Processing math: 49%
Research article

Enterprise risk management practice and shareholders value: evidence from selected quoted firms in Nigeria

  • Received: 29 April 2020 Accepted: 27 May 2020 Published: 01 June 2020
  • JEL Codes: G32, G35, C1

  • This study examines business risks and risk management as well as their effects on shareholders' value using data from selected non-financial firms in the Nigerian Stock Exchange by focusing onreward systems to firm owners through dividend and other earning structures. The study employs panel data for 48 non-financial firms in the Nigerian Stock Exchange for the period 2011 to 2018. The panel data analytical framework is used in the empirical analysis with focus on the Random Effects estimation technique. The results show that in general,the effect of risk on shareholder value depends on the pattern of risk,as well as on the value being considered. The study also finds that increased business risk lowers both dividend per share and earnings per share of the firms. On the other hand,financial risks were shown to have positive impact on shareholder value,especially the value not related to dividend payout. Also,it is found that risk management based on institutional shareholding has the most effective positive impact on shareholder value. It is recommended that enterprise risk management implementation should not just be for compliance purposes among companies in Nigeria,but it must also be for the purposes of pursuing best practices and long-term survival.

    Citation: Marshal Iwedi, Oriakpono E. Anderson, Patience S. Barisua, Sulaiman A. Zaagha. Enterprise risk management practice and shareholders value: evidence from selected quoted firms in Nigeria[J]. Green Finance, 2020, 2(2): 197-211. doi: 10.3934/GF.2020011

    Related Papers:

    [1] Hualong Du, Qiuyu Cui, Pengfei Liu, Xin Ma, He Wang . Reformative artificial bee colony algorithm based PID controller for radar servo system. Electronic Research Archive, 2022, 30(8): 2941-2963. doi: 10.3934/era.2022149
    [2] Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan . Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, 2021, 29(5): 3017-3030. doi: 10.3934/era.2021024
    [3] Wenbin Zheng, Jinjin Li, Shujiao Liao . Decision self-information based on parameterized fuzzy β neighborhood and its application in three-way multi-attribute group decision-making. Electronic Research Archive, 2022, 30(12): 4553-4573. doi: 10.3934/era.2022231
    [4] Wen Li, Jian Wang, Zhanpeng Du, Hongfeng Ma, Lijie Zhang, Libin Duan . Lightweight design method and application of MEWP bracket based on multi-level optimization. Electronic Research Archive, 2022, 30(12): 4416-4435. doi: 10.3934/era.2022224
    [5] Sida Lin, Lixia Meng, Jinlong Yuan, Changzhi Wu, An Li, Chongyang Liu, Jun Xie . Sequential adaptive switching time optimization technique for maximum hands-off control problems. Electronic Research Archive, 2024, 32(4): 2229-2250. doi: 10.3934/era.2024101
    [6] Peng Gao, Pengyu Chen . Blowup and MLUH stability of time-space fractional reaction-diffusion equations. Electronic Research Archive, 2022, 30(9): 3351-3361. doi: 10.3934/era.2022170
    [7] Mingtao Cui, Wennan Cui, Wang Li, Xiaobo Wang . A polygonal topology optimization method based on the alternating active-phase algorithm. Electronic Research Archive, 2024, 32(2): 1191-1226. doi: 10.3934/era.2024057
    [8] Ziqiang Wang, Chunyu Cen, Junying Cao . Topological optimization algorithm for mechanical-electrical coupling of periodic composite materials. Electronic Research Archive, 2023, 31(5): 2689-2707. doi: 10.3934/era.2023136
    [9] Yuhai Zhong, Huashan Feng, Hongbo Wang, Runxiao Wang, Weiwei Yu . A bionic topology optimization method with an additional displacement constraint. Electronic Research Archive, 2023, 31(2): 754-769. doi: 10.3934/era.2023037
    [10] Yineng Ouyang, Zhaotao Liang, Zhihui Ma, Lei Wang, Zhaohua Gong, Jun Xie, Kuikui Gao . A class of constrained optimal control problems arising in an immunotherapy cancer remission process. Electronic Research Archive, 2024, 32(10): 5868-5888. doi: 10.3934/era.2024271
  • This study examines business risks and risk management as well as their effects on shareholders' value using data from selected non-financial firms in the Nigerian Stock Exchange by focusing onreward systems to firm owners through dividend and other earning structures. The study employs panel data for 48 non-financial firms in the Nigerian Stock Exchange for the period 2011 to 2018. The panel data analytical framework is used in the empirical analysis with focus on the Random Effects estimation technique. The results show that in general,the effect of risk on shareholder value depends on the pattern of risk,as well as on the value being considered. The study also finds that increased business risk lowers both dividend per share and earnings per share of the firms. On the other hand,financial risks were shown to have positive impact on shareholder value,especially the value not related to dividend payout. Also,it is found that risk management based on institutional shareholding has the most effective positive impact on shareholder value. It is recommended that enterprise risk management implementation should not just be for compliance purposes among companies in Nigeria,but it must also be for the purposes of pursuing best practices and long-term survival.


    With more attention to integro-differential equations, the numerical calculation of fractional integro-differential equations has been also paid more attention by many scholars. Fractional integro-differential equations have a profound physical background and a rich connotation. For various phenomena in damping laws, diffusion process[31], earthquake model[13], fluid-dynamic traffic model[14], mathematical physics and engineering[28,37], chemistry, acoustics, fluid and continuum mechanics[8], psychology[1,35] and other fields, fractional integro-differential equations are suitable models.

    In recent years, several numerical methods were proposed to solve the fractional integro-differential equation. The most common methods are the Adomian decomposition method [25], collocation method [33] and fractional differential transform method [2]. In [16], Huang proposed a method for solving linear fractional integro-differential equations by Taylor's expansion, including Fredholm type and Volterra type. Yang et al. [34] used the Laplace decomposition method to solve the fractional integro-differential equation. M. Jani et al. [17] proposed a numerical method for solving fractional integro-differential equations with nonlocal boundary conditions by using Bernstein polynomials.

    The fractional differential operators are nonlocal and have weakly singular kernels. The fractional differential equations are more complicated than the integer-order counterparts. In recent years, many numerical methods have been extended to fractional integro-differential equations. Most of the analyses have some unreasonable limitations on solutions in order to achieve high accuracy. When these equations are transformed into the equivalent Volterra integral equations of the second kind with a weakly singular kernel, even if the input function is smooth, the solution of the equation usually exhibits a weak singularity at z=0. Which leads to a non-smooth solution and a lower order of convergence.

    So far, in order to solve the fractional differential equations and fractional integro-differential equations with non-smooth solutions, several methods have been proposed. One method is to approximate the fractional derivative operators in the governing differential equation directly and then the corresponding collocation schemes are derived [3,18]. Another method is to rewrite the governing differential equation in an equivalent integral equation, solved by the corresponding collocation method [22,36,21]. The integral collocation method is more stable than the differential collocation method. The reason is that numerical differentiation is sensitive to small perturbations in the input. But numerical integration is essentially stable [10]. Therefore, when using the differential collocation method to solve differential equations, we need to employ efficient integration preprocessing to overcome the ill-conditioning problem. It is necessary with increasing of the number of collocation nodes [15]. We would like to note that Hao proposed an efficient finite difference algorithm to solve fractional boundary value problems with non-smooth solutions in [12].

    For many types of equations with non-smooth solutions, the idea of introducing suitable transformations has been considered. It would eliminate the singularity in the transformed equation, and lead to a high convergence order. For the second kind of Volterra integral equation, Chen and Tang [9] proposed a variable transformation to eliminate the singularity of the solution. With a strict error analysis, the method is shown to have a spectral convergence. Pedas [19] made a proper transformation, and used the piecewise polynomial collocation method to solve the resulting equation on a mildly graded grid or a uniform grid. Baratella and Orsi [7] used a variable transformation to turn the solution of the linear Volterra integral equation of the second kind smooth, and solved it by the standard product integration method. Tang [20] used a variable transformation and the Jacobi spectral collocation method to solve the Abel-Volterra integral equation of the second kind. For the linear Fredholm integral equation of the second kind, Monegato and Scuderi [26] proposed a non-linear transformation to eliminate the singularity of the equation. Ghoreishi [11] used a variable transformation and a spectral method to solve the multi-order fractional differential equation. Pedas et al. [27] regularized the solution of fractional initial and boundary value problems by a suitable smoothing transformation. They solved the transformed equation by a piecewise polynomial collocation method on a mildly graded grid and on a uniform grid. Zaky [38] used a smoothing transformation and the Jacobi spectral collocation method to solve the rational-order fractional terminal value problems with non-smooth solutions.

    Based on the above works, we apply the smoothing transformation and the Jacobi spectral collocation method with high accuracy and global characteristics to the following fractional integro-differential equations.

    Dαz˜y(z)=˜y(z)+z0˜K(z,τ)˜y(τ)dτ+˜g(z),zI=[0,T],˜y(0)=λ, (1)

    where ˜g(z) is the source function, and ˜K(z,τ) is the kernel function. The given function ˜g(z) and ˜K(z,τ) are continuous on their respective domains 0τzT and ΔT:={(z,τ)R2:0τzT}, λR. Dαz is the Caputo fractional derivative of rational-order α, 0<α<1.

    Let Γ() denote the Gamma function. For any positive integer n with n1<α<n, the Caputo derivative is defined as follows:

    Dαzf(z)=1Γ(nα)za(zτ)nα1f(n)(τ)dτ,z[a,b].

    In addition, the Riemann-Liouville fractional integral Iαz of order α is defined by

    Iαzf(z)=1Γ(α)za(zτ)α1f(τ)dτ,z[a,b].

    We note that,

    Iαz(Dαzf(z))=f(z)n1k=0f(k)(a)zkk!. (2)

    The layout of this paper as follows: In Section 2, we introduce the basic properties of Jacobi polynomials and Jacobi-Gauss interpolation. The fractional integral differential equation is transformed into an equivalent integral equation, in Section 3. A smoothing transformation of variable is defined for the new equation so that the solution is smooth, in Section 3. The Jacobi spectral-collocation method is defined in Section 4. The convergence analysis of the collocation method is derived in Section 5. In Section 6, we give several numerical examples verifying the accuracy of the theoretical estimation and the feasibility and effectiveness of the method. Finally, some concluding remarks are drawn in Section 7.

    In this section, we introduce some basic properties about Jacobi polynomials and Jacobi-Gauss interpolation that are related to spectral-collocation methods [30].

    The Jacobi polynomials, denoted by Pα,βn(x), are orthogonal with the Jacobi weight function ωα,β(x)=(1x)α(1+x)β over Λ=(1,1), namely,

    (Pα,βi(x),Pα,βj(x))ωα,β=11Pα,βi(x)Pα,βj(x)ωα,β(x)dx=γα,βiδi,j, (3)

    where δi,j is the Kronecker function and

    γα,βi=(2)α+β+1Γ(i+α+1)Γ(i+β+1)(2i+α+β+1)Γ(i+1)Γ(i+α+β+1). (4)

    For a given positive integer N0, let PN denote the space of all polynomials of degree not exceeding N. We denote by {xα,βi,ϖα,βi}Ni=0 the set of quadrature nodes and weights of the Jacobi-Gauss integration. The Jacobi-Gauss integration formula has the form

    Λφ(x)ωα,β(x)dxNi=0φ(xi)ϖα,βi. (5)

    The above quadrature formula (5) is exact for any φ(x)P2N+1. Hence, by (3),

    Nk=0Jα,βi(xα,βk)Jα,βj(xα,βk)ϖα,βk=γα,βiδi,j,0i+j2N+1. (6)

    For any μC(Λ), the Jacobi-Gauss interpolation operator Iα,βx,N:C(Λ)PN is determined uniquely by

    Iα,βx,Nμ(xα,βj)=μ(xα,βj),0jN. (7)

    The interpolation condition (7) implies that Iα,βx,Nμ=μ for all μPN. On the other hand, since Iα,βx,NμPN, we can write

    Iα,βx,Nμ(x)=Ni=0ˆμα,βiJα,βi(x),ˆμα,βi=1γα,βiNj=0μ(xj)Jα,βi(xj)ϖα,βj. (8)

    In particular, for β=0, the set of Jacobi polynomials is reduced to Jαi(x). Therefore, we can also write xαj=xα,0j,ϖαj=ϖα,0j and Iαx,N=Iα,0x,N.

    In this section, we use the definition and related properties of Riemann-Liouville fractional integral and Caputo fractional derivative to transform the original fractional equation with initial conditions into the second kind of Volterra integral equation with weak singular kernel. We show the equation has a non-smooth solution. Then we apply the smoothing transformation to eliminate the singularity of the solution at the left endpoint.

    First, we use (2) to transform the original equation (1) into an equivalent Volterra integral equation with weak singular kernel.

    ˜y(z)=λ+1Γ(α)z0(zs)α1(˜y(s)+˜g(s))ds+1Γ(α)z0(zs)α1s0˜K(s,τ)˜y(τ)dτds.

    Using Dirichlet's formula

    z0s0ϕ(s,τ)dτds=z0zτϕ(s,τ)dsdτ,

    we derive

    ˜y(z)=λ+1Γ(α)z0(zs)α1˜g(s)ds+1Γ(α)z0((zs)α1+zs(zτ)α1˜K(τ,s)dτ)˜y(s)ds. (9)

    The equation (9) is transformed into the following Volterra integral equation of the second kind by the linear transformation w=τszs, w[0,1],

    ˜y(z)=f(z)+z0(zs)α1K(w(zs)+s,s)˜y(s)ds, (10)

    where

    f(z)=λ+1Γ(α)z0(zs)α1˜g(s)ds,K(w(zs)+s,s)=1Γ(α)(1+10(zs)(1w)α1˜K(w(zs)+s,s)dw).

    Lemma 3.1. The kernel function K(w(zs)+s,s) in (10) is continuous and bounded.

    Proof. We have

     K(w(zs)+s,s)=1Γ(α)(1+10(zs)(1w)α1˜K(w(zs)+s,s)dw)=1Γ(α)(1+10(zs)(1w)α1w0˜K(w(zs)+s,s)dw).

    For z[0,T] and s[0,z], zs[z,T]. It is known that ˜K(w(zs)+s,s) is bounded and continuous on ΔT. Let ˜K(w(zs)+s,s) have the maximum and minimum values on ΔT, Qmax and Qmin, respectively. There is

    1Γ(α)(1zQminB(1,α))K(w(zs)+s,s)1Γ(α)(1+TQmaxB(1,α)),

    where B(,) is the β function: B(ξ,η)=10sξ1(1s)η1dξ. The lemma is proved.

    We give some lemmas on smoothness of solution of the general Volterra integral equation of the second kind.

    Lemma 3.2. [23] Consider the following general Volterra integral equation of the second kind:

    y(z)=f(z)+1Γ(γ)z0(zs)γK(z,s,y(s))ds,zI=[0,T], (11)

    where γ>1, f:IRn is a continuous bounded function, K:S×RnRn is a continuous bounded function, and {S=(z,s):0szT}.

    1. If f(z) and K(z,s,y(s)) are differentiable, the integral equation has a unique solution y(z) that is also differentiable on (0,T];

    2. If f(z)=F(z,z1+γ), F(z1,z2) and K(z,s,y(s)) are differentiable, the integral equation has a unique solution y(z) that satisfies

    y(z)=Y(z,z1+γ),

    where Y(z1,z2) is differentiable at (0,0).

    We note that the solution of equation (14) is not smooth at z=0 in general.

    It can be obtained from the above lemma that the Eq.(10) has a unique solution y(z), which is differentiable on z(0,T] and is not necessarily smooth at z=0. For 0<1α<1, the equation has a singular term (zs)α1. By the literature [5], for any positive integer m, if K(τ(w(zs)),s) and f(z) are continuous differentiable functions of order m in the corresponding area, there exists a function Y=Y(z,v) possessing continuous derivatives of order m, such that the solution of the Eq.(10) can be written as y(z)=Y(z,zα). This indicates that when z0, y(m)(z)zαm, and thus y(z)Cm[0,T].

    Lemma 3.3. [4] Let 0<α<1. We assume that fCm(I), KCm(D) for some m0.

    1. If m=0, the Volterra integral equation,

    y(z)=f(z)+z0(zs)μK(z,s)y(s)ds,1>μ>0,zI, (12)

    possesses a unique solution y(z)C(I). This solution has the representation

    y(z)=f(z)+z0Rμ(z,s)f(s)ds,zI,

    where the resolvent kernel Rμ(z,s) of the kernel (zs)μK(z,s) has the form

    Rμ(z,s)=(zs)μQμ(z,s).

    Here, Qμ(z,s) is continuous on D.

    2. If m1, every nontrivial solution has the property that y(z)C1(I): as z0+ the solution behaves like

    y(z)Czμ,0<μ<1.

    In earlier work, when 0<1α<1, the general form of the exact solution of the Eq.(10) has been derived, in next lemma.

    Lemma 3.4. [5] Assume that fCm(I) with mN+, and K(w(zs)+s,s)Cm(I×I) with K(w(zs)+s,w(zs)+s)0 on I=[0,T]. Then, the regularity of the unique solution of the weakly singular Volterra integral equation (10) can be described by

    y(z)C[0,T]Cm(0,T],y(z)∣≤Cμzμ,z(0,T],y(z)=(j,k)μγj,k(μ)zj+k(1μ)+Ym(z;μ),zI, (13)

    where (j,k)μ:={(j,k):j,kN+0,j+k(1μ)<m},γj,k(μ) are some constants and Ym(;μ)Cm(I).

    Lemma 3.5. [6] Suppose that fCm(I), K(w(zs)+s,s)Cm(I×I) on I=[0,T], and K(w(zs)+s,s)0 with m0. Let μ=1α, 0<μ<1. The Volterra integral equation (10) has a unique solution y(z)C[0,T]Cm(0,T]. Further, y(z) has the following form

    y(z)=f(z)+k=1ψk(z)zk(1μ),zI,

    where ψkCm(I),k1, and the series is absolutely uniformly convergent on I.

    If μ=pq is rational (i.e.,p,qN, reduced to lowest terms), then the solution of the Eq.(10) can be expressed in the form

    y(z)=f(z)+q1s=1νs(z)zs(1μ),zI, (14)

    where νsCm(I)(0sq1).

    From the above lemma, y(z)Cm[0,T]. For the Eq.(13), Chen and Tang [9] proposed the function transformation ˜y(t)=tu+m1[y(t)y(0)] to remove a single term singularity like t1um. They used the spectral-collocation method and achieved excellent results. Our work has been inspired by their excellent results in [9,32]. We apply the similar transformation mentioned above to (14), and obtain the following lemma. This result will be the starting point to the construction of the numerical method presented later.

    Lemma 3.6. Using the following transformation for (14),

    z=tσ,Y(t)=y(z),tI=[0,T1σ],σN+, (15)

    it is deduced that

    1. if σ=q or a multiple of q, then Y(t)Cm(I);

    2. if σqqp, then Y(t) is at least a first-order differentiable function.

    Proof. Taking the above transformation (15) to (14), we obtain

    y(tσ)=f(tσ)+q1s=1νs(tσ)tsσ(1μ)=f(tσ)+q1s=1νs(tσ)tsσ(qpq).

    Thus we deduce the two conclusions in the lemma.

    By the Lemma 3.5, it follows that the solution of the Eq.(10) can be written in the form of ˜y(z)=y1(z)+y2(z) where, for a fixed m, y1(z)Cm(I) and y2(z) is the non-smooth part of the solution.

    Our first step is to replace ˜y(z) by ˜y(z):=y(z)+λ, where y(0)=0. Hence, the Eq.(1) can be expressed in terms of y as

    Dαzy(z)=(y(z)+˜g(z)+λ)+z0˜K(z,τ)(y(τ)+λ)dτ,z(0,T],y(0)=0. (16)

    An equivalent integral form of the above equation is

    y(z)=1Γ(α)z0(zs)α1(y(s)+˜g(s)+λ)ds+1Γ(α)z0(zs)α1s0˜K(s,τ)(y(τ)+λ)dτds. (17)

    We apply the smoothing transformation

    z=tσs=γσ,1<σN,

    reducing the problem (17) to the following integral equation whose solution does not involve anymore singularities in the first derivative.

    y(tσ)=1Γ(α)t0σγσ1(tσγσ)α1(y(γσ)+˜g(γσ)+λ)dγ+1Γ(α)t0σγσ1(tσγσ)α1γσ0˜K(γσ,τ)(y(τ)+λ)dτdγ. (18)

    Moreover, using the linear transformation

    t=T1σ(x+12),xΛ,γ=T1σ(ξ+12),ξ(1,x),

    the Eq.(18) becomes

    y(T(x+12)σ)=1Γ(α)x1σT2(ξ+12)σ1(T(x+12)σT(ξ+12)σ)α1×(y(T(ξ+12)σ)+˜g(T(ξ+12)σ)+λ)dξ+1Γ(α)×x1σT2(ξ+12)σ1(T(x+12)σT(ξ+12)σ)α1×T(ξ+12)σ0˜K(T(ξ+12)σ,τ)(y(τ)+λ)dτdξ. (19)

    Furthermore, in order to transform the integral interval (0,T(ξ+12)σ) into (1,ξ), we use the linear transformation τ=T(η+12)σ,ηΛ, we obtain

    y(T(x+12)σ)=1Γ(α)x1σT2(ξ+12)σ1(T(x+12)σT(ξ+12)σ)α1×(y(T(ξ+12)σ)+˜g(T(ξ+12)σ)+λ)dξ+1Γ(α)×x1(σT2)2(ξ+12)σ1(T(x+12)σT(ξ+12)σ)α1×ξ1(η+12)σ1˜K(T(ξ+12)σ,T(η+12)σ)×(y(T(η+12)σ)+λ)dηdξ. (20)

    We use the following linear transformation to convert the integration interval (1,ξ) to (1,1).

    η=η(ξ,θ)=ξ+12θ+ξ12,θΛ.

    Equation (20) can be written as

    y(T(x+12)σ)=1Γ(α)x1σT2(ξ+12)σ1(T(x+12)σT(ξ+12)σ)α1×(y(T(ξ+12)σ)+˜g(T(ξ+12)σ)+λ)dξ+1Γ(α)×x1(σT2)2(ξ+12)σ(T(x+12)σT(ξ+12)σ)α1×11(η+12)σ1˜K(T(ξ+12)σ,T(η(ξ,θ)+12)σ)×(y(T(η(ξ,θ)+12)σ)+λ)dθdξ. (21)

    Using the formula

    aσbσ=(ab)σ1i=0aibσi1,

    (21) becomes

    y(T(x+12)σ)=Tα2αΓ(α)x1(xξ)α1g(x,ξ)(y(T(ξ+12)σ)+˜g(T(ξ+12)σ)+λ)dξ+Tα+12α+1Γ(α)x1(xξ)α1×11g(x,ξ,θ)˜K(T(ξ+12)σT(η(ξ,θ)+12)σ)×(y(T(η(ξ,θ)+12)σ)+λ)dθdξ, (22)

    where

    g(x,ξ)=σ(ξ+12)σ1(σ1i=0(x+12)i(ξ+12)σi1)α1,g(x,ξ,θ)=σ2(η(ξ,θ)+12)σ1(ξ+12)σ(σ1i=0(x+12)i(ξ+12)σi1)α1.

    Finally, by the change of variable

    ξ=ξ(x,v)=x+12v+x12,x,vΛ,

    and setting

    Y(x)=y(T(x+12)σ),

    (22) is reduced to

    Y(x)=Tα4αΓ(α)11(x+1)α(1v)α1G(x,ξ(x,v))dv,+Tα+122α+1Γ(α)11(x+1)α(1v)α1
    ×11K(ξ(x,v),η)(Y(η)+λ)dθdv, (23)

    where

    G(x,ξ(x,v))=g(x,ξ(x,v))(Y(ξ)+˜g(T(ξ(x,v)+12)σ)+λ),K(ξ(x,v),η)=g(x,ξ(x,v),θ)˜K(T(ξ(x,v)+12)σ,T(η(ξ(x,v),θ)+12)σ)).

    In this section, we propose the Jacobi spectral-collocation method to (23). Solving Equation (23) by the Jacobi spectral-collocation method is to find YN(x)PN, such that

    YN(x)=Iα1x,NTα4αΓ(α)11Iα1v,N(x+1)α(1v)α1GN(x,ξ(x,v))dv+Iα1x,NTα+122α+1Γ(α)11Iα1v,N(x+1)α(1v)α1×11KN(ξ(x,v),η)dθdv, (24)

    where

    GN(x,ξ(x,v))=g(x,ξ(x,v))(YN(ξ)+˜g(T(ξ(x,v)+12)σ)+λ),KN(ξ(x,v),η)=K(ξ(x,v),η)(YN(η)+λ).

    In order to implement the above basic algorithm more effectively, we set

    YN(x)=Ni=0μiJα1i(x),Iα1x,NIα1v,N11(x+1)αKN(ξ(x,v),η)dθ=Ni=0Nj=0di,jJα1i(x)Jα1j(v),Iα1x,NIα1v,N(x+1)αGN(x,ξ(x,v))=Ni=0Nj=0bi,jJα1i(x)Jα1j(v). (25)

    Employing (25) and (3), we can directly calculate the result that

    Iα1x,NTα+1(x+1)α22α+1Γ(α)Iα1v,N11(1v)α111KN(ξ(x,v),η)dθdv=Tα+122α+1Γ(α)Ni=0Nj=0di,jJα1i(x)11(1v)α1Jα1j(v)dv=Tα+12α+1Γ(α+1)Ni=0di,0Jα1i(x). (26)

    Using (26), (5) and (8) it yields

    di,0=α(2i+α)4αNj=0Nm=0Nk=0(xj+1)αˆKN(ξ(x,v),η)Jα1i(xj)ωα1jωα1mω0,0k, (27)

    where

    ˆKN(ξ(x,v),η)=K(ξ(xj,vm),η(ξ(xj,vm),θk))(YN(η(ξ(xj,vm),θk))+λ).

    Similarly, by Eqs. (3) and (25), we conclude that

     Iα1x,NTα(x+1)α4αΓ(α)Iα1v,N11(1v)α1GN(x,ξ(x,v))dv=Tα4αΓ(α)Ni=0Nj=0bi,jJα1i(x)11(1v)α1Jα1j(v)dv=Tα2αΓ(α+1)Ni=0bi,0Jα1i(x). (28)

    Using (28), (5) and (8), we obtain

    bi,0=α(2i+α)4αNj=0Nm=0(xj+1)αˆGN(x,ξ(x,v))Jα1i(xj)ωα1jωα1m, (29)

    where

    ˆGN(x,ξ(x,v))=g(xj,ξ(xj,vm))(YN(ξ(xj,vm))+˜g(T(ξ(xj,vm)+12)σ)+λ).

    In summary, by (25)-(29), we deduce that

     Ni=0μiJα1i(x)=Tα+12α+1Γ(α+1)Ni=0di,0Jα1i(x)+Tα2αΓ(α+1)Ni=0bi,0Jα1i(x). (30)

    Finally, using (3) it yields

    μi=Tα+12α+1Γ(α+1)di,0+Tα2αΓ(α+1)bi,0,0iN. (31)

    The numerical solution can be obtained by solving the equations.

    In this section, we estimate the error of the numerical solution. We bound the error in the L and L2ωα,β norms. In order to give the subsequent lemmas conveniently, we first introduce some spaces.

    Let the region ΛRn be a non-empty Lebesgue measurable set, u(x) is a real value Lebesgue measurable function defined on Λ. Lp(Λ) is defined as

    Lp(Λ)={u:uLp(Λ)<, 1p},

    equipped with the norm,

    uLp(Λ)=(Λ|u(x)|pdx)1p,1p<,uL(Λ)=esssupx(Λ)|u(x)|.

    For a non-negative integer l, and 1p, the Sobolev space is defined as:

    Hl,p(Λ)={uLp(Λ):αuLp(Λ),  |α|l}.

    If p=2, we record Hl,2(Λ) as Hl(Λ), which is a separable Hilbert Space. If l=0, Hl,p(Λ) is Lp(Λ) space.

    Then we introduce the weighted L2ωα,β(Λ) space. Assume that the weight function ωα,β(x)=(1x)α(1+x)β with α,β>1, then

    L2ωα,β(Λ)={u:u is measurable anduωα,β<},

    endowed with the norm and inner product

    uωα,β=(Λ|u(x)|2ωα,β(x)dx)12,(u,v)ωα,β=Λu(x)v(x)ωα,β(x)dx, u,vL2ωα,β(Λ).

    The weighted Hilbert space is defined as follows

    Hlωα,β(Λ):={u:mxuL2ωα,β(Λ), 0ml},

    equipped with the norm, semi-norm and inner product

    ul,ωα,β=(lm=0mu2ωα,β)12,|u|l,ωα,β=luωα,β,
    (u,v)l,ωα,β=lm=0Λmxu(x)mxv(x)ωα,βdx.

    For a non-negative integer l, we introduce the non-uniformly Jacobi-weighted Sobolev space

    Blωα,β(Λ):={u:mxuL2ωα+m,β+m(Λ), 0ml},

    endowed with the norm, semi-norm and inner product

    uBlωα,β=(u,u)1/2Blωα,β,|u|Blωα,β=lxuωα+l,β+l,
    (u,v)Blωα,β=lm=0(mxu,mxv)ωα+m,β+m,

    where uωα,β is the norm of L2ωα,β(Λ). Especially, L2(Λ)=B0ω0,0, =L2(Λ) and =L(Λ). The non-uniform Jacobi-weighted Sobolev space distinguishes itself from the usual weighted Sobolev space Hlωα,β by involving different weight functions for derivatives of different orders. It is clear that Hlωα,β is a subspace of Blωα,β, that is uBlωα,βcuHlωα,β.

    The space L(Λ) is the Banach space of the measurable functions u that are bounded outside a set of measure zero, equipped the norm

    u=esssupx(Λ)|u(x)|.

    We denote by Cm(Λ) the space of m-times continuously differentiable functions on the interval Λ.

    Lemma 5.1. [24] Let Fj(x)Nj=0 be the Nth Lagrange interpolation polynomials associated with the N+1 Gauss points of the Jacobi polynomials. Then

    Iα,βNL(I)=maxx[1,1]Nj=0|Fj(x)|={O(logN),1α,β12,O(Nϵ+12),ϵ=max(α,β),otherwise.

    Lemma 5.2. [29] For α,β>1, and any uBlωα,β with l1, and integers 0mlN+1,

    mx(uIα,βx,Nu)ωα+m,β+mcNmllxuωα+l,β+l.

    Moreover, for any uHlω1/2,1/2 with 1lN+1,

    uI1/2,1/2x,NucN1/2luω1/2,1/2,

    where c is a positive constant independent of l,N and u.

    Lemma 5.3. [38] Let vα1i be the Jacobi-Gauss nodes in Λ and ξα1i=ξ(x,vα1i). The mapped Jacobi-Guass interpolation operator xIα1ξ,N:C(1,x)PN(1,x) is defined by

    xIα1ξ,Nu(ξα1i)=u(ξα1i),0iN.

    Hence

    xIα1ξ,Nu(ξα1i)=u(ξα1i)=u(ξ(x,vα1i))=Iα1v,Nu(ξ(x,vα1i)),

    and

    xIα1ξ,Nu(ξ)=Iα1v,Nu(ξ(x,v))v=2ξx+1+1xx+1.

    From the above formula, we can derive the following results

    x1(xξ)α1xIα1ξ,Nu(ξ)dξ=(1+x2)α11(1v)α1Iα1v,Nu(ξ(x,v))dv=(1+x2)αNi=0ωα1iu(ξα1i),x1(xξ)α1(xIα1ξ,Nu(ξ))2dξ=(1+x2)αNi=0ωα1iu2(ξα1i).

    Moreover, if we denote I as the identity operator, for any 1lN+1, we have that

     x1(xξ)α1(IxIα1ξ,N)u(ξ)2dξ=(1+x2)α11(1v)α1(IIα1v,N)u(ξ(x,v))2dvcN2l(1+x2)α11(1v)α+l1(1+v)llvu(ξ(x,v))2dv=cN2lx1(xξ)α+l1(1+ξ)llξu(ξ)2dξ.

    Now, we are ready to prove the following convergence results.

    Theorem 5.4. Let Y be the exact solution of the original equation (16). Let YN be the numerical solution obtained by the discrete scheme (25) combined with the approximate Eq. (24). Let eN=YYN.

    eNωα1,0Y(x)Iα1x,NY(x)ωα1,0+Iα1x,NYYNωα1,05i=1Eiωα1,0, (32)

    where

    E1=Y(x)Iα1x,NY(x),E2=Tα2αΓ(α)Iα1x,Nx1(xξ)α1(IxIα1ξ,N)G(x,ξ)dξ,E3=Tα2αΓ(α)Iα1x,Nx1(xξ)α1xIα1ξ,NˆG(x,ξ)(YYN)dξ,E4=Tα+12α+1Γ(α)Iα1x,Nx1(xξ)α111(IxIα1ξ,N)K(x,ξ,η)dθdξ,E5=Tα+12α+1Γ(α)Iα1x,Nx1(xξ)α111xIα1ξ,NˆK(x,ξ,η)(YYN)dθdξ. (33)

    Here

    G(x,ξ)=g(x,ξ)(Y(ξ)+˜g(T(ξ+12)σ)+λ),ˆG(x,ξ)(YYN)=g(x,ξ)(Y(ξ)YN(ξ)),K(x,ξ,η)=g(x,ξ,θ)˜K(T(ξ+12)σ,T(η(ξ,θ)+12)σ)(Y(η(ξ,θ))+λ),ˆK(x,ξ,η)(YYN)=g(x,ξ,θ)˜K(T(ξ+12)σ,T(η(ξ,θ)+12)σ)(Y(η(ξ,θ))YN(η(ξ,θ))).

    Proof. It follows from (22) that

    Iα1x,NY(x)=Tα2αΓ(α)Iα1x,Nx1(xξ)α1G(x,ξ)dξ+Tα+12α+1Γ(α)Iα1x,Nx1(xξ)α111K(x,ξ,η)dθdξ,YN(x)=Tα2αΓ(α)Iα1x,Nx1(xξ)α1xIα1ξ,NGN(x,ξ)dξ+Tα+12α+1Γ(α)Iα1x,Nx1(xξ)α111xIα1ξ,NKN(x,ξ,η)dθdξ, (34)

    where xIα1ξ,N is defined in Lemma 5.3, and

    G(x,ξ)=g(x,ξ)(Y(ξ)+˜g(T(ξ+12)σ)+λ),GN(x,ξ)=g(x,ξ)(YN(ξ)+˜g(T(ξ+12)σ)+λ),K(x,ξ,η)=g(x,ξ,θ)˜K(T(ξ+12)σ,T(η(ξ,θ)+12)σ)(Y(η(ξ,θ))+λ),
    KN(x,ξ,η)=g(x,ξ,θ)˜K(T(ξ+12)σ,T(η(ξ,θ)+12)σ)(YN(η(ξ,θ))+λ).

    By (34), we obtain

     Iα1x,NYYN=Tα2αΓ(α)Iα1x,Nx1(xξ)α1(IxIα1ξ,N)G(x,ξ)dξ+Tα2αΓ(α)Iα1x,Nx1(xξ)α1xIα1ξ,NˆG(x,ξ)(YYN)dξ+Tα+12α+1Γ(α)Iα1x,Nx1(xξ)α111(IxIα1ξ,N)K(x,ξ,η)dθdξ+Tα+12α+1Γ(α)Iα1x,Nx1(xξ)α111xIα1ξ,NˆK(x,ξ,η)(YYN)dθdξ, (35)

    where

    ˆG(x,ξ)(YYN)=g(x,ξ)(Y(ξ)YN(ξ)),ˆK(x,ξ,η)(YYN)=g(x,ξ,θ)˜K(T(ξ+12)σ,T(η(ξ,θ)+12)σ)(Y(η(ξ,θ))YN(η(ξ,θ))).

    The theorem is proved.

    Theorem 5.5. Let Y be the exact solution of the original equation (16). Let YN is the numerical solution obtained by the discrete scheme (25) combined with the approximate equation (24). Let α(0,1). Assume that YBlωα1,0(Λ) with 1lN+1. We conclude the error estimate:

     eNωα1,0cNlGlξ(Y+g)ωα+l1,l+c(N1l+Nl)KlξYωα+l1,l+cNl(1+NK+K+G)lxYωα+l1,l, (36)

    where

    G=maxi[0,N]maxξ[1,x]g(xi,ξ),K=maxi[0,N]maxk[0,N]maxξ[1,x]g(xi,ξ,θk)K(ξ,η(ξ,θk)).

    Proof. By Lemma 5.2,

    E1ωα1,0=Y(x)Iα1x,NY(x)ωα1,0cNllxYωα+l1,l. (37)

    Using (5), we get

     E2ωα1,0=Tα2αΓ(α)Iα1x,Nx1(xξ)α1(IxIα1ξ,N)G(x,ξ)dξωα1,0=Tα2αΓ(α)[Ni=0ωi(xi1(xiξ)α1(IxiIα1ξ,N)G(xi,ξ)dξ)2]1/2. (38)

    Apply the Cauchy-Schwarz inequality,

    xi1a(ξ)b(ξ)dξ2xi1a(ξ)2dξxi1b(ξ)2dξ, (39)

    where

    a(ξ)=(xiξ)α12,b(ξ)=(xiξ)α12(IxiIα1ξ,N)G(xi,ξ),

    and Lemma 5.3, we derive

    E2ωα1,0=Tα2αΓ(α)[Ni=0ωixi1(xiξ)α1dξ×xi1(xiξ)α1(IxiIα1ξ,N)G(xi,ξ)dξ2]1/2Tα2αΓ(α+1)[Ni=0ωiα(xi+1)α×xi1(xiξ)α1(IxiIα1ξ,N)G(xi,ξ)dξ2]1/2cNlG(Ni=0ωiα(xi+1)α)1/2maxi[0,N]×(xi1(xiξ)α+l1(1+ξ)llξ(Y(ξ)+g(ξ))2dξ)1/2, (40)

    where

    g(ξ)=(˜g(T(ξ+12)σ)+λ),G=maxi[0,N]maxξ[1,x]g(xi,ξ).

    For any xi(1,1), and α(0,1),

    Ni=0ωiα(xi+1)α2. (41)

    Hence

    E2ωα1,0cNlGlξ(Y()+g())ωα+l1,l. (42)

    In the same way, by the Cauchy-Schwarz inequality, we deduce that

     E3ωα1,0=Tα2αΓ(α)Iα1x,Nx1(xξ)α1xIα1ξ,N(ˆG(x,ξ)(YYN))dξωα1,0=Tα2αΓ(α)[Ni=0ωi(xi1(xiξ)α1xiIα1ξ,N(ˆG(xi,ξ)(YYN))dξ)2]1/2TαG2αΓ(α)[Ni=0ωixi1(xiξ)α1dξxi1(xiξ)α1×xiIα1ξ,N(Y(ξ)YN(ξ))2dξ]1/2. (43)

    Using Lemma 5.3 yields

     E3ωα1,0GTα2αΓ(α)(Ni=0ωiα(xi+1)α)1/2maxi[0,N](xi1(xiξ)α1xiIα1ξ,N×(Y(ξ)YN(ξ))2dξ)1/2GTα2α1/2Γ(α)maxi[0,N]((xi1(xiξ)α1xiIα1ξ,NY(ξ)Y(ξ)2dξ)1/2+(xi1(xiξ)α1Y(ξ)YN(ξ)2dξ)1/2)cGNlmaxi[0,N](xi1(xiξ)α+l1(1+ξ)llξY2dξ)1/2 +GTα2α+1/2Γ(α)maxi[0,N](xi1(xiξ)α1Y(ξ)YN(ξ)2dξ)1/2cGNllxYωα+l1,l+cGeNωα1,0. (44)

    Similarly, by (5), we obtain that

     E4ωα1,0=Tα+12α+1Γ(α)Iα1x,Nx1(xξ)α111(IxIα1ξ,N)K(x,ξ,η)dθdξωα1,0=Tα+12α+1Γ(α)[Ni=0ωi(xi1(xiξ)α111×(IxiIα1ξ,N)K(xi,ξ,η)dθdξ)2]1/2. (45)

    By the Cauchy-Schwarz inequality, we further get

    E4ωα1,0=Tα+12α+1Γ(α)[Ni=0ωixi1(xiξ)α1dξxi1(xiξ)α1 ×11(IxiIα1ξ,N)K(xi,ξ,η)dθ2dξ)]1/2Tα+1K2α+1Γ(α+1)(Ni=0ωiα(xi+1)α)1/2[xi1(xiξ)α1×Nk=0(IxiIα1ξ,N)(Y(η(ξ,θk))+λ)2dξ]1/2, (46)

    where

    K(ξ,η(ξ,θ))=˜K(T(ξ+12)σ,T(η(ξ,θ)+12)σ),K=maxi[0,N]maxk[0,N]maxξ[1,x]g(xi,ξ,θk)K(ξ,η(ξ,θk)).

    Applying Lemma 5.3 leads to

    E4ωα1,0c(N1l+Nl)K(Ni=0ωiα(xi+1)α)1/2maxi[0,N]maxk[0,N]×(xi1(xiξ)α+l1(1+ξ)llξ(Y(η(ξ,θk))+λ)2dξ)1/2c(N1l+Nl)K(Ni=0ωiα(xi+1)α)1/2maxi[0,N]maxk[0,N]×(xi1(xiξ)α+l1(1+ξ)llξY(η(ξ,θk))2dξ)1/2. (47)

    By (41),

    E4ωα1,0c(N1l+Nl)KlξY()ωα+l1,l. (48)

    Similarly, using the Cauchy-Schwarz inequality, we further get

     E5ωα1,0=Tα+12α+1Γ(α)Iα1x,Nx1(xξ)α111xIα1ξ,NˆK(x,ξ,η)(YYN)dθdξωα1,0=Tα+12α+1Γ(α)[Ni=0ωixi1(xiξ)α1dξxi1(xξ)α1Nk=0xiIα1ξ,N׈K(x,ξ,η(ξ,θk))(YYN)2dξ]1/2. (49)

    From the above formula, we can get

     E5ωα1,0Tα+1K2α+1Γ(α)[Ni=0ωixi1(xiξ)α1dξxi1(xiξ)α1Nk=0xiIα1ξ,N×Y(η(ξ,θk))Y(η(ξ,θk))+Y(η(ξ,θk))YN(η(ξ,θk))2dξ]1/2Tα+1K2α+1Γ(α+1)(Ni=0ωiα(xi+1)α)1/2maxi[0,N]maxk[0,N][xi1(xiξ)α1Nk=0xiIα1ξ,NY(η(ξ,θk))Y(η(ξ,θk))2dξ]1/2+cTα+1K2α+1Γ(α+1)(Ni=0ωiα(xi+1)α)1/2maxi[0,N]maxk[0,N][xi1(xiξ)α1Nk=0(Y(η(ξ,θk))YN(η(ξ,θk)))2dξ]1/2. (50)

    Also using Lemma 5.3 and (41), we obtain

     E5ωα1,0c(N1l+Nl)Kmaxi[0,N]maxk[0,N](xi1(xiξ)α+l1(1+ξ)l
    ×lξY(η(ξ,θk))2dξ)1/2+c(N+1)K×maxi[0,N]maxk[0,N](xi1(xiξ)α1Y(η(ξ,θk))YN(η(ξ,θk))2dξ)1/2.

    Drawn by the above formula,

     E5ωα1,0c(N1l+Nl)KlxYωα+l1,l+c(N+1)KeNωα1,0. (51)

    In summary,

     eNωα1,0c(N1l+Nl)KlξYωα+l1,l+cNlGlξ(Y+g)ωα+l1,l+cNl(1+NK+K+G)lxYωα+l1,l. (52)

    Theorem 5.6. Let Y be the exact solution of the original equation (16). YN is the numerical solution obtained by the discrete scheme (25) combined with the approximate equation (24). Let α(0,1). Suppose that YHlωα1,0(Λ)Hlw1/2,1/2(Λ) with 1lN+1, we conclude the following error estimate:

    eNcGN1/2llξ(Y(ξ)+g(ξ))ωα+l1,l+cN1lYω1/2,1/2+c(G+NK+K)N1/2llxYωα+l1,l+cK(N3/2l+N1/2l)lξYωα+l1,l,

    where

    G=maxx[1,1]maxξ[1,x]g(x,ξ),K=maxx[1,1]maxθk[1,1]maxξ[1,x]g(x,ξ,θk)K(ξ,η(ξ,θk)).

    Proof. According to (32),

    eNYIα1x,NY+Iα1x,NYYN5i=1Ei. (53)

    By (5.1) and (5.2), we deduce that

    E1=YIα1x,NY=YI1/2x,NY+Iα1x,NI1/2x,NYIα1x,NY(1+Iα1x,N)YI1/2x,NYcN1lYω1/2,1/2. (54)

    The Cauchy-Schwarz inequality, along with Lemmas 5.1 and 5.3, lead to

     E2=Tα2αΓ(α)Iα1x,Nx1(xξ)α1(IxIα1ξ,N)G(x,ξ)dξTα2αΓ(α)Iα1x,Nmaxx[1,1]x1(xξ)α1(IxIα1ξ,N)G(x,ξ)dξ
    cN1/2maxx[1,1]x1(xξ)α1(IxIα1ξ,N)G(x,ξ)dξcN1/2maxx[1,1][x1(xξ)α1dξx1(xξ)α1(IxIα1ξ,N)×G(x,ξ)2dξ]1/2cGN1/2lmaxx[1,1][x1(xξ)α1(1+ξ)llξ(Y(ξ)+g(ξ))2dξ]1/2cGN1/2llξ(Y(ξ)+g(ξ))ωα+l1,l, (55)

    where

    g(ξ)=(˜g(T(ξ+12)σ)+λ),G=maxx[1,1]maxξ[1,x]g(x,ξ).

    Similarly, by Lemma 5.1 and the Cauchy-Schwarz inequality, we obtain

     E3=Tα2αΓ(α)Iα1x,Nx1(xξ)α1xIα1ξ,N(ˆG(x,ξ)(YYN)))dξTα2αΓ(α)Iα1x,Nmaxx[1,1]x1(xξ)α1xIα1ξ,N(ˆG(x,ξ)(YYN)))dξTα2αΓ(α)N1/2maxx[1,1](xi1(xiξ)α1dξxi1(xiξ)α1×xIα1ξ,N(ˆG(x,ξ)(YYN)))2dξ)1/2. (56)

    Using the Lemma 5.3 yields

    \begin{eqnarray} && \quad \ \mid E_{3}\mid\\ &&\leq cN^{1/2}\max\limits_{x\in[-1, 1]}(\int_{-1}^{x_{i}}(x_{i}-\xi)^{\alpha-1}\mid{_{x}I_{\xi, N}^{\alpha-1}} \Big(\hat{G}(x, \xi)({Y}-Y_{N})\Big)\mid ^{2}d\xi)^{1/2}\\ &&\leq cG^{**}N^{1/2}\max\limits_{x\in[-1, 1]}\left[\int_{-1}^{x}(x-\xi)^{\alpha-1}\mid{{_{x}I_{\xi, N}^{\alpha-1}}}Y(\xi)\right.\\ &&\left.\quad- Y(\xi)\mid ^{2}+\mid Y(\xi)-Y_{N}(\xi)\mid ^{2}d\xi\right]^{1/2}\\ &&\leq cG^{**}N^{1/2-l}\big\Vert\partial_{x}^{l}Y \big\Vert_{\omega^{\alpha+l-1, l}}+cG^{**}N^{1/2}\big\Vert e_{N}\big\Vert_{\omega^{\alpha-1, 0}}. \end{eqnarray} (57)

    By Lemma 5.1,

    \begin{eqnarray} && \quad \ \mid E_{4}\mid \\ && = \frac{T^{\alpha+1}}{2^{\alpha+1}\Gamma(\alpha)}\mid {I_{x, N}^{\alpha-1}}\int_{-1}^{x}(x-\xi)^{\alpha-1}\int_{-1}^{1}(I-{_{x}I_{\xi, N}^{\alpha-1}}){K}(x, \xi, \eta)d\theta d\xi\mid\\ &&\leq\frac{T^{\alpha+1}}{2^{\alpha+1}\Gamma(\alpha)}\big\Vert {I_{x, N}^{\alpha-1}}\big\Vert_\infty\max\limits_{x\in[-1, 1]}\mid \int_{-1}^{x}(x-\xi)^{\alpha-1} \int_{-1}^{1}(I-{_{x}I_{\xi, N}^{\alpha-1}})\\ &&\quad\times{K}(x, \xi, \eta)d\theta d\xi\mid \\ &&\leq cN^{1/2} \max\limits_{x\in[-1, 1]}\mid \int_{-1}^{x}(x-\xi)^{\alpha-1}\int_{-1}^{1}(I-{_{x}I_{\xi, N}^{\alpha-1}}) {K}(x, \xi, \eta)d\theta d\xi\mid. \end{eqnarray} (58)

    We obtain from the Cauchy-Schwarz inequality that

    \begin{eqnarray} && \quad \ \mid E_{4}\mid \\ &&\leq cN^{1/2} \max\limits_{x\in[-1, 1]}\left[ \int_{-1}^{x}(x-\xi)^{\alpha-1}\mid\int_{-1}^{1}(I-{_{x}I_{\xi, N}^{\alpha-1}}){K}(x, \xi, \eta)\mid^{2} d\theta d\xi\right]^{1/2} \\ &&\leq cN^{1/2}\max\limits_{x\in[-1, 1]}\left[ \int_{-1}^{x}(x-\xi)^{\alpha-1}\mid{\sum\limits_{k = 0}^{N}}({I-{_{x}I_{\xi, N}^{\alpha-1}}}){K}(x, \xi, \eta)\mid^{2} d\xi\right]^{1/2}\\ &&\leq cK^{**}(N^{3/2-l}+N^{1/2-l})\max\limits_{x\in[-1, 1]}\max\limits_{\theta_{k}\in[-1, 1]}\left[ \int_{-1}^{x}(x-\xi)^{\alpha+l-1}\right.\\ &&\quad\left.\times(1+\xi)^{l}\mid{\partial}_{\xi}^{l}\Big({Y(\eta(\xi, \theta_{k}))}+\lambda\Big)\mid^{2}d\xi\right]^{1/2} \\ &&\leq cK^{**}(N^{3/2-l}+N^{1/2-l})\big\Vert{\partial}_{\xi}^{l}Y\big\Vert_{\omega^{\alpha+l-1, l}}, \end{eqnarray} (59)

    where

    \begin{eqnarray*} &&{K}(\xi, \eta(\xi, \theta)) = {\tilde{K}}\Big(T(\frac{\xi+1}{2})^{\sigma}, {T}(\frac{\eta(\xi, \theta)+1}{2})^{\sigma}\Big), \\ &&K^{**} = \max\limits_{x\in[-1, 1]}\max\limits_{\theta_{k}\in[-1, 1]}\max\limits_{\xi\in[-1, x]} g(x, \xi, \theta_{k}){K}(\xi, \eta(\xi, \theta_{k})). \end{eqnarray*}

    By Lemma 5.1 and 5.3,

    \begin{eqnarray} && \quad \ \mid E_{5}\mid \\ && = \frac{T^{\alpha+1}}{2^{\alpha+1}\Gamma(\alpha)}\mid {I_{x, N}^{\alpha-1}}\int_{-1}^{x}(x-\xi)^{\alpha-1}\int_{-1}^{1}{_{x}I_{\xi, N}^{\alpha-1}} \hat{{K}}(x, \xi, \eta)(Y-Y_{N})d\theta d\xi\mid\\ &&\leq\frac{T^{\alpha+1}}{2^{\alpha+1}\Gamma(\alpha)}\big\Vert {I_{x, N}^{\alpha-1}}\big\Vert_\infty\max\limits_{x\in[-1, 1]}\mid \int_{-1}^{x}(x-\xi)^{\alpha-1} \int_{-1}^{1}{_{x}I_{\xi, N}^{\alpha-1}} \\ &&\quad\times\hat{{K}}(x, \xi, \eta)(Y-Y_{N})d\theta d\xi\mid \\ &&\leq cN^{1/2} \max\limits_{x\in[-1, 1]}\mid \int_{-1}^{x}(x-\xi)^{\alpha-1}\int_{-1}^{1}{_{x}I_{\xi, N}^{\alpha-1}} \hat{{K}}(x, \xi, \eta)(Y-Y_{N})d\theta d\xi\mid. \end{eqnarray} (60)

    We further get from the Cauchy-Schwarz inequality that

    \begin{eqnarray} && \quad \ \mid E_{5}\mid\\ &&\leq cN^{1/2}\max\limits_{x\in[-1, 1]}\left[\int_{-1}^{x}(x-\xi)^{\alpha-1}d\xi\int_{-1}^{x}(x-\xi)^{\alpha-1}\mid\int_{-1}^{1}{_{x}I_{\xi, N}^{\alpha-1}}\hat{{K}}(x, \xi, \eta)\right.\\ &&\left.\quad\times(Y-Y_{N})d\theta\mid^{2} d\xi\right]^{1/2}\\ &&\leq cN^{1/2} \max\limits_{x\in[-1, 1]}\left[ \int_{-1}^{x}(x-\xi)^{\alpha-1}\mid\int_{-1}^{1}{_{x}I_{\xi, N}^{\alpha-1}} \hat{{K}}(x, \xi, \eta)(Y-Y_{N})d\theta\mid^{2} d\xi\right]^{1/2} \\ &&\leq cK^{**}N^{1/2}\max\limits_{x\in[-1, 1]}\\ &&\quad\times\left[ \int_{-1}^{x}(x-\xi)^{\alpha-1}\mid{\sum\limits_{k = 0}^{N}}{_{x}I_{\xi, N}^{\alpha-1}}\Big({Y(\eta(\xi, \theta_{k}))}-Y_{N}(\eta(\xi, \theta_{k}))\Big)\mid^{2} d\xi\right]^{1/2}\\ &&\leq c(N^{3/2}+N^{1/2})K^{**}\max\limits_{x\in[-1, 1]}\max\limits_{\theta_{k}\in[-1, 1]}\\ &&\quad\times\left[\int_{-1}^{x}(x-\xi)^{\alpha-1}\mid{}{_{x}I_{\xi, N}^{\alpha-1}}Y(\eta(\xi, \theta_{k}))-Y(\eta(\xi, \theta_{k}))\mid^{2} d\xi\right]^{1/2} \end{eqnarray}
    \begin{eqnarray} &&\quad+c(N^{3/2}+N^{1/2})K^{**}\max\limits_{x\in[-1, 1]}\max\limits_{\theta_{k}\in[-1, 1]}\\ &&\quad\times\left[\int_{-1}^{x}(x-\xi)^{\alpha-1}\mid{}Y(\eta(\xi, \theta_{k}))-Y_{N}(\eta(\xi, \theta_{k}))\mid^{2} d\xi\right]^{1/2}. \end{eqnarray} (61)

    It follows from Lemma 5.3 that

    \begin{eqnarray} && \quad \ \mid E_{5}\mid\\ && \leq(N^{3/2}+N^{1/2})K^{**}\max\limits_{x\in[-1, 1]}\max\limits_{\theta_{k}\in[-1, 1]}\left[ \int_{-1}^{x}(x-\xi)^{\alpha+l-1, l}(1+\xi)^{l}\right.\\ &&\quad\left.\times\mid{\partial}_{\xi}^{l}Y(\eta(\xi, \theta_{k}))\mid^{2}d\xi\right]^{1/2}+c(N^{3/2-l}+N^{1/2-l})K^{**} \max\limits_{x\in[-1, 1]}\\ &&\quad\times\max\limits_{\theta_{k}\in[-1, 1]}\left[ \int_{-1}^{x}(x-\xi)^{\alpha-1}\mid e_{N}(\eta(\xi, \theta_{k}))\mid^{2}d\xi\right]^{1/2}\\ &&\leq c(N^{3/2-l}+N^{1/2-l})K^{**}\big\Vert{\partial}_{x}^{l}Y\big\Vert_{\omega^{\alpha+l-1, l}}\\ &&\quad+c(N^{3/2}+N^{1/2})K^{**}\big\Vert e_{N}\big\Vert_{\omega^{\alpha-1, 0}}. \end{eqnarray} (62)

    In summary, we get

    \begin{eqnarray} && \quad \ \big\Vert e_{N}\big\Vert_\infty\\ &&\leq cG^{**}N^{1/2-l}\big\Vert{\partial}_{\xi}^{l}\Big({Y(\xi)}+{g(\xi)}\Big)\big\Vert_{\omega^{\alpha+l-1, l}}+cN^{1-l}\big\Vert Y\big\Vert_{\omega^{-1/2, -1/2}}\\ &&\quad+c(G^{**}+NK^{**}+K^{**})N^{1/2-l}\big\Vert\partial_{x}^{l}Y \big\Vert_{\omega^{\alpha+l-1, l}}\\ &&\quad+cK^{**}(N^{3/2-l}+N^{1/2-l})\big\Vert{\partial}_{\xi}^{l}Y\big\Vert_{\omega^{\alpha+l-1, l}}. \end{eqnarray} (63)

    The theorem is proved.

    In this section, we give numerical examples to illustrate the feasibility and efficiency of the method.

    We consider the following fractional integro-differential equation:

    \begin{eqnarray} &&^{c}_{0}D_{t}^{\frac{2}{3}}{y}(t) = \Gamma(\frac{5}{3})-t^{\frac{8}{3}}-\beta(1, \frac{5}{3})t^{\frac{5}{3}}-{t^{2}}{y(t)}+\int_{0}^{t}{y(\tau)}d\tau, \\ &&{{y}}_{0} = 0, \quad t\in[0, 1]. \end{eqnarray} (64)

    The exact solution is {t}^{\frac{2}{3}} .

    In the table 1, we list L^{\infty} - and L^2_{\omega^{\alpha-1, 0}} -error with N = 10 and \sigma takes values of 1-9. As can be seen from the table, for \sigma takes values of 3, 6 and 9, which are multiples of 3, the error decreases faster and the convergence is better. Through a lot of numerical experiments, we conclude that not for all \sigma taking multiple value of 3, the convergence is better. One cannot predict that the greater the value of \sigma is, the better the convergence is. There is a critical point, which is the value of 27. For \sigma takes values of 2 to 27, the error convergence is better than that without smoothing transformation. To be more intuitive, we give a comparison of the exact solution and numerical solution with N = 10 and \sigma = 1 , 3, 6, and 9 in Figures 1 and 2. And in Figure 3, we give L^\infty - and L^2_{\omega^{\alpha-1, 0}} -error between the exact solution and the numerical solution with N = 10 and \sigma = 1 to 9 and 28. Obviously, the error deceases faster when the value of 3, 6 and 9, which is the multiple of 3. Moreover, at the value of 28, the error convergence effect does not work well without smoothing transformation.

    Table 1.  The L^{\infty} - and L^2_{\omega^{\alpha-1, 0}} -error for N = 10 and \sigma takes values of 1-9.
    N \sigma =1 \sigma =2 \sigma =3
    \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2}
    2 4.31E-03 4.31E-03 4.12E-04 5.06E-04 3.21E-05 3.14E-05
    4 7.92E-04 7.07E-04 2.76E-05 2.84E-05 2.34E-08 1.87E-08
    6 2.63E-04 2.32E-04 5.37E-06 4.37E-06 1.44E-11 1.05E-11
    8 1.15E-04 1.01E-04 1.32E-06 1.05E-06 3.00E-15 1.76E-15
    10 6.01E-05 5.26E-05 4.08E-07 3.32E-07 2.33E-15 1.20E-15
    N \sigma = 4 \sigma = 5 \sigma = 6
    \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2}
    26.47E-036.21E-031.30E-021.24E-021.72E-021.65E-02
    41.70E-051.29E-052.40E-051.75E-056.46E-094.82E-09
    67.51E-075.35E-074.86E-073.18E-078.14E-105.29E-10
    87.42E-085.85E-083.20E-082.20E-085.97E-123.60E-12
    101.46E-081.05E-084.08E-092.89E-093.76E-141.94E-14
    N \sigma = 7 \sigma = 8 \sigma = 9
    \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2}
    21.84E-021.77E-021.68E-021.61E-021.27E-021.21E-02
    40.31E-030.22E-031.03E-030.73E-032.13E-031.52E-03
    65.14E-073.09E-078.26E-074.92E-073.70E-072.28E-07
    81.20E-086.94E-091.11E-085.96E-099.08E-105.12E-10
    107.20E-104.42E-104.26E-102.40E-103.16E-111.68E-11

     | Show Table
    DownLoad: CSV
    Figure 1.  The exact solution and numerical solution for N = 10 and \sigma = 1 and 3.
    Figure 2.  The exact solution and numerical solution for N = 10 and \sigma = 6 and 9.
    Figure 3.  For N = 10 , \sigma takes values of 1-9 and 28, the error of L^\infty and L^2_{\omega^{\alpha-1, 0}} changes as the collocation point N increases.

    Consider

    \begin{eqnarray} &&{}^{c}_{0}{D}_{t}^{\frac{1}{2}}{y}(t) = f(t)+\int_{0}^{t}t\tau y(\tau)d\tau, \quad t\in[0, 1], \\ &&{{y}}_{0} = 0, \end{eqnarray} (65)

    where f(t) = \frac{\sqrt{\pi}}{2}BesselJ[0, \sqrt{t}]-t\Big(-2(-6+t)\sqrt{t}cos\sqrt{t}+6(-2+t)sin\sqrt{t}\Big) .

    The exact solution is sin\sqrt{t} .

    We list the L^{\infty} - and L^2_{\omega^{\alpha-1, 0}} -error with N = 10 and \sigma takes values of 1-6 in Table 2. From the table, we can also see that when \sigma takes values of 2 and 4, which is the multiple of 2, the error decreases faster. And through a large number of numerical experiments, we get a critical point of \sigma , which is the value of 14. When \sigma takes values of 2-13, the error convergence is better than that without smoothing transformation. For the sake of intuition, we give a comparison when N = 10 and \sigma takes values of 1, 2 and 4 in Figure 4. In Figures 5, the L^\infty - and L^2_{\omega^{\alpha-1, 0}} -error between the exact solution and the numerical solution are given when N = 10 and \sigma takes values 1-6 and 14. It clear that when \sigma takes values of 2 and 4, which are multiples of 2, the error is smaller. While \sigma takes the value of 14, the error is worse than that without smoothing transformation.

    Table 2.  The L^{\infty} - and L^2_{\omega^{\alpha-1, 0}} -error for N = 10 and \sigma takes values of 1-6.
    N \sigma =1 \sigma =2 \sigma =3
    \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2}
    2 3.13E-04 4.55E-04 2.79E-04 3.21E-04 1.86E-03 2.14E-03
    4 2.30E-05 2.85E-05 2.11E-07 1.85E-07 3.37E-06 3.58E-06
    6 4.27E-06 5.23E-06 1.62E-10 1.54E-10 5.11E-07 4.18E-07
    8 1.38E-06 1.51E-06 1.01E-13 8.56E-14 6.87E-08 6.62E-08
    10 5.29E-07 5.61E-07 4.77E-15 4.36E-15 1.88E-08 1.57E-08
    N \sigma = 4 \sigma = 5 \sigma = 6
    \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2}
    23.94E-034.53E-035.31E-036.11E-033.86E-034.44E-03
    42.70E-052.51E-051.38E-041.27E-044.51E-044.12E-04
    63.23E-072.62E-078.69E-077.52E-071.09E-069.15E-07
    81.44E-091.12E-095.54E-083.90E-081.67E-071.18E-07
    103.14E-112.70E-112.06E-091.61E-093.68E-092.52E-09

     | Show Table
    DownLoad: CSV
    Figure 4.  The exact solution and numerical solution for N = 10 and \sigma = 1, 2 and 4.
    Figure 5.  For N = 10 and \sigma takes values of 1-6 and 14, the error of L^\infty and L^2_{\omega^{\alpha-1, 0}} changes as the collocation point N increases.

    Consider the following equation

    \begin{eqnarray} &&^{c}_{0}D_{t}^{\frac{1}{4}}{y}(t) = f(t)+\int_{0}^{t}te^{\tau} y(\tau)d\tau, \quad t\in[0, 1], \\ &&{{y}}_{0} = 0, \end{eqnarray} (66)

    where f(t) = \frac{t}{4}\Big(2 {e^t}(3-2t)\sqrt{t}-3\sqrt{\pi}Erfi[\sqrt{t}]+\frac{3\sqrt{\pi}{t^{\frac{1}{4}}}}{\Gamma(\frac{9}{4})}\Big) .

    The exact solution is {y}(t) = t\sqrt{t} .

    In Table 3, We list the L^{\infty} - and L^2_{\omega^{\alpha-1, 0}} -error when N = 10 and \sigma takes values of 1-6. From the table, when \sigma takes the value of 4, which is the multiple of 4, the error decreases faster and the convergence is better. Through a lot of numerical experiments, we derive a critical point of the \sigma , which is the value of 8 . When \sigma takes values of 2-7, the error is better than the situation that the smoothing transformation is not performed. We give a comparison when N = 10 and \sigma takes values of 1, 2 and 4 in Figures 6. In Figure 7, the L^\infty - and L^2_{\omega^{\alpha-1, 0}} -error are given when N = 10 and \sigma takes values of 1-6 and 8. Obviously, when \sigma takes multiples of 4, the error decreases faster. However, when \sigma takes the value of 8, the error is not good without smoothing transformation.

    Table 3.  The L^{\infty} -and L^2_{\omega^{\alpha-1, 0}} -error for N = 10 and \sigma takes values of 1-6.
    N \sigma =1 \sigma =2 \sigma =3
    \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2}
    2 3.34E-04 6.18E-04 3.65E-03 6.78E-03 3.94E-02 6.96E-02
    4 5.68E-05 9.69E-05 3.54E-06 5.57E-06 1.79E-04 2.87E-04
    6 1.17E-05 1.97E-05 1.77E-08 2.78E-08 5.01E-07 7.54E-07
    8 3.58E-06 6.02E-06 1.66E-09 2.60E-09 3.82E-09 4.57E-09
    10 1.39E-06 2.33E-06 2.68E-10 4.17E-10 2.67E-10 2.90E-10
    N \sigma = 4 \sigma = 5 \sigma = 6
    \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2}
    27.75E-021.37E-019.07E-021.60E-018.04E-021.42E-01
    47.27E-041.25E-031.02E-031.21E-032.33E-033.89E-03
    61.27E-051.84E-051.00E-041.47E-043.62E-045.36E-04
    86.24E-088.53E-081.10E-061.50E-068.27E-061.13E-05
    102.09E-102.73E-108.63E-091.13E-081.15E-071.50E-07

     | Show Table
    DownLoad: CSV
    Figure 6.  The exact solution and numerical solution for N = 10 and \sigma = 1, 2 and 4.
    Figure 7.  For N = 10 and \sigma takes values of 1-6 and 8, the error of L^\infty and L^2_{\omega^{\alpha-1, 0}} changes as the collocation point N increases.

    In this paper, we first study in detail the reason why the fractional integro-differential equation has non-smooth solution. We eliminate the singularity of the solution by introducing a smooth transformation. Then we use the Jacobi spectral-collocation method with global and high precision characteristics to solve the transformed equation. Particularly, we have proved that the convergence rate for non-smooth solutions can be enhanced by using a suitable smoothing transformation, which allows us to adjust a parameter in the solution in view of a priori known regularity of the given data. The proposed scheme has many advantages, including (i) ease of implementation, (ii) lower computational cost, and (iii) exponential accuracy. In addition, we give a theoretical proof of the convergence of collocation method, in both L^\infty -norm and L^2_{\omega^{\alpha, \beta}} -norm. Finally, we give some specific numerical examples. The numerical results confirm the validity of scheme and the correctness of the conclusions for solving the fractional integro-differential equation. This indicates that the proposed scheme possesses a good prospect in solving fractional integro-differential equations with non-smooth solutions. Next, we will apply the methods in this paper to solve the nonlinear fractional integro-differential equations.

    This work was supported by National Natural Science Foundation of China Project (11671342, 11771369, and 11931003), the Project of Scientic Research Fund of the Hunan Provincial Science and Technology Department (2020JJ2027, 2018WK4006, and 2019YZ3003), and the Key Project of Hunan Provincial Department of Education (17A210).



    [1] Beasley M, Pagach D, Warr R (2008) The information conveyed in hiring announcements of senior executives overseeing enterprise-wide risk management processes. J Accounting Auditing Financ 23: 311-332. doi: 10.1177/0148558X0802300303
    [2] Bromiley P, McShane M, Nair A, et al. (2015) Enterprise Risk Management: Review, Critique, and Research Directions. Long Range Plann 48: 265-276. doi: 10.1016/j.lrp.2014.07.005
    [3] Cadbury A (2002) Corporate Governance and Chairmanship: A Personal View, Oxford University Press, Oxford.
    [4] Collier PM, Berry A, Burke GT (2006) Risk and Management Accounting: Best Practice Guidelines for Enterprise-Wide Internal Control Procedures, 1st Edition
    [5] Coşkun Y (2012) Financial Failures and Risk Management. Sermaye Piyasası Dergisi 10: 100-109.
    [6] Dorfman MS (2007) Introduction to Risk Management and Insurance (9th Edition), USA: Pearson.
    [7] Eduardus T, Hermeindito K, Putu A, et al. (2007) Corporate governance, risk management and bank performance, University Yogyakarta, Indonesia.
    [8] Gates S, Nicolas J, Walker PL (2012) Enterprise risk management: A process for enhanced management and improved performance. Manage Accounting Q 13: 28-38.
    [9] Hagerty J, Scott F (2005) Spending in the Age of Compliance. AMR Res.
    [10] Hoyt RE, Liebenberg AP (2011) The value of enterprise risk management. J Risk Insur 78: 795-822. doi: 10.1111/j.1539-6975.2011.01413.x
    [11] Huber C, Scheytt T (2013) The Deposit of Risk Management: Reconstructing Risk Management after the Financial Crisis. Manage Accounting Res 24: 88-99. doi: 10.1016/j.mar.2013.04.006
    [12] Manab NA, Kassim I, Hussin MR (2010) Enterprise-wide risk management (EWRM) practices: between corporate governance compliance and value creation. Int Rev Bus Res Pap 6: 239-252.
    [13] Meulbroek LK (2005) A senior manager's guide to integrated risk management. Appl Corp Financ 14: 56-70. doi: 10.1111/j.1745-6622.2002.tb00449.x
    [14] Naeche N (2012) NAICOM releases guideline for Risk Management Framework for Insurers, Re-InsurersTo commence implementation July 2012. Worldstage. Available from: http://worldstagegroup.com/worldstagenew/index.php?active=news&newscid=3894&catid=2.
    [15] Ohiorenoya EA, Iwedi M, Igbanibo DS (2016) Sectorial Analysis of the Risk-Return Characteristic of Quoted Stocks in the Nigerian Stock Exchange. Account Financ Manage J 1: 25-55.
    [16] Olayinka E, Emoarehi E, Jonah A, et al. (2017) Enterprise Risk Management and Financial Performance: Evidence from Emerging Market. Int J Manage Accounting Econ 4: 937-952.
    [17] Onyeka SC (2012) Towards effective compliance with the guidelines for developing enterprise risk management framework for insurers and reinsurers. J Insur Law Practice 2: 3-11.
    [18] Pagach D, Warr R (2010) The Characteristics of Firms that Hire Chief Risk Officers. J Risk Insur 78: 185-211. doi: 10.1111/j.1539-6975.2010.01378.x
    [19] Roberts H (2005) Enterprise risk management: Along-term solution for compliance, governance and sustained growth in shareholder value, Entropy International White Paper.
    [20] Salaudeen YM, Atoyebi TA, Oyegbile BA (2018) Enterprise Risk Management and Performance of Selected Listed Consumer Goods Companies in Nigeria. Appl Financ Accounting 4: 112-121.
    [21] Sobel PJ, Reding KF (2004) Aligning corporate governance with enterprise risk management. Manage Accounting Q 5: 29-37.
    [22] Tahir IM, Razali AR (2011) The Relation between Enterprise Risk Management and Firm Value: Evidence from Malaysian Public listed Companies. Int J Econ Manage 1: 32-41.
    [23] Udoka C, Orok A (2017) Assessment of the Enterprise Risk Management (ERM) in the Nigerian Banking Industry. Asian J Econ Empir Res 4: 68-74. doi: 10.20448/journal.501.2017.42.68.74
    [24] Wu DD, Olson D (2010) Enterprise risk management: a DEA VaR approach in vendor selection. Int J Prod Res 48: 4919-4932. doi: 10.1080/00207540903051684
    [25] Zahiruddin G, Norlida AM (2013) Enterprise Risk Management and Value Creation: Initial Findings amongst Non-Financial Public Listed Companies in Malaysian Bourse. Asian Econ Financ Rev 3: 913-922.
  • This article has been cited by:

    1. Yuhai Zhong, Huashan Feng, Hongbo Wang, Runxiao Wang, Weiwei Yu, A bionic topology optimization method with an additional displacement constraint, 2023, 31, 2688-1594, 754, 10.3934/era.2023037
    2. Giovanna C. Andrade, Sandra A. Santos, A level-set-based topology optimization strategy using radial basis functions and a Hilbertian velocity extension, 2022, 111, 0307904X, 108, 10.1016/j.apm.2022.06.026
    3. Fengling Jin, Ye Yang, Zhibin Xiao, Boqing Gao, Haopeng Lou, Shear wall layout optimization of multi-tower buildings based on conceptual design and extended evolutionary structural optimization method, 2023, 0305-215X, 1, 10.1080/0305215X.2022.2161535
    4. Davide Cortellessa, Nicola Ferro, Simona Perotto, Stefano Micheletti, Enhancing level set-based topology optimization with anisotropic graded meshes, 2023, 447, 00963003, 127903, 10.1016/j.amc.2023.127903
    5. An Xu, Shumin Li, Jiyang Fu, Anil Misra, Ruohong Zhao, A hybrid method for optimization of frame structures with good constructability, 2023, 276, 01410296, 115338, 10.1016/j.engstruct.2022.115338
    6. Anatoliy Martynyuk, Gani Stamov, Ivanka Stamova, Yulya Martynyuk–Chernienko, Regularization scheme for uncertain fuzzy differential equations: Analysis of solutions, 2023, 31, 2688-1594, 3832, 10.3934/era.2023195
    7. Feiteng Cheng, Qinghai Zhao, Zibin Mao, Fajie Wang, Mechanical Response of Gradient Lattice Structures Based on Topology Optimization, 2024, 26, 1438-1656, 10.1002/adem.202301887
    8. Qianfeng Cao, Ning Dai, Jiuyang Bai, Hongqing Dai, A dimensionality reduction optimization method for thin-walled parts to realize mass center control and lightweight design, 2024, 0305-215X, 1, 10.1080/0305215X.2024.2350648
    9. Martin Sotola, Pavel Marsalek, David Rybansky, Jan Kopacka, Dusan Gabriel, Ondrej Jezek, Ludek Kovar, Josef Tejc, Miloslav Pasek, Radim Halama, Michal Barnovsky, Application of Surface-Based Smoothing Methods for Topology Optimization Results, 2024, 16, 1758-8251, 10.1142/S1758825124500868
    10. Mingtao Cui, Wang Li, Guang Li, Xiaobo Wang, The asymptotic concentration approach combined with isogeometric analysis for topology optimization of two-dimensional linear elasticity structures, 2023, 31, 2688-1594, 3848, 10.3934/era.2023196
    11. Qianqian Sui, Jun Yan, Zhirui Fan, Zhihui Liu, Stress-constrained topology optimization for multi-material thermo-hyperelastic compliant mechanisms based on inverse motion, 2024, 0305-215X, 1, 10.1080/0305215X.2023.2301552
    12. Mingtao Cui, Wennan Cui, Wang Li, Xiaobo Wang, A polygonal topology optimization method based on the alternating active-phase algorithm, 2024, 32, 2688-1594, 1191, 10.3934/era.2024057
    13. Mohammed Hameed Hafeeth, Ying Liu, An efficient volume-preserving binary filter for additive manufacturing in topology optimization, 2024, 0305-215X, 1, 10.1080/0305215X.2024.2382799
    14. Xingjun Gao, Longhua Li, Yingxiong Li, Meiling Dai, Robust topology optimization of multi-material structures based on the material-field series-expansion method, 2024, 0305-215X, 1, 10.1080/0305215X.2024.2340062
    15. Xingjun Gao, Longhua Li, Jingtong Chen, Yingxiong Li, Robust topology optimization of multi-material structures with overhang angle constraints using the material field series-expansion method, 2024, 69, 23520124, 107359, 10.1016/j.istruc.2024.107359
    16. J. Li, B. Kang, Y. Sun, Y. Huang, J. Guo, Z. Gao, Dynamic Characteristic Analysis of the Shield Machine Three-Stage Planetary Reducer Considering Tooth Wear, 2024, 12, 2523-3920, 7291, 10.1007/s42417-023-01188-w
    17. Yun Ni, Jinqing Zhan, Min Liu, Topological design of continuum structures with global stress constraints considering self-weight loads, 2023, 31, 2688-1594, 4708, 10.3934/era.2023241
    18. Wangyu Liu, Guanghui Huang, Weigui Xie, An efficient cross-platform multi-material topology optimization approach occupying enhanced BESO method, 2024, 0025-6455, 10.1007/s11012-024-01916-w
    19. Hongshuo Fan, Jianli Liu, Haobo Zhang, Tao Nie, Jingui Yu, Jianzhong Yang, Zhaohui Xia, Evolutionary topology optimization for elastoplastic structures via isogeometric analysis, 2025, 0305-215X, 1, 10.1080/0305215X.2024.2443738
    20. Qiwei Hu, Shengbo Hu, Mengxia Liu, A Multi-Objective Nutcracker Optimization Algorithm Based on Cubic Chaotic Map for Numerical Association Rule Mining, 2025, 15, 2076-3417, 1611, 10.3390/app15031611
    21. Rongbo Zhou, Shuli Sun, A degree-based topological optimization method for triangular meshes, 2025, 0020-7160, 1, 10.1080/00207160.2025.2466765
    22. Fangyi Li, Yuming Yin, Rong Zeng, Dachang Zhu, Topology optimization and mechanical performance analysis of P-type triply periodic minimal surface structures, 2025, 47, 1678-5878, 10.1007/s40430-025-05439-7
    23. Tianbo Wang, Zhaoyi Luo, Minxiang Wei, Jiang Wu, Wenshuai Xue, Ranran Liu, An improved scheme based on the variable density method for structural topology optimization, 2025, 0954-4062, 10.1177/09544062251324422
    24. Zhao Li, Hongyu Xu, Shuai Zhang, Jintao Cui, Xiaofeng Liu, Waqas Saleem, Design of the multi-material structure using an MMC-SIMP sequential topology optimization method, 2025, 20, 1932-6203, e0321100, 10.1371/journal.pone.0321100
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6614) PDF downloads(473) Cited by(6)

Figures and Tables

Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog