Citation: S. J. Olshansky, L. Hayflick. The Role of the WI-38 Cell Strain in Saving Lives and Reducing Morbidity[J]. AIMS Public Health, 2017, 4(2): 127-138. doi: 10.3934/publichealth.2017.2.127
[1] | Benoît Perthame, Edouard Ribes, Delphine Salort . Career plans and wage structures: a mean field game approach. Mathematics in Engineering, 2019, 1(1): 38-54. doi: 10.3934/Mine.2018.1.38 |
[2] | Yves Achdou, Ziad Kobeissi . Mean field games of controls: Finite difference approximations. Mathematics in Engineering, 2021, 3(3): 1-35. doi: 10.3934/mine.2021024 |
[3] | Diogo Gomes, Julian Gutierrez, Ricardo Ribeiro . A mean field game price model with noise. Mathematics in Engineering, 2021, 3(4): 1-14. doi: 10.3934/mine.2021028 |
[4] | Mario Pulvirenti . On the particle approximation to stationary solutions of the Boltzmann equation. Mathematics in Engineering, 2019, 1(4): 699-714. doi: 10.3934/mine.2019.4.699 |
[5] | Pablo Blanc, Fernando Charro, Juan J. Manfredi, Julio D. Rossi . Games associated with products of eigenvalues of the Hessian. Mathematics in Engineering, 2023, 5(3): 1-26. doi: 10.3934/mine.2023066 |
[6] | François Murat, Alessio Porretta . The ergodic limit for weak solutions of elliptic equations with Neumann boundary condition. Mathematics in Engineering, 2021, 3(4): 1-20. doi: 10.3934/mine.2021031 |
[7] | Dmitrii Rachinskii . Bifurcation of relative periodic solutions in symmetric systems with hysteretic constitutive relations. Mathematics in Engineering, 2025, 7(2): 61-95. doi: 10.3934/mine.2025004 |
[8] | Isabeau Birindelli, Kevin R. Payne . Principal eigenvalues for k-Hessian operators by maximum principle methods. Mathematics in Engineering, 2021, 3(3): 1-37. doi: 10.3934/mine.2021021 |
[9] | Luis Silvestre, Stanley Snelson . Solutions to the non-cutoff Boltzmann equation uniformly near a Maxwellian. Mathematics in Engineering, 2023, 5(2): 1-36. doi: 10.3934/mine.2023034 |
[10] | Serena Della Corte, Antonia Diana, Carlo Mantegazza . Global existence and stability for the modified Mullins–Sekerka and surface diffusion flow. Mathematics in Engineering, 2022, 4(6): 1-104. doi: 10.3934/mine.2022054 |
The centrality of necessary conditions in optimal control is well-known and has originated an immense literature in the fields of optimization and nonsmooth analysis, see, e.g., [3,16,17,29,33,35].
In control theory, the celebrated Pontryagin Maximum Principle plays the role of the classical Euler-Lagrange equations in the calculus of variations. In the case of unrestricted state space, such conditions provide Lagrange multipliers---the so-called co-states---in the form of solutions to a suitable adjoint system satisfying a certain transversality condition. Among various applications of necessary optimality conditions is the deduction of further regularity properties for minimizers which, a priori, would just be absolutely continuous.
When state constraints are present, a large body of results provide adaptations of the Pontryagin Principle by introducing appropriate corrections in the adjoint system. The price to pay for such extensions usually consists of reduced regularity for optimal trajectories which, due to constraint reactions, turn out to be just Lipschitz continuous while the associated co-states are of bounded variation, see [20].
The maximum principle under state constraints was first established by Dubovitskii and Milyutin [17] (see also the monograph [35] for different forms of such a result). It may happen that the maximum principle is degenerate and does not yield much information (abnormal maximum principle). As explained in [8,10,18,19] in various contexts, the so-called "inward pointing condition" generally ensures the normality of the maximum principle under state constraints. In our setting (calculus of variation problem, with constraints on positions but not on velocities), this will never be an issue. The maximum principle under state constraints generally involves an adjoint state which is the sum of a
Let
Γ={γ∈AC(0,T;Rn): γ(t)∈¯Ω, ∀t∈[0,T]}, |
with the uniform metric. For any
Γ[x]={γ∈Γ:γ(0)=x}. |
We consider the problem of minimizing the classical functional of the calculus of variations
J[γ]=∫T0f(t,γ(t),˙γ(t))dt+g(γ(T)). |
Let
infγ∈Γ[x]J[γ], where J[γ]={∫T0f(t,γ(t),˙γ(t))dt+g(γ(T))}, | (1.1) |
where
{˙γ⋆(t)=−DpH(t,γ⋆(t),p(t)) for all t∈[0,T]˙p(t)=DxH(t,γ⋆(t),p(t))−Λ(t,γ⋆,p)1∂Ω(γ⋆)DbΩ(γ⋆(t))for a. e. t∈[0,T] | (1.2) |
where
infγ∈AC(0,T;Rn)γ(0)=x{∫T0[f(t,γ(t),˙γ(t))+1ϵ dΩ(γ(t))]dt+1δ dΩ(γ(T))+g(γ(T))}. |
Then, we show that all solutions of the penalized problem remain in
A direct consequence of our necessary conditions is the Lipschitz regularity of the value function associated to (1.1) (Proposition 4.1).
Our interest is also motivated by application to mean field games, as we explain below. Mean field games (MFG) theory has been developed simultaneously by Lasry and Lions ([25,26,27]) and by Huang, Malhamé and Caines ([23,24]) in order to study differential games with an infinite number of rational players in competition. The simplest MFG model leads to systems of partial differential equations involving two unknown functions: the value function
This paper is organised as follows. In Section 2, we introduce the notation and recall preliminary results. In Section 3, we derive necessary conditions for the constrained problem. Moreover, we prove the
Throughout this paper we denote by
||A||=maxx∈Rn,|x|=1||Ax|| . |
For any subset
1S(x)={1 x∈S,0x∈Sc. |
We write
Let
‖ϕ‖k,∞:=supx∈U|α|≤k|Dαϕ(x)|<∞ |
Let
The distance function from
dΩ(x):=infy∈¯Ω|x−y| (x∈Rn). |
We define the oriented boundary distance from
bΩ(x)=dΩ(x)−dΩc(x) (x∈Rn). |
We recall that, since the boundary of
bΩ(⋅)∈C2b on Σρ0={y∈B(x,ρ0):x∈∂Ω}. | (2.1) |
Throughout the paper, we suppose that
Take a continuous function
p⋅(y−x)≤f(y)−f(x)+C|y−x|2 for all y that satisfy |y−x|≤ϵ. |
The set of all proximal subetaadients of
The set of all limiting subetaadients of
Lemma 2.1. Let
∂pdΩ(x)=∂dΩ(x)={DbΩ(x) 0<bΩ(x)<ρ0,DbΩ(x)[0,1]x∈∂Ω,0x∈Ω, |
where
The proof is given in the Appendix.
Let
supp(η):={x∈X:η(V)>0 for each neighborhood V of x}. |
We say that a sequence
limi→∞∫Xf(x)dηi(x)=∫Xf(x)dη ∀f∈Cb(X). |
We denote by
d1(m,m′)=sup{∫Xf(x)dm(x)−∫Xf(x)dm′(x) | f:X→R is 1-Lipschitz}, | (2.2) |
for all
Let
d1(m(t),m(s))≤C|t−s|, ∀t,s∈[0,T], | (2.3) |
for some constant
Let
Γ={γ∈AC(0,T;Rn): γ(t)∈¯Ω, ∀t∈[0,T]}. |
For any
Γ[x]={γ∈Γ:γ(0)=x}. |
Let
infγ∈Γ[x]J[γ], where J[γ]={∫T0f(t,γ(t),˙γ(t))dt+g(γ(T))}. | (3.1) |
We denote by
X[x]={γ⋆∈Γ[x]:J[γ⋆]=infΓ[x]J[γ]}. |
We assume that
(g1)
(f0)
|f(t,x,0)|+|Dxf(t,x,0)|+|Dvf(t,x,0)|≤M ∀ (t,x)∈[0,T]×U. | (3.2) |
(f1) For all
Iμ≤D2vvf(t,x,v)≤Iμ, | (3.3) |
||D2vxf(t,x,v)||≤μ(1+|v|), | (3.4) |
for all
(f2) For all
|f(t,x,v)−f(s,x,v)|≤κ(1+|v|2)|t−s| | (3.5) |
|Dvf(t,x,v)−Dvf(s,x,v)|≤κ(1+|v|)|t−s| | (3.6) |
for all
Remark 3.1. By classical results in the calculus of variation (see, e.g., [15, Theorem 11.1i]), there exists at least one minimizer of (3.1) in
In the next lemma we show that (f0)-(f2) imply the useful growth conditions for
Lemma 3.1. Suppose that (f0)-(f2) hold. Then, there exists a positive constant
|Dvf(t,x,v)|≤C(μ,M)(1+|v|), | (3.7) |
|Dxf(t,x,v)|≤C(μ,M)(1+|v|2), | (3.8) |
14μ|v|2−C(μ,M)≤f(t,x,v)≤4μ|v|2+C(μ,M), | (3.9) |
for all
Proof. By (3.2), and by (3.3) one has that
|Dvf(t,x,v)|≤|Dvf(t,x,v)−Dvf(t,x,0)|+|Dvf(t,x,0)|≤∫10|D2vvf(t,x,τv)||v|dτ+|Dvf(t,x,0)|≤μ|v|+M≤C(μ,M)(1+|v|) |
and so (3.7) holds. Furthermore, by (3.2), and by (3.4) we have that
|Dxf(t,x,v)|≤|Dxf(t,x,v)−Dxf(t,x,0)|+|Dxf(t,x,0)|≤∫10|D2xvf(t,x,τv)||v|dτ+M≤μ(1+|v|)|v|+M≤C(μ,M)(1+|v|2). |
Therefore, (3.8) holds. Moreover, fixed
f(t,x,v)=f(t,x,0)+⟨Dvf(t,x,0),v⟩+12⟨D2vvf(t,x,ξ)v,v⟩. |
By (3.2), (3.3), and by (3.7) we have that
−C(μ,M)+14μ|v|2≤−M−C(μ,M)|v|+12μ|v|2≤f(t,x,v)≤M+C(μ,M)|v|+μ2|v|2≤C(μ,M)+4μ|v|2, |
and so (3.9) holds. This completes the proof.
In the next result we show a special property of the minimizers of (3.1).
Lemma 3.2. For any
∫T014μ|˙γ⋆(t)|2dt≤K, |
where
K:=T(C(μ,M)+M)+2maxU|g(x)|. | (3.10) |
Proof. Let
∫T0f(t,γ⋆(t),˙γ⋆(t))dt+g(γ⋆(T))≤∫T0f(t,x,0)dt+g(x)≤Tmax[0,T]×U|f(t,x,0)|+maxU|g(x)|. | (3.11) |
Using (3.2) and (3.9) in (3.11), one has that
∫T014μ|˙γ⋆(t)|2dt≤K, |
where
K:=T(C(μ,M)+M)+2maxU|g(x)|. |
We denote by
H(t,x,p)=supv∈Rn{−⟨p,v⟩−f(t,x,v)},∀ (t,x,p)∈[0,T]×U×Rn. |
Our assumptions on
(H0)
|H(t,x,0)|+|DxH(t,x,0)|+|DpH(t,x,0)|≤M′ ∀ (t,x)∈[0,T]×U. | (3.12) |
(H1) For all
Iμ≤D2ppH(t,x,p)≤Iμ, | (3.13) |
||D2pxH(t,x,p)||≤C(μ,M′)(1+|p|), | (3.14) |
for all
(H2) For all
|H(t,x,p)−H(s,x,p)|≤κC(μ,M′)(1+|p|2)|t−s|, | (3.15) |
|DpH(t,x,p)−DpH(s,x,p)|≤κC(μ,M′)(1+|p|)|t−s|, | (3.16) |
for all
Remark 3.2. Arguing as in Lemma 3.1 we deduce that
|DpH(t,x,p)|≤C(μ,M′)(1+|p|), | (3.17) |
|DxH(t,x,p)|≤C(μ,M′)(1+|p|2), | (3.18) |
14μ|p|2−C(μ,M′)≤H(t,x,p)≤4μ|p|2+C(μ,M′), | (3.19) |
for all
Under the above assumptions on
Theorem 3.1. For any
(i)
(ii) There exist:
(a) a Lipschitz continuous arc
(b) a constant
0≤ν≤max{1,2μ supx∈U|DpH(T,x,Dg(x))|}, |
which satisfy the adjoint system
{˙γ⋆=−DpH(t,γ⋆,p) for all t∈[0,T],˙p=DxH(t,γ⋆,p)−Λ(t,γ⋆,p)1∂Ω(γ⋆)DbΩ(γ⋆)for a.e. t∈[0,T], | (3.20) |
and the transversality condition
p(T)=Dg(γ⋆(T))+νDbΩ(γ⋆(T))1∂Ω(γ⋆(T)), |
where
Moreover,
(iii) the following estimate holds
||˙γ⋆||∞≤L⋆, ∀γ⋆∈X[x], | (3.21) |
where
The (feedback) function
In this section, we prove Theorem 3.1 in the special case of
The proof is based on [12, Theorem 2.1] where the Maximum Principle under state constraints is obtained for a Mayer problem. The reasoning requires several intermediate steps.
Fix
infγ∈AC(0,T;Rn)γ(0)=x{∫T0[f(t,γ(t),˙γ(t))+1ϵ dΩ(γ(t))]dt+1δ dΩ(γ(T))+g(γ(T))}. | (3.22) |
Then, we will show that, for
Observe that the Hamiltonian associated with the penalized problem is given by
Hϵ(t,x,p)=supv∈Rn{−⟨p,v⟩−f(t,x,v)−1ϵ dΩ(x)}=H(t,x,p)−1ϵ dΩ(x), | (3.23) |
for all
By classical results in the calculus of variation (see, e.g., [15, Section 11.2]), there exists at least one mimimizer of (3.22) in
Remark 3.3. Arguing as in Lemma 3.2 we have that, for any
∫T0[14μ|˙γ(t)|2+1ϵ dΩ(γ(t))]dt≤K, | (3.24) |
where
The first step of the proof consists in showing that the solutions of the penalized problem remain in a neighborhood of
Lemma 3.3. Let
∀ x∈¯Ω, γ∈Xϵ,δ[x] ⟹ supt∈[0,T]dΩ(γ(t))≤ρ. | (3.25) |
Proof. We argue by contradiction. Assume that, for some
ϵk↓0, δk>0, tk∈[0,T], xk∈¯Ω, γk∈Xϵk,δk[xk] and dΩ(γk(tk))>ρ, for all k≥1. |
By Remark 3.3, one has that for all
∫T0[14μ|˙γk(t)|2+1ϵk dΩ(γk(t))]dt≤K, |
where
dΩ(γk(tk))−dΩ(γk(s))≤(4μK)1/2|tk−s|1/2, s∈[0,T]. |
Since
dΩ(γk(s))>ρ−(4μK)1/2|tk−s|1/2. |
Hence,
K≥1ϵk∫T0dΩ(γk(t))dt≥1ϵk∫JdΩ(γk(t))dt≥1ϵkρ332μK. |
But the above inequality contradicts the fact that
In the next lemma, we show the necessary conditions for the minimizers of the penalized problem.
Lemma 3.4. Let
(i)
(ii) there exists an arc
{˙γ(t)=−DpH(t,γ(t),p(t)), for all t∈[0,T],˙p(t)=DxH(t,γ(t),p(t))−λ(t)ϵ DbΩ(γ(t)),for a.e. t∈[0,T],p(T)=Dg(γ(T))+βδ DbΩ(γ(T)), | (3.26) |
where
λ(t)∈{{0}ifγ(t)∈Ω,{1}if0<dΩ(γ(t))<ρ,[0,1]ifγ(t)∈∂Ω, | (3.27) |
and
β∈{{0}ifγ(T)∈Ω,{1}if0<dΩ(γ(T))<ρ,[0,1]ifγ(T)∈∂Ω. | (3.28) |
Moreover,
(iii) the function
r(t):=H(t,γ(t),p(t))−1ϵ dΩ(γ(t)), ∀t∈[0,T] |
belongs to
∫T0|˙r(t)|dt≤κ(T+4μK), |
where
(iv) the following estimate holds
|p(t)|2≤4μ[1ϵdΩ(γ(t))+C1δ2], ∀t∈[0,T], | (3.29) |
where
Proof. In order to use the Maximum Principle in the version of [35, Theorem 8.7.1], we rewrite (3.22) as a Mayer problem in a higher dimensional state space. Define
X(t)=(γ(t)z(t)), |
where
{˙X(t)=(˙γ(t)˙z(t))=Fϵ(t,X(t),u(t)),X(0)=(x00). |
where
Fϵ(t,X,u)=(uLϵ(t,x,u)) |
and
\min \Big\{ \Phi(X^u(T)):u \in L^1\Big\}, | (3.30) |
where
\begin{equation*} \mathcal{H}_\epsilon (t, X, P, u) = - \langle P, \mathcal{F}_\epsilon(t, X, u)\rangle, \qquad \forall (t, X, P, u)\in [0, T]\times \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}\times \mathbb{R}^n. \end{equation*} |
We observe that, as
(ⅰ)
(ⅱ)
(ⅲ)
(ⅳ)
(ⅴ)
where
(p, b, \lambda_0)\not \equiv (0, 0, 0), | (3.31) |
(\dot{r}(t), \dot{p}(t)) \in -b(t)\ co\ \partial_{t, x}\mathcal{L}_{\epsilon}(t, \gamma(t), \dot{\gamma}(t)), | (3.32) |
\dot{b}(t) = 0, | (3.33) |
p(T) \in \lambda_0\ \partial(g+\frac{1}{\delta} \ d_{\Omega})(\gamma(T)), | (3.34) |
b(T) = \lambda_0, | (3.35) |
r(t) = H_\epsilon(t, \gamma(t), p(t)), | (3.36) |
where
Note that the Weierstrass Condition (ⅳ) becomes
-\langle p(t), \dot{\gamma}(t)\rangle-f(t, \gamma(t), \dot \gamma(t)) = \sup\limits_{u\in \mathbb{R}^n} \Big\{-\langle p(t), u\rangle -f(t, \gamma(t), u)\Big\}. | (3.37) |
Therefore
\begin{equation}\label{gh} \dot{\gamma}(t) = -D_pH(t, \gamma(t), p(t)), \qquad {\rm a.e.}\; t\in [0, T]. \end{equation} | (3.38) |
By Lemma 2.1, by the definition of
\begin{align*} \partial_{t, x} {\mathcal L}_{\epsilon} (t, x, u)\subset \begin{cases} [-\kappa(1+|u|^2), \kappa(1+|u|^2)]\times D_x f(t, x, u)&{\rm if }\; x\in \Omega, \\ [-\kappa(1+|u|^2), \kappa(1+|u|^2)] \times \big(D_x f(t, x, u)+ \frac{1}{\epsilon}\ D{b_\Omega}(x)\big)&{\rm if }\; 0 \lt {b_\Omega}(x) \lt \rho, \\ [-\kappa(1+|u|^2), \kappa(1+|u|^2)]\times \big(D_x f(t, x, u)+ \frac{1}{\epsilon}[0, 1] \ D{b_\Omega}(x)\big)&{\rm if }\; x\in \partial \Omega. \end{cases} \end{align*} |
Thus (3.32) implies that there exists
|\dot{r}(t)| \leq \kappa(1+|\dot{\gamma}(t)|^2), \ \ \forall t \in [0, T], | (3.39) |
\dot{p}(t) = -D_x f(t, \gamma(t), \dot{\gamma}(t))-\frac{\lambda(t)}{\epsilon} \ D{b_\Omega}(\gamma(t)), \ \; \text{a.e.}\ t\in [0, T]. | (3.40) |
Hence, by (3.39), and by Remark 3.3 we conclude that
\begin{equation}\label{drt} \int_0^T|\dot{r}(t)|\, dt\leq \kappa\int_0^T (1+|\dot{\gamma}(t)|^2)\, dt\leq \kappa(T+4\mu K). \end{equation} | (3.41) |
Moreover, by Lemma 2.1, and by assumption on
\partial\Big(g+\frac{1}{\delta}\ d_{\Omega}\Big)(x) \subset \begin{cases} Dg(x) &{\rm if }\; x\in \Omega, \\ Dg(x)+\frac{1}{\delta}\ D{b_\Omega}(x)&{\rm if }\; 0 \lt {b_\Omega}(x) \lt \rho, \\ Dg(x)+\frac{1}{\delta}[0, 1]\ D{b_\Omega}(x) &{\rm if }\; x \in \partial \Omega. \end{cases} |
So, by (3.34), there exists
\begin{equation}\label{fbg} p(T) = Dg(x)+\frac{\beta}{\delta} \ D{b_\Omega}(x). \end{equation} | (3.42) |
Finally, by well-known properties of the Legendre transform one has that
D_xH(t, x, p) = -D_xf\big(t, x, - D_pH(t, x, p)\big). |
So, recalling (3.38), (3.40) can be rewritten as
\dot{p}(t) = D_x H(t, \gamma(t), p(t))-\frac{\lambda(t)}{\epsilon}\ D{b_\Omega}(\gamma(t)), \; \text{a.e.}\ t\in [0, T]. |
We have to prove estimate (3.29). Recalling (3.23) and (3.19), we have that
\begin{align*} H_\epsilon(t, \gamma(t), p(t)) = H(t, \gamma(t), p(t))-\frac{1}{\epsilon}\ d_{\Omega}(\gamma(t))\geq \frac{1}{4\mu}|p(t)|^2-C(\mu, M')-\frac{1}{\epsilon}\ d_{\Omega}(\gamma(t)). \end{align*} |
So, using (3.41) one has that
\begin{equation*} |H_\epsilon(T, \gamma(T), p(T))-H_\epsilon(t, \gamma(t), p(t))| = |r(T)-r(t)|\leq \int_t^T|\dot{r}(s)|\, ds\leq \kappa(T+4\mu K). \end{equation*} |
Moreover, (3.42) implies that
\begin{align*} &\frac{1}{4\mu}|p(t)|^2-C(\mu, M')-\frac{1}{\epsilon}\ d_{\Omega}(\gamma(t))\leq H_\epsilon(t, \gamma(t), p(t))\leq H_\epsilon(T, \gamma(T), p(T)) +\kappa(T+4\mu K)\\ &\leq 4\mu|p(T)|^2+C(\mu, M') +\kappa(T+4\mu K)\leq 8\mu\left[ \frac{1}{\delta^2}+||Dg||_\infty^2\right]+C(\mu, M') +\kappa(T+4\mu K). \end{align*} |
Hence,
\begin{equation*} |p(t)|^2\leq 4\mu\left[\frac{1}{\epsilon} d_{\Omega}(\gamma(t))+\frac{C_1}{\delta^2}\right], \end{equation*} |
where
Finally, by the regularity of
Lemma 3.5. Let
Proof. Let
\begin{align*} &\dot{\gamma}(t) = -D_pH(t, \gamma(t), p(t)), \\ &\dot{p}(t) = D_xH(t, \gamma(t), p(t))-\frac{1}{\epsilon}D{b_\Omega}(\gamma(t)), \end{align*} |
for
In the next two lemmas, we show that, for
\begin{equation*} \epsilon_0 = \epsilon(\rho_0), \ \ \ \mbox{where} \ \rho_0 \ \mbox{is such that (2.1) holds and} \ \epsilon(\cdot) \ \mbox{is given by Lemma 3.3}. \end{equation*} |
Lemma 3.6. Let
\begin{equation}\label{deltao} \delta = \frac{1}{2\mu N}\wedge 1, \end{equation} | (3.43) |
where
N = \sup\limits_{x\in \mathbb{R}^n}|D_pH(T, x, Dg(x))|. |
Fix any
\langle \dot{\gamma}(T), D{b_\Omega}(\gamma(T))\rangle\leq 0. |
Proof. As
\begin{align*} \Big\langle &D_pH\big(T, \gamma(T), p(T)\big), D{b_\Omega}(\gamma(T))\Big\rangle = \Big\langle D_pH\big(T, \gamma(T), Dg(\gamma(T))\big), D{b_\Omega}(\gamma(T))\Big\rangle\\ &+\Big\langle D_pH\big(T, \gamma(T), Dg(\gamma(T))+\frac{1}{\delta}\ D{b_\Omega}(\gamma(T))\big)-D_pH\big(T, \gamma(T), Dg(\gamma(T))\big), D{b_\Omega}(\gamma(T))\Big\rangle. \end{align*} |
Recalling that
\begin{align*} \Big\langle &D_pH\big(T, \gamma(T), Dg(\gamma(T))+\frac{1}{\delta}\ D{b_\Omega}(\gamma(T))\big)-D_pH\big(T, \gamma(T), Dg(\gamma(T))\big), \frac{1}{\delta}\ D{b_\Omega}(\gamma(T))\Big\rangle \\ &\geq \frac{1}{2\mu} \frac{1}{\delta^2}\ |D{b_\Omega}(\gamma(T))|^2 = \frac{1}{2\delta^{2}\mu}. \end{align*} |
So,
\begin{equation*} \Big\langle D_pH\big(T, \gamma(T), p(T)\big), D{b_\Omega}(\gamma(T))\Big\rangle\geq \frac{1}{2\delta\mu} -|D_pH\big(T, \gamma(T), Dg(\gamma(T))\big)|. \end{equation*} |
Therefore, we obtain
\begin{align*} \big\langle \dot{\gamma}(T), D{b_\Omega}(\gamma(T))\big\rangle& = -\Big\langle D_pH\big(T, \gamma(T), p(T)), D{b_\Omega}(\gamma(T)\big)\Big\rangle \\ &\leq -\frac{1}{2\delta\mu} +|D_pH(T, \gamma(T), Dg(\gamma(T)))|. \end{align*} |
Thus, choosing
Lemma 3.7. Fix
\forall x\in \overline{\Omega}, \ \gamma\in\mathcal{X}_{\epsilon, \delta}[x] \ \ \Longrightarrow \ \ \gamma(t)\in \overline{\Omega} \ \ \ \forall t\in[0, T]. |
Proof. We argue by contradiction. Assume that there exist sequences
\epsilon_k \downarrow 0, \ t_k \in [0, T], \ x_k \in \overline{\Omega}, \ \gamma_k\in\mathcal{X}_{\epsilon_k, \delta}[x_k] \ \mbox{and} \ \gamma_k(t_k) \notin \overline{\Omega}, \ \ \ \mbox{for all}\ k\geq 1. | (3.44) |
Then, for each
\begin{equation*} \begin{cases} d_\Omega(\gamma_k(a_k)) = 0, \\ d_\Omega(\gamma_k(t)) \gt 0 \ \ \ t\in(a_k, b_k), \\ d_\Omega(\gamma_k(b_k)) = 0 \ \ \mbox{or else} \ \ b_k = T. \end{cases} \end{equation*} |
Let
\begin{equation*} d_\Omega(\gamma_k(\overline{t}_k)) = \max\limits_{t\in[a_k, b_k]} d_\Omega(\gamma_k(t)). \end{equation*} |
We note that, by Lemma 3.5,
Step 1
We claim that
\begin{equation}\label{dss} \frac{d^2}{dt^2}d_\Omega(\gamma_k(t))\Big|_{t = \overline{t}_k}\leq 0. \end{equation} | (3.45) |
Indeed, (3.45) is trivial if
\begin{equation*} \frac{d}{dt} d_\Omega(\gamma_k(t))\Big|_{t = \overline{t}_k}\geq 0. \end{equation*} |
Moreover, Lemma 3.6 yields
\begin{equation*} \frac{d}{dt} d_\Omega(\gamma_k(t))\Big|_{t = \overline{t}_k}\leq0. \end{equation*} |
So,
\begin{equation*}\label{dds1} \frac{d}{dt} d_\Omega(\gamma_k(t))\Big|_{t = \overline{t}_k} = 0, \end{equation*} |
and we have that (3.45) holds true at
Step 2
Now, we prove that
\begin{equation}\label{mu} \frac{1}{\mu\epsilon_k} \leq C(\mu, M', \kappa)\left[1+4\mu\frac{ C_1}{\delta^2}+\frac{4\mu}{\epsilon_k} \ d_{{\Omega}}(\gamma_k(\overline{t}_k))\right], \ \ \ \ \forall k\geq 1, \end{equation} | (3.46) |
where
\begin{align}\label{dg2} \ddot{\gamma}(\overline{t}_k) = &-D_{pt}^2H({\tilde t_k}, \gamma({\tilde t_k}), p({\tilde t_k})) -\left\langle D_{px}^2H({\tilde t_k}, \gamma({\tilde t_k}), p({\tilde t_k})), \dot{\gamma}({\tilde t_k})\right\rangle \\ &-\left\langle D_{pp}^2H({\tilde t_k}, \gamma({\tilde t_k}), p({\tilde t_k})), \dot{p}({\tilde t_k})\right\rangle.\nonumber \end{align} | (3.47) |
Developing the second order derivative of
\begin{eqnarray*} 0 &\geq & \left\langle D^2d_\Omega(\gamma ({\tilde t_k}))\dot \gamma ({\tilde t_k}), \dot \gamma ({\tilde t_k}) \right\rangle + \left\langle Dd_\Omega(\gamma ({\tilde t_k})), \ddot \gamma ({\tilde t_k})\right\rangle \\ & = & \left \langle D^2d_\Omega(\gamma({\tilde t_k}))D_{p}H ({\tilde t_k}, \gamma({\tilde t_k}), p({\tilde t_k})), D_{p}H({\tilde t_k}, \gamma({\tilde t_k}), p( {\tilde t_k}))\right\rangle \\ && -\left\langle Dd_\Omega(\gamma ({\tilde t_k})), D_{pt}^2H ({\tilde t_k}, \gamma ({\tilde t_k}), p ({\tilde t_k}))\right\rangle \\ &&+ \left\langle Dd_\Omega(\gamma ({\tilde t_k})), D_{px}^2H({\tilde t_k}, \gamma ({\tilde t_k}), p({\tilde t_k})) D_pH ({\tilde t_k}, \gamma ({\tilde t_k}), p ({\tilde t_k}))\right\rangle \\ &&-\left\langle Dd_\Omega(\gamma ({\tilde t_k})), D_{pp}^2H ({\tilde t_k}, \gamma ({\tilde t_k}), p({\tilde t_k})) D_xH ({\tilde t_k}, \gamma ({\tilde t_k}), p ({\tilde t_k}))\right\rangle \\ && +\frac{1}{\epsilon}\left\langle Dd_\Omega(\gamma({\tilde t_k})), D_{pp}^2H ({\tilde t_k}, \gamma({\tilde t_k}), p({\tilde t_k}))Dd_\Omega(\gamma ({\tilde t_k}))\right\rangle. \end{eqnarray*} |
We now use the growth properties of
\begin{align*} \frac{1}{\mu\epsilon_k}\leq C(\mu, M')(1+|p({\tilde t_k})|)^2+\kappa C(\mu, M')(1+|p({\tilde t_k})|)\leq C(\mu, M', \kappa)(1+|p({\tilde t_k})|^2), \end{align*} |
where the constant
\begin{align*} \frac{1}{\mu\epsilon_k} \leq C(\mu, M', \kappa)\left[1+4\mu\frac{C_1}{\delta^2}+\frac{4\mu}{\epsilon_k} d_{{\Omega}}(\gamma({\tilde t_k}))\right], \ \ \forall \ k\geq 1, \end{align*} |
where
Conclusion
Let
\begin{equation*} \sup\limits_{t\in[0, T]} d_\Omega(\gamma(t))\leq \rho, \ \ \ \ \forall \gamma\in\mathcal{X}_{\epsilon, \delta}[x]. \end{equation*} |
Hence, using (3.46), we deduce that
\begin{equation*} \frac{1}{2\mu\epsilon_k}\leq 4 C(\mu, M', \kappa)\left[1+4\mu\frac{C_1}{\delta^2}\right]. \end{equation*} |
Since the above inequality fails for
An obvious consequence of Lemma 3.7 is the following:
Corollary 3.1. Fix
We are now ready to complete the proof of Theorem 3.1.
Proof of Theorem 3.1. Let
\begin{equation}\label{pT} p(T) = Dg(\gamma^\star(T))+ \nu \ D{b_\Omega}(\gamma^\star(T)). \end{equation} | (3.48) |
By Lemma 3.4
\dot{\gamma}^\star(t) = -D_pH(t, \gamma^\star(t), p(t)), \ \ \ \forall\ t\in[0, T]. | (3.49) |
Moreover,
|p(t)|\leq 2\frac{\sqrt{\mu C_1}}{\delta}, \ \ \ \forall t\in[0, T], |
where
||\dot{\gamma}^\star||_\infty = \sup\limits_{t\in [0, T]}|D_p H(t, \gamma^\star(t), p(t))|\leq C(\mu, M')\Big(\sup\limits_{t\in [0, T]} |p(t)|+1\Big)\leq C(\mu, M')\Big(2\frac{\sqrt{\mu C_1}}{\delta}+1\Big)\Big) = L^\star, |
where
Finally, we want to find an explicit expression for
\begin{equation*} D = \Big\{t \in[0, T]: \gamma^\star(t)\in\partial\Omega\Big\}\; {\rm and}\; D_{\rho_0} = \Big\{t \in[0, T]: |{b_\Omega}(\gamma^\star(t))| \lt \rho_0\Big\}, \end{equation*} |
where
\begin{equation*} \dot \psi(t) = \Big\langle D{b_\Omega}(\gamma^\star(t)), \dot \gamma^\star(t)\Big\rangle = \Big\langle D{b_\Omega}(\gamma^\star(t)), -D_pH(t, \gamma^\star(t), p(t)) \Big\rangle. \end{equation*} |
Since
\begin{eqnarray*} \ddot{\psi}(t)& = &-\Big\langle D^2{b_\Omega}(\gamma^\star(t))\dot \gamma^\star(t), D_pH\big(t, \gamma^\star(t), p(t)\big)\Big\rangle - \Big\langle D{b_\Omega}(\gamma^\star(t)), D_{pt}^2 H\big(t, \gamma^\star(t), p(t)\big)\Big\rangle\\ &-& \Big\langle D{b_\Omega}(\gamma^\star(t)), D_{px}^2 H\big(t, \gamma^\star(t), p(t)\big)\dot \gamma^\star(t)\Big\rangle-\Big\langle D{b_\Omega}(\gamma^\star(t)), D_{pp}^2 H\big(t, \gamma^\star(t), p(t)\big)\dot{p}(t)\Big\rangle\\ & = &\Big\langle D^2{b_\Omega}(\gamma^\star(t))D_pH\big(t, \gamma^\star(t), p(t)\big), D_pH\big(t, \gamma^\star(t), p(t)\big)\Big\rangle \\ &-& \Big\langle D{b_\Omega}(\gamma^\star(t)), D_{pt}^2 H\big(t, \gamma^\star(t), p(t)\big)\Big\rangle\\ &+& \Big\langle D{b_\Omega}(\gamma^\star(t)), D_{px}^2 H\big(t, \gamma^\star(t), p(t)\big)D_pH\big(t, \gamma^\star(t), p(t)\big)\Big\rangle\\ &-&\Big\langle D{b_\Omega}(\gamma^\star(t)), D_{pp}^2H\big(t, \gamma^\star(t), p(t)\big)D_xH\big(t, \gamma^\star(t), p(t)\big)\rangle\\ &+&\frac{\lambda(t)}{\epsilon}\ \Big\langle D{b_\Omega}(\gamma^\star(t)), D_{pp}^2H\big(t, \gamma^\star(t), p(t)\big)D{b_\Omega}(\gamma^\star(t))\Big\rangle. \end{eqnarray*} |
Let
\Big\langle D{b_\Omega}(\gamma^\star(t)), D_{pp}^2 H\big(t, \gamma^\star(t), p(t)\big)D{b_\Omega}(\gamma^\star(t))\Big\rangle \gt 0, \qquad {\rm a.e.} \;t\in D_{\rho_0}. |
So, for a.e.
\begin{align*} \frac{\lambda(t)}{\epsilon} = &\frac{1}{\langle D{b_\Omega}(\gamma^\star(t)), D_{pp}^2 H(t, \gamma^\star(t), p(t))D{b_\Omega}(\gamma^\star(t))\rangle}\ \Big[ \Big\langle D{b_\Omega}(\gamma^\star(t)), D_{pt}^2 H\big(t, \gamma^\star(t), p(t)\big)\Big\rangle\\ &-\Big\langle D^2{b_\Omega}(\gamma^\star(t))D_pH\big(t, \gamma^\star(t), p(t)\big), D_pH\big(t, \gamma^\star(t), p(t)\big)\Big\rangle\\ &- \Big\langle D{b_\Omega}(\gamma^\star(t)), D_{px}^2 H\big(t, \gamma^\star(t), p(t)\big)D_pH\big(t, \gamma^\star(t), p(t)\big)\Big\rangle\\ &+\Big\langle D{b_\Omega}(\gamma^\star(t)), D_{pp}^2H\big(t, \gamma^\star(t), p(t)\big)D_xH\big(t, \gamma^\star(t), p(t)\big) \Big\rangle \Big]. \end{align*} |
Since
Remark 3.4. The above proof gives a representation of
\begin{align*} \Lambda(t, x, p) = &\frac{1}{\theta(t, x, p)}\ \Big[ -\Big\langle D^2{b_\Omega}(x)D_pH\big(t, x, p\big), D_pH\big(t, x, p\big)\Big\rangle- \Big\langle D{b_\Omega}(x), D_{pt}^2 H\big(t, x, p\big)\Big\rangle- \\ &\Big\langle D{b_\Omega}(x), D_{px}^2 H\big(t, x, p\big)D_pH\big(t, x, p\big)\Big\rangle+\Big\langle D{b_\Omega}(x), D_{pp}^2H\big(t, x, p\big)D_xH\big(t, x, p\big) \Big\rangle \Big], \end{align*} |
where
We now want to remove the extra assumption
\begin{align}\label{xi} \begin{cases} \xi(x) = 0 \ \ \ \ &\mbox{if} \ \ x\in (-\infty, \frac{1}{3}], \\ 0 \lt \xi(x) \lt 1 &\mbox{if}\ \ x\in (\frac{1}{3}, \frac{2}{3}), \\ \xi = 1 &\mbox{if} \ \ x \in [\frac{2}{3}, +\infty). \end{cases} \end{align} | (3.50) |
Lemma 3.8. Let
\sigma_0 = dist(\overline{\Omega}, \mathbb{R}^n\setminus U) \gt 0. |
Suppose that
\begin{equation*} \widetilde{f}(t, x, v) = \xi\left(\frac{{b_\Omega}(x)}{\sigma}\right)\frac{|v|^2}{2}+ \left (1-\xi\left(\frac{{b_\Omega}(x)}{\sigma}\right)\right)f(t, x, v), \ \ \ \forall \ (t, x, v)\in[0, T]\times\mathbb{R}^n\times\mathbb{R}^n, \end{equation*} |
that satisfies conditions (f0)-(f2) with
\widetilde{g}(x) = \left( 1-\xi\left(\frac{{b_\Omega}(x)}{\sigma}\right)\right)g(x), \ \ \ \ \forall x\in\mathbb{R}^n, |
that satisfies condition (g1) with
Note that, since
Proof. By construction we note that
\begin{align*} D_v\widetilde{f}(t, x, v) = \xi\left(\frac{{b_\Omega}(x)}{\sigma}\right) v + \left (1-\xi\left(\frac{{b_\Omega}(x)}{\sigma}\right)\right)D_vf(t, x, v), \end{align*} |
and
\begin{align*} D_{vv}^2\widetilde{f}(t, x, v) = \xi\left(\frac{{b_\Omega}(x)}{\sigma}\right)I+\left (1-\xi\left(\frac{{b_\Omega}(x)}{\sigma}\right)\right)D_{vv}^2f(t, x, v). \end{align*} |
Hence, by the definition of
\begin{equation*} \Big(1\wedge\frac{1}{\mu}\Big)I\leq D_{vv}^2\widetilde{f}(t, x, v)\leq (1\vee \mu) I, \ \ \ \ \ \forall \ (t, x, v)\in[0, T]\times\mathbb{R}^n\times \mathbb{R}^n. \end{equation*} |
Since
Moreover, since
\begin{eqnarray*} D_x(D_v\widetilde{f}(t, x, v))& = &\dot{\xi}\left(\frac{{b_\Omega}(x)}{\sigma}\right)v\otimes\frac{D{b_\Omega}(x)}{\sigma}+\left(1-\xi\left(\frac{{b_\Omega}(x)}{\sigma}\right)\right)D_{vx}^2f(t, x, v)\\ &-&\dot{\xi}\left(\frac{{b_\Omega}(x)}{\sigma}\right)D_vf(t, x, v)\otimes\frac{D{b_\Omega}(x)}{\sigma}, \end{eqnarray*} |
and by (3.4) we obtain that
\begin{equation*} ||D_{vx}^2\widetilde{f}(t, x, v)||\leq C(\mu, M)(1+|v|) \ \ \ \forall (t, x, v)\in [0, T]\times \mathbb{R}^n\times\mathbb{R}^n. \end{equation*} |
For all
\begin{equation*} \Big|\widetilde{f}(t, x, v)-\widetilde{f}(s, x, v)\Big| = \left| \left (1-\xi\left(\frac{{b_\Omega}(x)}{\sigma}\right)\right) \big[ f(t, x, v)-f(s, x, v)\big]\right|\leq \kappa(1+|v|^2)|t-s| \end{equation*} |
for all
\begin{align*} &\big|D_v\widetilde{f}(t, x, v))-D_v\widetilde{f}(s, x, v))\big|\leq \left|\left (1-\xi\left(\frac{{b_\Omega}(x)}{\sigma}\right)\right)\big[D_{v}f(t, x, v)-D_vf(s, x, v))\big]\right|\\ &\leq \kappa(1+|v|)|t-s|, \end{align*} |
for all
Finally, by the regularity of
Suppose that
\begin{equation}\label{vf} u(t, x) = \inf\limits_{\begin{array}{c} \gamma\in \Gamma\\ \gamma(t) = x \end{array}} \int_{t}^T f(s, \gamma(s), \dot{\gamma}(s)) \, ds + g(\gamma(T)). \end{equation} | (4.1) |
Proposition 4.1. Let
Proof. First, we shall prove that
\begin{align*} \begin{cases} {\bar \gamma}(t) = y, \\ \dot{{\bar \gamma}}(s) = \dot{\gamma}(s) +\frac{x-y}{\tau} \ \ &\mbox{if} \ s\in[t, t+\tau] \ \ \text{a.e.}, \\ \dot{{\bar \gamma}}(s) = \dot{\gamma}(s) \ \ &\mbox{otherwise}, \end{cases} \end{align*} |
where
(a)
(b)
(c)
(d)
Indeed, by the definition of
\begin{align*} {\bar \gamma}(t+\tau)-{\bar \gamma}(t) = {\bar \gamma}(t+\tau)-y = \int_t^{t+\tau}\Big(\dot{\gamma}(s)+\frac{x-y}{\tau}\Big)\, ds = \gamma(t+\tau)-y, \end{align*} |
and this gives (a). Moreover, by (a), and by the definition of
\begin{align*} \Big|{\bar \gamma}(s)-\gamma(s)\Big|\leq\Big|y-x+\int_t^s (\dot{\bar \gamma}(\sigma)- \dot{\gamma}(\sigma)) \, d\sigma\Big| = \Big|y-x+ \int_t^{s}\frac{x-y}{\tau} \, d\sigma\Big|\leq |y-x| \end{align*} |
and so (c) holds. Since
\begin{align*} &|{\bar \gamma}(s)-x_0|\leq|{\bar \gamma}(s)-y|+|y-x_0|\leq\left|\int_t^s \dot{{\bar \gamma}}(\sigma)\, d\sigma\right|+r\leq \int_t^s \ \Big|\dot{\gamma}(\sigma)+\frac{x-y}{\tau}\Big|\, d\sigma+r\\ &\leq \int_t^s \Big[ |\dot{\gamma}(\sigma)|+ \frac{|x-y|}{\tau}\Big]\, d\sigma+r \leq L^\star (s-t)+\frac{|x-y|}{\tau}(s-t)+r\leq L^\star\tau +|x-y|+r. \end{align*} |
Recalling that
\begin{equation*} |{\bar \gamma}(s)-x_0|\leq \frac{|x-y|}{2}+|x-y|+r\leq 4r. \end{equation*} |
Therefore,
Now, owing to the dynamic programming principle, by (a) one has that
\begin{equation} u(t, y)\leq \int_t^{t+\tau} f(s, {\bar \gamma}(s), \dot{{\bar \gamma}}(s))\, ds + u(t+\tau, \gamma(t+\tau)). \end{equation} | (4.2) |
Since
\begin{equation*} u(t, y)\leq u(t, x) +\int_t^{t+\tau} \Big[f(s, {\bar \gamma}(s), \dot{\bar \gamma}(s))-f(s, \gamma(s), \dot{\gamma}(s))\Big] \, ds. \end{equation*} |
By (3.7), (3.8), and the definition of
\begin{align*} &|f(s, {\bar \gamma}(s), \dot{{\bar \gamma}}(s))-f(s, \gamma(s), \dot{\gamma}(s))|\\ &\leq|f(s, {\bar \gamma}(s), \dot{{\bar \gamma}}(s))-f(s, {\bar \gamma}(s), \dot{\gamma}(s))|+|f(s, {\bar \gamma}(s), \dot{\gamma}(s))-f(s, \gamma(s), \dot{\gamma}(s))|\\ &\leq \int_0^1 |\langle D_vf(s, {\bar \gamma}(s), \lambda\dot{{\bar \gamma}}(s)+(1-\lambda)\dot{\gamma}(s)), \dot{{\bar \gamma}}(s)-\dot{\gamma}(s)\rangle|\, d\lambda\\ & + \int_0^1|D_xf(s, \lambda{\bar \gamma}(s)+(1-\lambda)\gamma(s), \dot{\gamma}(s)), {\bar \gamma}(s)-\gamma(s)\rangle|\, d\lambda\\ &\leq C(\mu, M)|\dot{{\bar \gamma}}(s)-\dot{\gamma}(s)|\int_0^1 (1+|\lambda\dot{{\bar \gamma}}(s)+(1-\lambda)\dot{\gamma}(s)|)\, d\lambda \\ &+ C(\mu, M)|{\bar \gamma}(s)-\gamma(s)|\int_0^1(1+ |\dot{\gamma}(s)|^2)\, d\lambda. \end{align*} |
By Theorem 3.1 one has that
\int_0^1 (1+|\lambda\dot{{\bar \gamma}}(s)+(1-\lambda)\dot{\gamma}(s)|)\, d\lambda\leq 1+4L^\star, | (4.3) |
\int_0^1(1+ |\dot{\gamma}(s)|^2)\, d\lambda\leq 1+(L^\star)^2. | (4.4) |
Using (4.3), (4.4), and (c), by the definition of
\begin{equation}\label{bl1} |f(s, {\bar \gamma}(s), \dot{{\bar \gamma}}(s))-f(s, \gamma(s), \dot{\gamma}(s))|\leq C(\mu, M)(1+4L^\star)\frac{|x-y|}{\tau}+C(\mu, M)(1+(L^\star)^2)|x-y|, \end{equation} | (4.5) |
for a.e.
\begin{align*} &u(t, y)\leq u(t, x) + C(\mu, M)(1+4L^\star)\int_t^{t+\tau}\frac{|x-y|}{\tau} \, ds+ C(\mu, M)(1+(L^\star)^2)\int_t^{t+\tau} |x-y|\, ds\\ &\leq u(t, x) + C(\mu, M)(1+4L^\star)\big|x-y\big|+\tau C(\mu, M)(1+(L^\star)^2)\big|x-y\big|\leq u(t, x)+C_{L^\star}|x-y| \end{align*} |
where
In order to prove Lipschitz continuity in time, let
\begin{equation}\label{3e} |u(t_2, x)-u(t_1, x)|\leq |u(t_2, x)-u(t_2, \gamma(t_2))|+|u(t_2, \gamma(t_2))-u(t_1, x)|. \end{equation} | (4.6) |
The first term on the right-side of (4.6) can be estimated using the Lipschitz continuity in space of
\begin{equation}\label{4} |u(t_2, x)-u(t_2, \gamma(t_2))|\leq C_{L^\star}|x-\gamma(t_2)| \leq C_{L^\star}\int_{t_1}^{t_2}|\dot{\gamma}(s)|\, ds\leq L^\star C_{L^\star} (t_2-t_1). \end{equation} | (4.7) |
We only have to estimate the second term on the right-side of (4.6). By the dynamic programming principle, (3.9), and the assumptions on
\begin{align}\label{5} |u(t_2, \gamma(t_2))-u(t_1, x)|& = \Big |\int_{t_1}^{t_2}f(s, \gamma(s), \dot{\gamma}(s))\, ds\Big|\leq \int_{t_1}^{t_2}|f(s, \gamma(s), \dot{\gamma}(s))|\, ds\\ &\leq \int_{t_1}^{t_2} \Big[C(\mu, M)+ 4\mu |\dot{\gamma}(s)|^2\Big]\, ds\leq \Big[C(\mu, M)+4\mu L^\star\Big] (t_2-t_1)\nonumber \end{align} | (4.8) |
Using (4.7) and (4.8) to bound the right-hand side of (4.6), we obtain that
In this section we want to apply Theorem 3.1 to a mean field game (MFG) problem with state constraints. Such a problem was studied in [11], where the existence and uniqueness of constrained equilibria was obtained under fairly general assumptions on the data. Here, we will apply our necessary conditions to deduce the existence of more regular equilibria than those constructed in [11], assuming the data
Assumptions
Let
(D1) For all
\begin{align} |F(x, m_1)-F(x, m_2)|+ |G(x, m_1)-G(x, m_2)| \leq \kappa d_1(m_1, m_2), \label{lf} \end{align} | (4.9) |
for any
(D2) For all
\begin{equation*} |D_xF(x, m)|+|D_xG(x, m)|\leq \kappa, \ \ \ \ \forall \ x\in U, \ \forall \ m\in \mathcal{P}(\overline{\Omega}). \end{equation*} |
Let
(L0)
\begin{equation}\label{bml} |L(x, 0)|+|D_xL(x, 0)|+|D_vL(x, 0)|\leq M, \ \ \ \ \forall \ x\in U. \end{equation} | (4.10) |
(L1)
\frac{I}{\mu} \leq D^2_{vv}L(x, v)\leq I\mu, | (4.11) |
||D_{vx}^2L(x, v)||\leq \mu(1+|v|), | (4.12) |
for all
Remark 4.1. (ⅰ)
(ⅱ) Arguing as Lemma 3.1 we deduce that there exists a positive constant
|D_xL(x, v)|\leq C(\mu, M)(1+|v|^2), | (4.13) |
|D_vL(x, v)|\leq C(\mu, M)(1+|v|), | (4.14) |
\frac{|v|^2}{4\mu}-C(\mu, M) \leq L(x, v)\leq 4\mu|v|^2 +C(\mu, M), | (4.15) |
for all
Let
H(t, x, p) = H_L(x, p)-F(x, m(t)), \ \ \ \forall\ (t, x, p)\in[0, T]\times U\times\mathbb{R}^n, |
where
\begin{equation*} H_L(x, p) = \sup\limits_{v\in\mathbb{R}^n}\Big\{-\langle p, v\rangle-L(x, v)\Big\}, \ \ \ \ \ \forall\ (x, p)\in U\times\mathbb{R}^n. \end{equation*} |
The assumptions on
1.
\begin{equation} |H_L(x, 0)|+|D_xH_L(x, 0)|+|D_pH_L(x, 0)|\leq M', \ \ \ \ \forall x\in U. \end{equation} | (4.16) |
2.
\frac{I}{\mu}\leq D_{pp}H_L(x, p)\leq I\mu, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \forall \ (x, p)\in U\times\mathbb{R}^n, | (4.17) |
||D_{px}^2 H_L(x, p)||\leq C(\mu, M')(1+|p|), \ \ \ \forall \ (x, p)\in U\times \mathbb{R}^n, | (4.18) |
where
For any
\begin{equation*} e_t(\gamma) = \gamma(t), \ \ \ \ \forall \gamma\in\Gamma. \end{equation*} |
For any
\begin{equation*} m^\eta(t) = e_t\sharp\eta \ \ \ \ \forall t\in [0, T]. \end{equation*} |
Remark 4.2. We observe that for any
(ⅰ)
(ⅱ) Let
For any fixed
\begin{equation*} J_\eta [\gamma] = \int_0^T \Big[L(\gamma(t), \dot \gamma(t))+ F(\gamma(t), m^\eta(t))\Big]\ dt + G(\gamma(T), m^\eta(T)), \ \ \ \ \ \forall \gamma\in\Gamma. \end{equation*} |
For all
\begin{equation*} \Gamma^\eta[x] = \Big\{ \gamma\in\Gamma[x]:J_\eta[\gamma] = \min\limits_{\Gamma[x]} J_\eta\Big\}. \end{equation*} |
It is shown in [11] that, for every
Definition 4.1. Let
\begin{equation*} supp(\eta)\subseteq \bigcup\limits_{x\in\overline{\Omega}} \Gamma^\eta[x]. \end{equation*} |
Let
Definition 4.2. Let
\begin{equation*} \mathcal{P}_{m_0}^{{\rm Lip}}(\Gamma') = \{\eta\in\mathcal{P}_{m_0}(\Gamma'): m^\eta \in {\rm Lip}(0, T;\mathcal{P}(\overline{\Omega}))\}. \end{equation*} |
Remark 4.3. We note that
j(x)(t) = x \ \ \ \ \forall t \in[0, T]. |
Then,
\eta : = j\sharp m_0 |
is a Borel probability measure on
In order to show that
\begin{equation*} e_0 \sharp \eta (B) = \eta (e_0^{-1}(B)) = \sum\limits_{i = 1}^{2} \lambda_i \eta_i(e_0^{-1}(B)) = \sum\limits_{i = 1}^{2} \lambda_i e_0 \sharp \eta_i(B) = \sum\limits_{i = 1}^{2} \lambda_i m_0(B) = m_0 (B). \end{equation*} |
So,
In the next result, we apply Theorem 3.1 to prove a useful property of minimizers of
Proposition 4.2. Let
\begin{equation}\label{l0} ||\dot{\gamma}||_\infty\leq L_0, \ \ \ \forall \gamma\in \Gamma^\eta[x], \end{equation} | (4.19) |
where
Proof. Let
\begin{equation*} ||\dot{\gamma}||_\infty\leq L_0, \ \ \ \forall \gamma\in \Gamma^\eta[x], \end{equation*} |
where
We denote by
\begin{equation}\label{tgamma} \Gamma_{L_0} = \{\gamma \in \Gamma:||\dot\gamma||_\infty\leq L_0\}. \end{equation} | (4.20) |
Lemma 4.1. Let
Proof. Arguing as in Remark 4.3, we obtain that
Let
\begin{equation*} d_1(m^\eta(t_2), m^\eta(t_1)) = \sup\Big\{\int_{\overline{\Omega}} \phi(x)(m^\eta(t_2, \, dx)-m^\eta(t_1, \, dx))\ \Big|\ \phi:\overline{\Omega}\rightarrow\mathbb{R}\ \ \mbox{is 1-Lipschitz} \Big\}. \end{equation*} |
Since
\begin{align*} &\int_{\overline\Omega} \phi(x)\, (m^\eta(t_2, dx)-m^\eta(t_1, dx)) = \int_{\Gamma}\Big[ \phi(e_{t_2}(\gamma))-\phi(e_{t_1}(\gamma))\Big] \, d\eta(\gamma)\\ & = \int_{\Gamma} \Big[\phi(\gamma(t_2))-\phi(\gamma(t_1))\Big] \, d\eta(\gamma) \leq \int_{\Gamma} |\gamma(t_2)-\gamma(t_1)|\, d\eta(\gamma). \end{align*} |
Since
\begin{align*} \int_{\Gamma} |\gamma(t_2)-\gamma(t_1)|\, d\eta(\gamma)\leq L_0\int_{\Gamma} |t_2-t_1|\, d\eta(\gamma) = L_0|t_2-t_1| \end{align*} |
and so
In the next result, we deduce the existence of more regular equilibria than those constructed in [11].
Theorem 4.1. Let
Proof. First of all, we recall that for any
*We say that
\begin{equation}\label{dise} \begin{cases} \eta(d\gamma) = \int_{\overline{\Omega}} \eta_x(d\gamma) m_0(\, dx), \\ supp(\eta_x)\subset \Gamma[x] \ \ m_0-\mbox{a.e.} \ x\in \overline{\Omega} \end{cases} \end{equation} | (4.21) |
(see, e.g., [2, Theorem 5.3.1]). Proceeding as in [11], we introduce the set-valued map
E:\mathcal{P}_{m_0}(\Gamma)\rightrightarrows \mathcal{P}_{m_0}(\Gamma), |
by defining, for any
\begin{equation}\label{ein} E(\eta) = \Big\{ \widehat{\eta}\in\mathcal{P}_{m_0}(\Gamma): supp(\widehat{\eta}_x)\subseteq \Gamma^\eta[x] \ \ m_0-\mbox{a.e.} \ x \in \overline{\Omega}\Big\}. \end{equation} | (4.22) |
We recall that, by [11, Lemma 3.6], the map
Now, we consider the restriction
E_0:\mathcal{P}_{m_0}^{{\rm Lip}}(\Gamma_{L_0}) \rightrightarrows \mathcal{P}_{m_0}(\Gamma), \ \ \ E_0(\eta) = E(\eta) \ \ \forall \eta \in\mathcal{P}_{m_0}^{{\rm Lip}}(\Gamma_{L_0}). |
We will show that the set-valued map
\begin{equation}\label{lin} E_0(\mathcal{P}_{m_0}^{{\rm Lip}}(\Gamma_{L_0}))\subseteq \mathcal{P}^{{\rm Lip}}_{m_0}(\Gamma_{L_0}). \end{equation} | (4.23) |
Indeed, let
\Gamma^\eta[x]\subset \Gamma_{L_0} \ \ \ \forall x \in \overline{\Omega}, |
and by definition of
supp(\widehat{\eta})\subset \Gamma_{L_0}. |
So,
Since
We recall the definition of a mild solution of the constrained MFG problem, given in [11].
Definition 4.3. We say that
(i)
(ii) u is given by
\begin{equation}\label{v} u(t, x) = \inf\limits_{\tiny\begin{array}{c} \gamma\in \Gamma\\ \gamma(t) = x \end{array}} \left\{\int_t^T \left[L(\gamma(s), \dot \gamma(s))+ F(\gamma(s), m(s))\right]\ ds + G(\gamma(T), m(T))\right\}, \end{equation} | (4.24) |
for
Theorem 4.2. Let
(i)
(ii)
The question of the Lipschitz continuity up to the boundary of the value function under state constraints was addressed in [28] and [34], for stationary problems, and in a very large literature that has been published since. We refer to the survey paper [20] for references.
Proof. Let
Remark 4.4. Recall that
\int_{\overline{\Omega}} (F(x, m_1)-F(x, m_2))d(m_1-m_2)(x)\ \geq\ 0, | (4.25) |
for any
Suppose that
In this Appendix we prove Lemma 2.1. The only case which needs to be analyzed is when
d_\Omega( y)-d_\Omega( x) -\langle p, y- x\rangle \geq C| y- x|^2, \ \ \text{for any} \ y \ \text{such that}\ | y- x|\leq \epsilon, | (5.1) |
for some constant
\begin{equation*} d_\Omega( y)-d_\Omega( x)-\langle D{b_\Omega}( x), y- x\rangle\geq {b_\Omega}( y)-{b_\Omega}( x)-\langle D{b_\Omega}( x), y- x\rangle \geq C | y- x|^2. \end{equation*} |
This shows that
\begin{equation*} d_\Omega( y)-d_\Omega( x)-\langle \lambda D {b_\Omega}( x), y- x\rangle\geq \lambda\left( d_\Omega( y)-d_\Omega( x)-\langle D {b_\Omega}( x), y- x\rangle\right) \ \ \ \forall \lambda \in[0, 1], \end{equation*} |
we further obtain the inclusion
\begin{equation*} D{b_\Omega}( x)[0, 1]\subset\partial d_\Omega( x). \end{equation*} |
Next, in order to show the reverse inclusion, let
{b_\Omega}( y)-{b_\Omega}( x) -\langle p, y- x\rangle \geq C| y- x|^2, \ \ \ | y- x|\leq \epsilon. | (5.2) |
Since
\begin{equation}\label{p2} {b_\Omega}( y)-{b_\Omega}( x)\leq\langle D{b_\Omega}( x), y- x\rangle +C| y- x|^2 \end{equation} | (5.3) |
for some constant
\begin{equation*} \left\langle D{b_\Omega}( x)-p, \frac{ y- x}{| y- x|}\right\rangle\geq C| y- x|. \end{equation*} |
Hence, passing to the limit for
\begin{equation*} \langle D{b_\Omega}( x)-p, v\rangle \geq 0, \ \ \ \ \forall v\in T_{\Omega^c}( x), \end{equation*} |
where
D{b_\Omega}( x)-p = \lambda v( x), |
where
p = (1-\lambda) D{b_\Omega}( x). |
Now, we prove that
\begin{equation*} 0 = d_\Omega( y)\geq (1-\lambda)\langle D {b_\Omega}( x), y- x\rangle + C| y- x|^2. \end{equation*} |
Hence,
\begin{equation*} (1-\lambda)\left\langle D{b_\Omega}( x), \frac{ y- x}{| y- x|}\right\rangle\leq -C| y- x|. \end{equation*} |
Passing to the limit for
\begin{equation*} (1-\lambda)\left\langle D {b_\Omega}( x), w\right\rangle \leq 0, \ \ \ \ \ \forall w\in T_{\overline{\Omega}}( x), \end{equation*} |
where
This work was partly supported by the University of Rome Tor Vergata (Consolidate the Foundations 2015) and by the Istituto Nazionale di Alta Matematica "F. Severi" (GNAMPA 2016 Research Projects). The authors acknowledge the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006. The second author is grateful to the Universitá Italo Francese (Vinci Project 2015).
The authors declare no conflict of interest.
[1] | Centers for Disease Control and Prevention. Measles Cases and Outbreaks. US Department of Health and Human Services. December 13, 2016. Available from: https://www.cdc.gov/measles/cases-outbreaks.html. |
[2] | Centers for Disease Control, U.S. multi-state measles outbreak, December 2014–January 2015. Atlanta, GA: US Department of Health and Human Services, 2015. Available from: http://emergency.cdc.gov/han/han00376.asp. |
[3] | Centers for Disease Control, Facts for Parents: Diseases and the Vaccines that Prevent Them. 2015. Available from: http://www.cdc.gov/vaccines/vpd-vac/fact-sheet-parents.html. |
[4] |
Orenstein WA, Douglas RG, Rodewald LE, et al. (2005) Immunizations in the United States: Success, Structure, and Stress. Health Aff 24: 599-610. doi: 10.1377/hlthaff.24.3.599
![]() |
[5] | Every Child by Two, 2015. Available From: http://www.ecbt.org/images/articles/eBookOfDiseases.pdf. |
[6] |
Dubé E, Vivion M, MacDonald NE (2015) Vaccine hesitancy, vaccine refusal and the anti-vaccine movement: influence, impact and implications. Expert Rev Vaccines 14: 99-117. doi: 10.1586/14760584.2015.964212
![]() |
[7] | Majumder MS, Cohn EL, Mekaru SR, et al. (2015) Substandard vaccination compliance and the 2015 Measles outbreak. JAMA Pediatr 169. |
[8] |
Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25: 585-621. doi: 10.1016/0014-4827(61)90192-6
![]() |
[9] |
Jacobs JP, Jones CM, Baille JP (1970) Characteristics of a human diploid cell designated MRC-5. Nature 227: 168-170. doi: 10.1038/227168a0
![]() |
[10] | Riley JC (2001) Rising Life Expectancy: A Global History (Cambridge University Press, U.K.). |
[11] | Riedel A (2005) Edward Jenner and the history of smallpox and vaccination, BUMC Proc 18: 21-25. |
[12] | World Health Organization (2009) State of the World's Vaccines and Immunization (3rd Edition, Geneva). |
[13] | Hayflick L (2001) In Evolving Scientific and Regulatory Perspectives on Cell Substrates for Vaccine Development, Brown F, Krause P, Lewis AM, Eds. (Karger, Basel), 106: 5-23. |
[14] |
Koprowski H, Ponten JA, Jensen F, et al. (1962) Transformation of cultures of human tissue infected with simian virus S.V. 40, J Cell Comp Physiol 59: 281. doi: 10.1002/jcp.1030590308
![]() |
[15] | Bookchin D, Schumacher J (2004) The virus and the vaccine, St. Martin's Press NYC. |
[16] | Hayflick L, Norton TW, Plotkin SA, et al. (1962) Preparation of poliovirus vaccines in a human fetal diploid cell strain. Am J Hyg 77: 240-258. |
[17] |
Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37: 614-636. doi: 10.1016/0014-4827(65)90211-9
![]() |
[18] | Hayflick L, Plotkin S, Stevenson RE (1987) In WHO Study Group on Cells, Products and Safety, Petricciani JC and Hennessen W Eds. (Karger, Basel), 68: 9-17. |
[19] |
Jacobs JP, Jones CM, Baille JP (1970) Characteristics of a human diploid cell designated MRC-5. Nature 227:168-70. doi: 10.1038/227168a0
![]() |
[20] | Hayflick L (1989) In Developments in Biological Standardization, Continuous Cell Lines as Substrates for Biologicals, Proceedings of the International Association of Biological Standardization, L. Hayflick, W. Hennessen, S. Karger AG, Basel, Eds. Basel, Switzerland, 70: 11-26. |
[21] | Roush MT, Murphy TV, and the Vaccine-Preventable Disease Table Working Group (2007) Historical Comparisons of Morbidity and Mortality for Vaccine-Preventable Diseases in the United States. JAMA 298: 2155-2163, doi:10.1001/jama.298.18.2155. |
[22] | Banatvala J, Peckham C (2007) In Rubella Viruses, Perspectives in Medical Virology, A.J. Zuckerman, I.K. Mushahwar, Eds. (Elsevier), vol. 15, p.xi, Table 1. |
[23] |
Wakefield AJ, Murch SH, Anthony A, et al. (1998) Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet 351: 637-641. doi: 10.1016/S0140-6736(97)11096-0
![]() |
[24] | Godlee F, Smith J, Marcovitch H (2011) Wakefield's article linking MMR vaccine and autism was fraudulent. BMJ 342: C6452. |
[25] |
Smith PJ, Humiston SG, Marcuse EK, et al. (2011) Parental delay or refusal of vaccine doses, childhood vaccination coverage at 24 months of age, and the Health Belief Model. Public Health Rep 126: 135-146. doi: 10.1177/00333549111260S215
![]() |
[26] | Bloom DE, Canning D (2001) The health and wealth of nations (2000) Science 287: 1207, 1209. |
[27] | Plotkin S, Rubella eradication (2001) Vaccine 19: 3311-3319. |
[28] | California Legislative Information, SB-277 Public Health: Vaccinations, 2015. Available From: https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160SB277. |
1. | Yves Achdou, Paola Mannucci, Claudio Marchi, Nicoletta Tchou, Deterministic mean field games with control on the acceleration, 2020, 27, 1021-9722, 10.1007/s00030-020-00634-y | |
2. | Philip Jameson Graber, Charafeddine Mouzouni, On Mean Field Games models for exhaustible commodities trade, 2020, 26, 1292-8119, 11, 10.1051/cocv/2019008 | |
3. | Pierre Cardaliaguet, Alessio Porretta, 2020, Chapter 1, 978-3-030-59836-5, 1, 10.1007/978-3-030-59837-2_1 | |
4. | Siting Liu, Matthew Jacobs, Wuchen Li, Levon Nurbekyan, Stanley J. Osher, Computational Methods for First-Order Nonlocal Mean Field Games with Applications, 2021, 59, 0036-1429, 2639, 10.1137/20M1334668 | |
5. | Piermarco Cannarsa, Rossana Capuani, Pierre Cardaliaguet, Mean field games with state constraints: from mild to pointwise solutions of the PDE system, 2021, 60, 0944-2669, 10.1007/s00526-021-01936-4 | |
6. | J. Frédéric Bonnans, Justina Gianatti, Laurent Pfeiffer, A Lagrangian Approach for Aggregative Mean Field Games of Controls with Mixed and Final Constraints, 2023, 61, 0363-0129, 105, 10.1137/21M1407720 | |
7. | Rossana Capuani, Antonio Marigonda, Marta Mogentale, 2022, Chapter 34, 978-3-030-97548-7, 297, 10.1007/978-3-030-97549-4_34 | |
8. | Piermarco Cannarsa, Wei Cheng, Cristian Mendico, Kaizhi Wang, Weak KAM Approach to First-Order Mean Field Games with State Constraints, 2021, 1040-7294, 10.1007/s10884-021-10071-9 | |
9. | Saeed Sadeghi Arjmand, Guilherme Mazanti, Multipopulation Minimal-Time Mean Field Games, 2022, 60, 0363-0129, 1942, 10.1137/21M1407306 | |
10. | Saeed Sadeghi Arjmand, Guilherme Mazanti, Nonsmooth mean field games with state constraints, 2022, 28, 1292-8119, 74, 10.1051/cocv/2022069 | |
11. | Rossana Capuani, Antonio Marigonda, Constrained Mean Field Games Equilibria as Fixed Point of Random Lifting of Set-Valued Maps, 2022, 55, 24058963, 180, 10.1016/j.ifacol.2022.11.049 | |
12. | Saeed Sadeghi Arjmand, Guilherme Mazanti, 2021, On the characterization of equilibria of nonsmooth minimal-time mean field games with state constraints, 978-1-6654-3659-5, 5300, 10.1109/CDC45484.2021.9683104 | |
13. | Samuel Daudin, Optimal control of the Fokker-Planck equation under state constraints in the Wasserstein space, 2023, 00217824, 10.1016/j.matpur.2023.05.002 | |
14. | Rossana Capuani, Antonio Marigonda, Michele Ricciardi, Random Lift of Set Valued Maps and Applications to Multiagent Dynamics, 2023, 31, 1877-0533, 10.1007/s11228-023-00693-0 | |
15. | Michael Hintermüller, Thomas M. Surowiec, Mike Theiß, On a Differential Generalized Nash Equilibrium Problem with Mean Field Interaction, 2024, 34, 1052-6234, 2821, 10.1137/22M1489952 | |
16. | Yves Achdou, Paola Mannucci, Claudio Marchi, Nicoletta Tchou, Deterministic Mean Field Games on Networks: A Lagrangian Approach, 2024, 56, 0036-1410, 6689, 10.1137/23M1615073 | |
17. | Guilherme Mazanti, A note on existence and asymptotic behavior of Lagrangian equilibria for first-order optimal-exit mean field games, 2024, 0, 2156-8472, 0, 10.3934/mcrf.2024064 | |
18. | P. Jameson Graber, Remarks on potential mean field games, 2025, 12, 2522-0144, 10.1007/s40687-024-00494-3 | |
19. | Michele Ricciardi, Mauro Rosestolato, Mean field games incorporating carryover effects: optimizing advertising models, 2024, 1593-8883, 10.1007/s10203-024-00500-x |