Research article Special Issues

On the particle approximation to stationary solutions of the Boltzmann equation

  • Received: 26 January 2019 Accepted: 24 July 2019 Published: 14 August 2019
  • We discuss the problem of the approximation of the solutions of the stationary Boltzmann equation, driven by diffuse boundary conditions at varying temperature, by means of stochastic particle systems. In particular we extend a previous results, by substituting the hypothesis of a cutoff on small and large velocities with the presence of an external field.

    Citation: Mario Pulvirenti. On the particle approximation to stationary solutions of the Boltzmann equation[J]. Mathematics in Engineering, 2019, 1(4): 699-714. doi: 10.3934/mine.2019.4.699

    Related Papers:

    [1] Nurtiti Sunusi, Giarno . Bias of automatic weather parameter measurement in monsoon area, a case study in Makassar Coast. AIMS Environmental Science, 2023, 10(1): 1-15. doi: 10.3934/environsci.2023001
    [2] RAHMOUN Ibrahim, BENMAMAR Saâdia, RABEHI Mohamed . Comparison between different Intensities of Rainfall to identify overflow points in a combined sewer system using Storm Water Management Model. AIMS Environmental Science, 2022, 9(5): 573-592. doi: 10.3934/environsci.2022034
    [3] Lei Wang, Huan Du, Jiajun Wu, Wei Gao, Linna Suo, Dan Wei, Liang Jin, Jianli Ding, Jianzhi Xie, Zhizhuang An . Characteristics of soil erosion in different land-use patterns under natural rainfall. AIMS Environmental Science, 2022, 9(3): 309-324. doi: 10.3934/environsci.2022021
    [4] Ronak P. Chaudhari, Shantanu R. Thorat, Darshan J. Mehta, Sahita I. Waikhom, Vipinkumar G. Yadav, Vijendra Kumar . Comparison of soft-computing techniques: Data-driven models for flood forecasting. AIMS Environmental Science, 2024, 11(5): 741-758. doi: 10.3934/environsci.2024037
    [5] Muhammad Rendana, Wan Mohd Razi Idris, Sahibin Abdul Rahim . Clustering analysis of PM2.5 concentrations in the South Sumatra Province, Indonesia, using the Merra-2 Satellite Application and Hierarchical Cluster Method. AIMS Environmental Science, 2022, 9(6): 754-770. doi: 10.3934/environsci.2022043
    [6] Swatantra R. Kethireddy, Grace A. Adegoye, Paul B. Tchounwou, Francis Tuluri, H. Anwar Ahmad, John H. Young, Lei Zhang . The status of geo-environmental health in Mississippi: Application of spatiotemporal statistics to improve health and air quality. AIMS Environmental Science, 2018, 5(4): 273-293. doi: 10.3934/environsci.2018.4.273
    [7] Dong Chen, Marcus Thatcher, Xiaoming Wang, Guy Barnett, Anthony Kachenko, Robert Prince . Summer cooling potential of urban vegetation—a modeling study for Melbourne, Australia. AIMS Environmental Science, 2015, 2(3): 648-667. doi: 10.3934/environsci.2015.3.648
    [8] Zinabu A. Alemu, Emmanuel C. Dioha, Michael O. Dioha . Hydro-meteorological drought in Addis Ababa: A characterization study. AIMS Environmental Science, 2021, 8(2): 148-168. doi: 10.3934/environsci.2021011
    [9] Robert Russell Monteith Paterson . Depletion of Indonesian oil palm plantations implied from modeling oil palm mortality and Ganoderma boninense rot under future climate. AIMS Environmental Science, 2020, 7(5): 366-379. doi: 10.3934/environsci.2020024
    [10] Meriatna, Zulmiardi, Lukman Hakim, Faisal, Suryati, Mizwa Widiarman . Adsorbent performance of nipa (nypafruticans) frond in methylene blue dye degradation: Response surface methodology optimization. AIMS Environmental Science, 2024, 11(1): 38-56. doi: 10.3934/environsci.2024003
  • We discuss the problem of the approximation of the solutions of the stationary Boltzmann equation, driven by diffuse boundary conditions at varying temperature, by means of stochastic particle systems. In particular we extend a previous results, by substituting the hypothesis of a cutoff on small and large velocities with the presence of an external field.




    [1] Aoki K, Golse F (2011) On the speed of approach to equilibrium for a collisionless gas. Kinet Relat Mod 4: 87–107. doi: 10.3934/krm.2011.4.87
    [2] Bird GA (1994) Molecular Gas Dynamics and the Direct Simulation of Gas Flows, 2Eds., Oxford University Press.
    [3] Bodineau T, Gallagher I, Saint-Raymond L (2016) The Brownian motion as the limit of a deterministic system of hard-spheres. Invent Math 203: 493–553. doi: 10.1007/s00222-015-0593-9
    [4] Bodineau T, Gallagher I, Saint-Raymond L (2017) From hard sphere dynamics to the Stokes-Fourier equations: An L2 analysis of the Boltzmann-Grad limit. arXiv:1511.03057.
    [5] Bodineau T, Gallagher I, Saint-Raymond L, et al. One-sided convergence in the Boltzmann-Grad limit. Ann Fac Sci Toulouse Math (to appear).
    [6] Caprino S, De Masi A, Presutti E, et al. (1991) A derivation of the Broadwell equation. Commun Math Phys 135: 443–465. doi: 10.1007/BF02104115
    [7] Caprino S, Pulvirenti M (1996) The Boltzmann-Grad limit for a one-dimensional Boltzmann equation in a stationary state. Commun Math Phys 177: 63–81. doi: 10.1007/BF02102430
    [8] Cercignani C, Illner R, Pulvirenti M (1994) The Mathematical Theory of Dilute Gases, New York: Springer-Verlag.
    [9] Caprino S, Pulvirenti M, Wagner W (1998) A particle systems approximating stationary solutions to the Boltzmann equation. SIAM J Math Anal 4: 913–934.
    [10] Cercignani C (1983) The Grad limit for a system of soft spheres. Commun Pure Appl Math 36: 479–494. doi: 10.1002/cpa.3160360406
    [11] Esposito1 R, Guo Y, Kim C, et al. (2013) Non-isothermal boundary in the Boltzmann theory and Fourier law. Commun Math Phys 323: 177–239. doi: 10.1007/s00220-013-1766-2
    [12] Gallagher I, Saint-Raymond L, Texier B (2014) From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, Series of Zurich Lectures in Advanced Mathematics, Vol 18, European Mathematical Society, and erratum to Chapter 5.
    [13] Goldstain S, Lebowitz J, Presutti E (1979) Mechanical system with stochastic boundaries. Colloquia Mathemtica Societatis Janos Bolyai 27. Random Fields, Eszergom (Hungary).
    [14] Kuo HW, Liu TP, Tsai LC (2014) Equilibrating effects of boundary and collision in rarefied gases. Commun Math Phys 328: 421–480. doi: 10.1007/s00220-014-2042-9
    [15] Illner R, Pulvirenti M (1986) Global validity of the Boltzmann equation for a two-dimensional rare gas in the vacuum. Commun Math Phys 105: 189–203. doi: 10.1007/BF01211098
    [16] Illner R, Pulvirenti M (1989) Global validity of the Boltzmann equation for a two- and three-dimensional rare gas in vacuum: Erratum and improved result. Commun Math Phys 121: 143–146. doi: 10.1007/BF01218628
    [17] Kac M (1956) Foundations of kinetic theory, In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley and Los Angeles.
    [18] Kac M (1959) Probability and Related Topics in Physical Sciences, London-New York: Interscience Publishers.
    [19] Lods B, Mokhtar-Kharroubi M, Rudnicki R (2018) Invariant density and time asymptotic for collisionless kinetic equations with partially diffuse boundary operators. arXiv:1812.05397v1 [math.AP].
    [20] Lachowicz M , Pulvirenti M (1990) A stochastic system of particles modelling the Euler equation. Arch Ration Mech Anal 109: 81–93. doi: 10.1007/BF00377981
    [21] Lanford OE (1975) Time evolution of large classical systems, In: Moser, J. Editor, Dynamical Systems, Theory and Applications, Berlin: Springer-Verlag, 1–111.
    [22] Paul T, Pulvirenti M, Simonella S (2019) On the size of chaos in the mean field dynamics. Arch Rat Mech Anal 231: 285–317. doi: 10.1007/s00205-018-1280-y
    [23] Pulvirenti M, Saffirio C, Simonella S (2014) On the validity of the Boltzmann equation for short-range potentials. Rev Math Phys 26: Article ID 1450001.
    [24] Pulvirenti M, Simonella S (2017) The Boltzmann-Grad limit of a hard sphere system: Analysis of the correlation error. Invent math 207: 1135–1237. doi: 10.1007/s00222-016-0682-4
    [25] Pulvirenti M, Wagner W, Zavelani Rossi MB (1994) Convergence of particle schemes for the Boltzmann equation. Eur J Mech B/Fluids 13: 339–351.
    [26] Rjasanow S, Wagner W (2005) Stochastic Numerics for the Boltzmann Equation, Springer Series in Computational Mathematics, Vol 37, Springer, Berlin, Heidelberg.
    [27] Villani C (2002) A review of mathematical topics in collisional kinetic theory, In: Hand-book of mathematical fluid dynamics, Elsevier Science, Vol I, 71–305.
  • This article has been cited by:

    1. Manuel Adrian Acuña-Zegarra, Daniel Olmos-Liceaga, Jorge X. Velasco-Hernández, The role of animal grazing in the spread of Chagas disease, 2018, 457, 00225193, 19, 10.1016/j.jtbi.2018.08.025
    2. Lauren A. White, James D. Forester, Meggan E. Craft, Thierry Boulinier, Dynamic, spatial models of parasite transmission in wildlife: Their structure, applications and remaining challenges, 2018, 87, 00218790, 559, 10.1111/1365-2656.12761
    3. Bruce Y. Lee, Sarah M. Bartsch, Laura Skrip, Daniel L. Hertenstein, Cameron M. Avelis, Martial Ndeffo-Mbah, Carla Tilchin, Eric O. Dumonteil, Alison Galvani, Ricardo E. Gürtler, Are the London Declaration’s 2020 goals sufficient to control Chagas disease?: Modeling scenarios for the Yucatan Peninsula, 2018, 12, 1935-2735, e0006337, 10.1371/journal.pntd.0006337
    4. Vanessa Steindorf, Norberto Aníbal Maidana, Modeling the Spatial Spread of Chagas Disease, 2019, 81, 0092-8240, 1687, 10.1007/s11538-019-00581-5
    5. Britnee A. Crawford, Christopher M. Kribs-Zaleta, Gaik Ambartsoumian, Invasion Speed in Cellular Automaton Models for T. cruzi Vector Migration, 2013, 75, 0092-8240, 1051, 10.1007/s11538-013-9840-7
    6. Christopher M. Kribs, Christopher Mitchell, Host switching vs. host sharing in overlapping sylvaticTrypanosoma cruzitransmission cycles, 2015, 9, 1751-3758, 247, 10.1080/17513758.2015.1075611
    7. N. El Saadi, A. Bah, T. Mahdjoub, C. Kribs, On the sylvatic transmission of T. cruzi, the parasite causing Chagas disease: a view from an agent-based model, 2020, 423, 03043800, 109001, 10.1016/j.ecolmodel.2020.109001
    8. Cheol Yong Han, Habeeb Issa, Jan Rychtář, Dewey Taylor, Nancy Umana, Marc Choisy, A voluntary use of insecticide treated nets can stop the vector transmission of Chagas disease, 2020, 14, 1935-2735, e0008833, 10.1371/journal.pntd.0008833
    9. Daniel Olmos, Ignacio Barradas, David Baca-Carrasco, On the Calculation of
    R0
    R 0 Using Submodels, 2017, 25, 0971-3514, 481, 10.1007/s12591-015-0257-7
    10. Md. Abdul Hye, M. A. Haider Ali Biswas, Mohammed Forhad Uddin, Mohammad Saifuddin, Mathematical Modeling of Covid-19 and Dengue Co-Infection Dynamics in Bangladesh: Optimal Control and Data-Driven Analysis, 2022, 33, 1046-283X, 173, 10.1007/s10598-023-09564-7
    11. A. Omame, H. Rwezaura, M. L. Diagne, S. C. Inyama, J. M. Tchuenche, COVID-19 and dengue co-infection in Brazil: optimal control and cost-effectiveness analysis, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-02030-6
    12. Edem Fiatsonu, Rachel E. Busselman, Gabriel L. Hamer, Sarah A. Hamer, Martial L. Ndeffo-Mbah, Luisa Magalhães, Effectiveness of fluralaner treatment regimens for the control of canine Chagas disease: A mathematical modeling study, 2023, 17, 1935-2735, e0011084, 10.1371/journal.pntd.0011084
    13. H. Rwezaura, S.Y. Tchoumi, J.M. Tchuenche, Impact of environmental transmission and contact rates on Covid-19 dynamics: A simulation study, 2021, 27, 23529148, 100807, 10.1016/j.imu.2021.100807
    14. Malicki Zorom, Babacar Leye, Mamadou Diop, Serigne M’backé Coly, Metapopulation Modeling of Socioeconomic Vulnerability of Sahelian Populations to Climate Variability: Case of Tougou, Village in Northern Burkina Faso, 2023, 11, 2227-7390, 4507, 10.3390/math11214507
    15. Xuan Dai, Xiaotian Wu, Jiao Jiang, Libin Rong, Modeling the impact of non-human host predation on the transmission of Chagas disease, 2024, 00255564, 109230, 10.1016/j.mbs.2024.109230
    16. M. Adrian Acuña-Zegarra, Mayra R. Tocto-Erazo, Claudio C. García-Mendoza, Daniel Olmos-Liceaga, Presence and infestation waves of hematophagous arthropod species, 2024, 376, 00255564, 109282, 10.1016/j.mbs.2024.109282
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4309) PDF downloads(499) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog