Citation: Mario Pulvirenti. On the particle approximation to stationary solutions of the Boltzmann equation[J]. Mathematics in Engineering, 2019, 1(4): 699-714. doi: 10.3934/mine.2019.4.699
[1] | Nurtiti Sunusi, Giarno . Bias of automatic weather parameter measurement in monsoon area, a case study in Makassar Coast. AIMS Environmental Science, 2023, 10(1): 1-15. doi: 10.3934/environsci.2023001 |
[2] | RAHMOUN Ibrahim, BENMAMAR Saâdia, RABEHI Mohamed . Comparison between different Intensities of Rainfall to identify overflow points in a combined sewer system using Storm Water Management Model. AIMS Environmental Science, 2022, 9(5): 573-592. doi: 10.3934/environsci.2022034 |
[3] | Lei Wang, Huan Du, Jiajun Wu, Wei Gao, Linna Suo, Dan Wei, Liang Jin, Jianli Ding, Jianzhi Xie, Zhizhuang An . Characteristics of soil erosion in different land-use patterns under natural rainfall. AIMS Environmental Science, 2022, 9(3): 309-324. doi: 10.3934/environsci.2022021 |
[4] | Ronak P. Chaudhari, Shantanu R. Thorat, Darshan J. Mehta, Sahita I. Waikhom, Vipinkumar G. Yadav, Vijendra Kumar . Comparison of soft-computing techniques: Data-driven models for flood forecasting. AIMS Environmental Science, 2024, 11(5): 741-758. doi: 10.3934/environsci.2024037 |
[5] | Muhammad Rendana, Wan Mohd Razi Idris, Sahibin Abdul Rahim . Clustering analysis of PM2.5 concentrations in the South Sumatra Province, Indonesia, using the Merra-2 Satellite Application and Hierarchical Cluster Method. AIMS Environmental Science, 2022, 9(6): 754-770. doi: 10.3934/environsci.2022043 |
[6] | Swatantra R. Kethireddy, Grace A. Adegoye, Paul B. Tchounwou, Francis Tuluri, H. Anwar Ahmad, John H. Young, Lei Zhang . The status of geo-environmental health in Mississippi: Application of spatiotemporal statistics to improve health and air quality. AIMS Environmental Science, 2018, 5(4): 273-293. doi: 10.3934/environsci.2018.4.273 |
[7] | Dong Chen, Marcus Thatcher, Xiaoming Wang, Guy Barnett, Anthony Kachenko, Robert Prince . Summer cooling potential of urban vegetation—a modeling study for Melbourne, Australia. AIMS Environmental Science, 2015, 2(3): 648-667. doi: 10.3934/environsci.2015.3.648 |
[8] | Zinabu A. Alemu, Emmanuel C. Dioha, Michael O. Dioha . Hydro-meteorological drought in Addis Ababa: A characterization study. AIMS Environmental Science, 2021, 8(2): 148-168. doi: 10.3934/environsci.2021011 |
[9] | Robert Russell Monteith Paterson . Depletion of Indonesian oil palm plantations implied from modeling oil palm mortality and Ganoderma boninense rot under future climate. AIMS Environmental Science, 2020, 7(5): 366-379. doi: 10.3934/environsci.2020024 |
[10] | Meriatna, Zulmiardi, Lukman Hakim, Faisal, Suryati, Mizwa Widiarman . Adsorbent performance of nipa (nypafruticans) frond in methylene blue dye degradation: Response surface methodology optimization. AIMS Environmental Science, 2024, 11(1): 38-56. doi: 10.3934/environsci.2024003 |
[1] |
Aoki K, Golse F (2011) On the speed of approach to equilibrium for a collisionless gas. Kinet Relat Mod 4: 87–107. doi: 10.3934/krm.2011.4.87
![]() |
[2] | Bird GA (1994) Molecular Gas Dynamics and the Direct Simulation of Gas Flows, 2Eds., Oxford University Press. |
[3] |
Bodineau T, Gallagher I, Saint-Raymond L (2016) The Brownian motion as the limit of a deterministic system of hard-spheres. Invent Math 203: 493–553. doi: 10.1007/s00222-015-0593-9
![]() |
[4] | Bodineau T, Gallagher I, Saint-Raymond L (2017) From hard sphere dynamics to the Stokes-Fourier equations: An L2 analysis of the Boltzmann-Grad limit. arXiv:1511.03057. |
[5] | Bodineau T, Gallagher I, Saint-Raymond L, et al. One-sided convergence in the Boltzmann-Grad limit. Ann Fac Sci Toulouse Math (to appear). |
[6] |
Caprino S, De Masi A, Presutti E, et al. (1991) A derivation of the Broadwell equation. Commun Math Phys 135: 443–465. doi: 10.1007/BF02104115
![]() |
[7] |
Caprino S, Pulvirenti M (1996) The Boltzmann-Grad limit for a one-dimensional Boltzmann equation in a stationary state. Commun Math Phys 177: 63–81. doi: 10.1007/BF02102430
![]() |
[8] | Cercignani C, Illner R, Pulvirenti M (1994) The Mathematical Theory of Dilute Gases, New York: Springer-Verlag. |
[9] | Caprino S, Pulvirenti M, Wagner W (1998) A particle systems approximating stationary solutions to the Boltzmann equation. SIAM J Math Anal 4: 913–934. |
[10] |
Cercignani C (1983) The Grad limit for a system of soft spheres. Commun Pure Appl Math 36: 479–494. doi: 10.1002/cpa.3160360406
![]() |
[11] |
Esposito1 R, Guo Y, Kim C, et al. (2013) Non-isothermal boundary in the Boltzmann theory and Fourier law. Commun Math Phys 323: 177–239. doi: 10.1007/s00220-013-1766-2
![]() |
[12] | Gallagher I, Saint-Raymond L, Texier B (2014) From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, Series of Zurich Lectures in Advanced Mathematics, Vol 18, European Mathematical Society, and erratum to Chapter 5. |
[13] | Goldstain S, Lebowitz J, Presutti E (1979) Mechanical system with stochastic boundaries. Colloquia Mathemtica Societatis Janos Bolyai 27. Random Fields, Eszergom (Hungary). |
[14] |
Kuo HW, Liu TP, Tsai LC (2014) Equilibrating effects of boundary and collision in rarefied gases. Commun Math Phys 328: 421–480. doi: 10.1007/s00220-014-2042-9
![]() |
[15] |
Illner R, Pulvirenti M (1986) Global validity of the Boltzmann equation for a two-dimensional rare gas in the vacuum. Commun Math Phys 105: 189–203. doi: 10.1007/BF01211098
![]() |
[16] |
Illner R, Pulvirenti M (1989) Global validity of the Boltzmann equation for a two- and three-dimensional rare gas in vacuum: Erratum and improved result. Commun Math Phys 121: 143–146. doi: 10.1007/BF01218628
![]() |
[17] | Kac M (1956) Foundations of kinetic theory, In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley and Los Angeles. |
[18] | Kac M (1959) Probability and Related Topics in Physical Sciences, London-New York: Interscience Publishers. |
[19] | Lods B, Mokhtar-Kharroubi M, Rudnicki R (2018) Invariant density and time asymptotic for collisionless kinetic equations with partially diffuse boundary operators. arXiv:1812.05397v1 [math.AP]. |
[20] |
Lachowicz M , Pulvirenti M (1990) A stochastic system of particles modelling the Euler equation. Arch Ration Mech Anal 109: 81–93. doi: 10.1007/BF00377981
![]() |
[21] | Lanford OE (1975) Time evolution of large classical systems, In: Moser, J. Editor, Dynamical Systems, Theory and Applications, Berlin: Springer-Verlag, 1–111. |
[22] |
Paul T, Pulvirenti M, Simonella S (2019) On the size of chaos in the mean field dynamics. Arch Rat Mech Anal 231: 285–317. doi: 10.1007/s00205-018-1280-y
![]() |
[23] | Pulvirenti M, Saffirio C, Simonella S (2014) On the validity of the Boltzmann equation for short-range potentials. Rev Math Phys 26: Article ID 1450001. |
[24] |
Pulvirenti M, Simonella S (2017) The Boltzmann-Grad limit of a hard sphere system: Analysis of the correlation error. Invent math 207: 1135–1237. doi: 10.1007/s00222-016-0682-4
![]() |
[25] | Pulvirenti M, Wagner W, Zavelani Rossi MB (1994) Convergence of particle schemes for the Boltzmann equation. Eur J Mech B/Fluids 13: 339–351. |
[26] | Rjasanow S, Wagner W (2005) Stochastic Numerics for the Boltzmann Equation, Springer Series in Computational Mathematics, Vol 37, Springer, Berlin, Heidelberg. |
[27] | Villani C (2002) A review of mathematical topics in collisional kinetic theory, In: Hand-book of mathematical fluid dynamics, Elsevier Science, Vol I, 71–305. |
1. | Manuel Adrian Acuña-Zegarra, Daniel Olmos-Liceaga, Jorge X. Velasco-Hernández, The role of animal grazing in the spread of Chagas disease, 2018, 457, 00225193, 19, 10.1016/j.jtbi.2018.08.025 | |
2. | Lauren A. White, James D. Forester, Meggan E. Craft, Thierry Boulinier, Dynamic, spatial models of parasite transmission in wildlife: Their structure, applications and remaining challenges, 2018, 87, 00218790, 559, 10.1111/1365-2656.12761 | |
3. | Bruce Y. Lee, Sarah M. Bartsch, Laura Skrip, Daniel L. Hertenstein, Cameron M. Avelis, Martial Ndeffo-Mbah, Carla Tilchin, Eric O. Dumonteil, Alison Galvani, Ricardo E. Gürtler, Are the London Declaration’s 2020 goals sufficient to control Chagas disease?: Modeling scenarios for the Yucatan Peninsula, 2018, 12, 1935-2735, e0006337, 10.1371/journal.pntd.0006337 | |
4. | Vanessa Steindorf, Norberto Aníbal Maidana, Modeling the Spatial Spread of Chagas Disease, 2019, 81, 0092-8240, 1687, 10.1007/s11538-019-00581-5 | |
5. | Britnee A. Crawford, Christopher M. Kribs-Zaleta, Gaik Ambartsoumian, Invasion Speed in Cellular Automaton Models for T. cruzi Vector Migration, 2013, 75, 0092-8240, 1051, 10.1007/s11538-013-9840-7 | |
6. | Christopher M. Kribs, Christopher Mitchell, Host switching vs. host sharing in overlapping sylvaticTrypanosoma cruzitransmission cycles, 2015, 9, 1751-3758, 247, 10.1080/17513758.2015.1075611 | |
7. | N. El Saadi, A. Bah, T. Mahdjoub, C. Kribs, On the sylvatic transmission of T. cruzi, the parasite causing Chagas disease: a view from an agent-based model, 2020, 423, 03043800, 109001, 10.1016/j.ecolmodel.2020.109001 | |
8. | Cheol Yong Han, Habeeb Issa, Jan Rychtář, Dewey Taylor, Nancy Umana, Marc Choisy, A voluntary use of insecticide treated nets can stop the vector transmission of Chagas disease, 2020, 14, 1935-2735, e0008833, 10.1371/journal.pntd.0008833 | |
9. |
Daniel Olmos, Ignacio Barradas, David Baca-Carrasco,
On the Calculation of
R
0
Using Submodels,
2017,
25,
0971-3514,
481,
10.1007/s12591-015-0257-7
|
|
10. | Md. Abdul Hye, M. A. Haider Ali Biswas, Mohammed Forhad Uddin, Mohammad Saifuddin, Mathematical Modeling of Covid-19 and Dengue Co-Infection Dynamics in Bangladesh: Optimal Control and Data-Driven Analysis, 2022, 33, 1046-283X, 173, 10.1007/s10598-023-09564-7 | |
11. | A. Omame, H. Rwezaura, M. L. Diagne, S. C. Inyama, J. M. Tchuenche, COVID-19 and dengue co-infection in Brazil: optimal control and cost-effectiveness analysis, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-02030-6 | |
12. | Edem Fiatsonu, Rachel E. Busselman, Gabriel L. Hamer, Sarah A. Hamer, Martial L. Ndeffo-Mbah, Luisa Magalhães, Effectiveness of fluralaner treatment regimens for the control of canine Chagas disease: A mathematical modeling study, 2023, 17, 1935-2735, e0011084, 10.1371/journal.pntd.0011084 | |
13. | H. Rwezaura, S.Y. Tchoumi, J.M. Tchuenche, Impact of environmental transmission and contact rates on Covid-19 dynamics: A simulation study, 2021, 27, 23529148, 100807, 10.1016/j.imu.2021.100807 | |
14. | Malicki Zorom, Babacar Leye, Mamadou Diop, Serigne M’backé Coly, Metapopulation Modeling of Socioeconomic Vulnerability of Sahelian Populations to Climate Variability: Case of Tougou, Village in Northern Burkina Faso, 2023, 11, 2227-7390, 4507, 10.3390/math11214507 | |
15. | Xuan Dai, Xiaotian Wu, Jiao Jiang, Libin Rong, Modeling the impact of non-human host predation on the transmission of Chagas disease, 2024, 00255564, 109230, 10.1016/j.mbs.2024.109230 | |
16. | M. Adrian Acuña-Zegarra, Mayra R. Tocto-Erazo, Claudio C. García-Mendoza, Daniel Olmos-Liceaga, Presence and infestation waves of hematophagous arthropod species, 2024, 376, 00255564, 109282, 10.1016/j.mbs.2024.109282 |