis here rests on a modulation 
of the effective spatial extent of lateral connections; effective extent refers to the extent of neuronal 
populations that subserve stimulus integration—that are differentially engaged depending on 
stimulus properties (as opposed to the anatomical extent of connections).  

Model comparison uses the evidence for models in data from all conditions simultaneously. The 
models we compared allowed only a subset of parameters to vary with contrast level, where each 
model corresponds to a hypothesis about contrast-specific effects on cortical responses. Specifically, 
(the log of) contrast dependent parameters were allowed to change linearly with the contrast level, 
such that the effect of contrast was parameterized by the sensitivity of contrast dependent parameters 
to contrast level.  

In summary, we considered three putative mechanisms of gain control that speak to models with 
and without contrast dependent effects on: (i) recurrent connections of neuronal populations, (ii) 
horizontal connections between excitatory and inhibitory pools of neurons and (iii) spatial dispersion 
of horizontal connections. These three model factors lead to 8 candidate models (or seven models 
excluding a model with no contrast dependent effects). Figure 4, shows three of the models that we 
considered. The seven (non-null) candidate models include the models depicted in Figure 4 and their 
combinations. The model with contrast dependent effects on all parameters (model 7) had the highest 
evidence with a relative log evidence difference of 17 with respect to the model that allows for 
modulations of all but the extent parameters (model 6). In these plots, the first three models 
correspond to hypotheses (i), (ii) and (iii) while models 4 and 5 to combinations (i) and (iii) and (ii) 
and (iii). In the right panel, we see the corresponding model posterior probabilities (assuming 
uniform priors over all models considered). This suggests that we can be almost certain that all three 
synaptic mechanisms contribute to the formation of cross spectral density features observed under 
different levels of visual contrast (given the models evaluated). 

Note that Figure 4 shows the relative log-evidence for each model normalised with respect to 
the lowest evidence; in this instance, the evidence of model (iii). A relative log evidence of three is 
usually taken to indicate a winning model. This corresponds to a likelihood ratio (log Bayes factor) 
of approximately 20:1. This is based on a free energy bound to model-evidence; this quantity can be 
written as the difference of a term quantifying accuracy minus a term quantifying complexity (see e.g. 
[46]). This characterization of model evidence results therefore in a winning model which is both 
accurate and parsimonious. 

Having identified the best model, we then examined its parameter estimates: the maximum a 
posteriori estimates are shown in Figure 5 (top), while estimates of their contrast sensitivity are 
shown in the lower panel. These results suggest that the largest contrast modulations are observed in 
(log scale parameter) estimates of connections to and from the superficial pyramidal cells. In 
particular, the largest variation over contrast is observed for the parameter that corresponds to the 
gain associated with superficial pyramidal cells. Here, an increase in contrast reduces the inhibitory 
self connection leading to a disinhibitory increase in gain. This result is in accord with the predictive 
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coding formulation above, where the gain of superficial pyramidal cells is thought to encode the 
precision of prediction errors. As contrast increases, confidence in (precision of) sensory information 
rises. In predictive coding this is thought to be accompanied by an increase in the weighting of 
sensory prediction errors that are generally thought to be reported by superficial pyramidal cells.  

 

Figure 5. Parameter estimates and their changes. (A panel) Maximum a posteriori 

estimates of model parameters obtained after inverting model (vii). Note that these 
parameters represent the complete set of free parameters that are used to explain 

observed responses. (B) Corresponding sensitivity estimates of contrast dependent 
parameters. The largest contrast modulations are observed in estimates of 

connections to and from the superficial pyramidal cells (encircled). 

The contrast dependent changes in the extent of horizontal connectivity suggest an effective 
shrinking of excitatory horizontal influences and an increase in inhibitory effects. This is precisely 
what would be expected on the basis of contrast dependent changes in receptive field size. As 
contrast increases, receptive field sizes shrink—effectively passing higher frequency information to 
higher levels. In other words, the neural field has a more compact spatial summation that depends 
upon gain control and the balance of horizontal excitatory and inhibitory connections. For more 
details, we refer the reader to [10]. 
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4. Conclusion 

In this paper, we have considered neural field models in the light of a Bayesian framework for 
evaluating model evidence and obtaining parameter estimates using invasive and non-invasive 
recordings of gamma oscillations. We first focused on model predictions of conductance and 
convolution based field models and showed that these can yield spectral responses that are sensitive 
to biophysical properties of local cortical circuits like cortical excitability and synaptic filtering; we 
also considered two different mechanisms for this filtering: a nonlinear mechanism involving 
specific conductances and a linear convolution of afferent firing rates producing post synaptic 
potentials.  

We then turned to empirical MEG data and looked for potential determinants of the spectral 
properties of an individual's gamma response, and how they relate to underlying visual cortex 
microcircuitry and excitation/inhibition balance. We found correlations between peak gamma 
frequency and cortical inhibition (parameterized by the excitatory drive to inhibitory cell populations) 
over subjects. This constitutes a compelling illustration of how non-invasive data can provide 
quantitative estimates of the spatial properties of neural sources and explain systematic variations in 
the dynamics those sources generate. Furthermore, the conclusions fitted comfortably with studies of 
contextual interactions and orientation discrimination suggesting that local contextual interactions in 
V1 are weaker in individuals with a large V1 area [69,70].  

Finally we used dynamic causal modeling and neural fields to test specific hypotheses about 
precision and gain control based on predictive coding formulations of neuronal processing. We 
exploited finely sampled electrophysiological responses from awake-behaving monkeys and an 
experimental manipulation (the contrast of visual stimuli) to look at changes in the gain and balance 
of excitatory and inhibitory influences. Our results suggest that increasing contrast effectively 
increases the sensitivity or gain of superficial pyramidal cells to inputs from spiny stellate 
populations.  Furthermore, they are consistent with intriguing results showing that the receptive 
fields of V1 units shrinks with increasing visual contrast. 

The approach we have illustrated in this paper rests on neural field models that are optimized in 
relation to observed gamma responses from the visual cortex and are – crucially – compared in terms 
of their evidence. This provides a principled way to address questions about cortical structure, 
function and the architectures that underlie neuronal computations.  
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