Research article Special Issues

Global existence and stability for the modified Mullins–Sekerka and surface diffusion flow

  • Received: 26 July 2021 Accepted: 10 November 2021 Published: 21 December 2021
  • In this survey we present the state of the art about the asymptotic behavior and stability of the modified MullinsSekerka flow and the surface diffusion flow of smooth sets, mainly due to E. Acerbi, N. Fusco, V. Julin and M. Morini. First we discuss in detail the properties of the nonlocal Area functional under a volume constraint, of which the two flows are the gradient flow with respect to suitable norms, in particular, we define the strict stability property for a critical set of such functional and we show that it is a necessary and sufficient condition for minimality under $ W^{2, p} $–perturbations, holding in any dimension. Then, we show that, in dimensions two and three, for initial sets sufficiently "close" to a smooth strictly stable critical set $ E $, both flows exist for all positive times and asymptotically "converge" to a translate of $ E $.

    Citation: Serena Della Corte, Antonia Diana, Carlo Mantegazza. Global existence and stability for the modified Mullins–Sekerka and surface diffusion flow[J]. Mathematics in Engineering, 2022, 4(6): 1-104. doi: 10.3934/mine.2022054

    Related Papers:

  • In this survey we present the state of the art about the asymptotic behavior and stability of the modified MullinsSekerka flow and the surface diffusion flow of smooth sets, mainly due to E. Acerbi, N. Fusco, V. Julin and M. Morini. First we discuss in detail the properties of the nonlocal Area functional under a volume constraint, of which the two flows are the gradient flow with respect to suitable norms, in particular, we define the strict stability property for a critical set of such functional and we show that it is a necessary and sufficient condition for minimality under $ W^{2, p} $–perturbations, holding in any dimension. Then, we show that, in dimensions two and three, for initial sets sufficiently "close" to a smooth strictly stable critical set $ E $, both flows exist for all positive times and asymptotically "converge" to a translate of $ E $.



    加载中


    [1] E. Acerbi, N. Fusco, V. Julin, M. Morini, Nonlinear stability results for the modified Mullins–Sekerka flow and the surface diffusion flow, J. Differential Geom., 113 (2019), 1–53.
    [2] E. Acerbi, N. Fusco, M. Morini, Minimality via second variation for a nonlocal isoperimetric problem, Commun. Math. Phys., 322 (2013), 515–557. doi: 10.1007/s00220-013-1733-y
    [3] R. A. Adams, J. F. Fournier, Sobolev spaces, 2 Eds., Amsterdam: Elsevier/Academic Press, 2013.
    [4] N. D. Alikakos, P. W. Bates, X. Chen, Convergence of the Cahn–Hilliard equation to the Hele–Shaw model, Arch. Rational Mech. Anal., 128 (1994), 165–205. doi: 10.1007/BF00375025
    [5] T. Aubin, Some nonlinear problems in Riemannian geometry, Berlin, Heidelberg: Springer, 1998.
    [6] F. Cagnetti, M. G. Mora, M. Morini, A second order minimality condition for the Mumford–Shah functional, Calc. Var., 33 (2008), 37–74. doi: 10.1007/s00526-007-0152-3
    [7] X. Chen, The Hele–Shaw problem and area–preserving curve–shortening motions, Arch. Rational Mech. Anal., 123 (1993), 117–151. doi: 10.1007/BF00695274
    [8] X. Chen, J. Hong, F. Yi, Existence, uniqueness, and regularity of classical solutions of the Mullins–Sekerka problem, Commun. Part. Diff. Eq., 21 (1996), 1705–1727. doi: 10.1080/03605309608821243
    [9] R. Choksi, P. Sternberg, On the first and second variations of a nonlocal isoperimetric problem, J. Reine Angew. Math., 611 (2007), 75–108.
    [10] M. Cicalese, G. P. Leonardi, F. Maggi, Sharp stability inequalities for planar double bubbles, Interfaces Free Bound., 19 (2017), 305–350. doi: 10.4171/IFB/384
    [11] J. Crank, Free and moving boundary problems, New York: The Clarendon Press, 1987.
    [12] R. Cristoferi, On periodic critical points and local minimizers of the Ohta–Kawasaki functional, Nonlinear Anal., 168 (2018), 81–109. doi: 10.1016/j.na.2017.11.004
    [13] S. Della Corte, A. Diana, C. Mantegazza, Uniform Sobolev, interpolation and geometric Calderón–Zygmund inequalities for graph hypersurfaces, unpublished work.
    [14] F. Demengel, G. Demengel, R. Erné, Functional spaces for the theory of elliptic partial differential equations, London: Springer, 2012.
    [15] C. M. Elliott, H. Garcke, Existence results for diffusive surface motion laws, Adv. Math. Sci. Appl., 7 (1997), 467–490.
    [16] J. Escher, U. F. Mayer, Loss of convexity for a modified Mullins–Sekerka model arising in diblock copolymer melts, Arch. Math., 77 (2001), 434–448. doi: 10.1007/PL00000515
    [17] J. Escher, U. F. Mayer, G. Simonett, The surface diffusion flow for immersed hypersurfaces, SIAM J. Math. Anal., 29 (1998), 1419–1433. doi: 10.1137/S0036141097320675
    [18] J. Escher, Y. Nishiura, Smooth unique solutions for a modified Mullins–Sekerka model arising in diblock copolymer melts, Hokkaido Math. J., 31 (2002), 137–149.
    [19] J. Escher, G. Simonett, On Hele–Shaw models with surface tension, Math. Res. Lett., 3 (1996), 467–474. doi: 10.4310/MRL.1996.v3.n4.a5
    [20] J. Escher, G. Simonett, Classical solutions for Hele–Shaw models with surface tension, Adv. Differential Equ., 2 (1997), 619–642.
    [21] J. Escher, G. Simonett, Classical solutions of multidimensional Hele–Shaw models, SIAM J. Math. Anal., 28 (1997), 1028–1047. doi: 10.1137/S0036141095291919
    [22] J. Escher, G. Simonett, A center manifold analysis for the Mullins–Sekerka model, J. Differ. Equations, 143 (1998), 267–292. doi: 10.1006/jdeq.1997.3373
    [23] L. C. Evans, Partial differential equations, AMS, 2010.
    [24] N. Fusco, V. Julin, M. Morini, The surface diffusion flow with elasticity in three dimensions, Arch. Rational Mech. Anal., 237 (2020), 1325–1382. doi: 10.1007/s00205-020-01532-4
    [25] E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in $n$ variabili, Rend. Sem. Mat. Univ. Padova, 27 (1957), 284–305.
    [26] S. Gallot, D. Hulin, J. Lafontaine, Riemannian geometry, Berlin, Heidelberg: Springer, 1990.
    [27] H. Garcke, Curvature driven interface evolution, Dtsch. Math. Ver., 115 (2013), 63–100. doi: 10.1365/s13291-013-0066-2
    [28] Y. Giga, K. Ito, On pinching of curves moved by surface diffusion, Comm. Appl. Anal., 2 (1998), 393–405.
    [29] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Berlin, Heidelberg: Springer, 1983.
    [30] H. Groemer, Geometric applications of Fourier series and spherical harmonics, Cambridge: Cambridge University Press, 1996.
    [31] K. Grosse-Brauckmann, Gyroids of constant mean curvature, Exp. Math., 6 (1997), 33–50. doi: 10.1080/10586458.1997.10504349
    [32] K. Grosse-Brauckmann, M. Wohlgemuth, The gyroid is embedded and has constant mean curvature companions, Calc. Var., 4 (1996), 499–523. doi: 10.1007/BF01261761
    [33] M. E. Gurtin, Thermomechanics of evolving phase boundaries in the plane, New York: The Clarendon Press, 1993.
    [34] M. E. Gurtin, M. E. Jabbour, Interface evolution in three dimensions with curvature–dependent energy and surface diffusion: Interface–controlled evolution, phase transitions, epitaxial growth of elastic films, Arch. Rational Mech. Anal., 163 (2002), 171–208. doi: 10.1007/s002050200193
    [35] C. Imbert, Level set approach for fractional mean curvature flows, Interfaces Free Bound., 11 (2009), 153–176.
    [36] K. Ito, The surface diffusion flow equation does not preserve the convexity, RIMS Kokyuroku, 1105 (1999), 10–21.
    [37] D. S. Jerison, C. E. Kenig, The Neumann problem on Lipschitz domains, Bull. Amer. Math. Soc., 4 (1981), 203–207. doi: 10.1090/S0273-0979-1981-14884-9
    [38] V. Julin, D. A. La Manna, Short time existence of the classical solution to the fractional mean curvature flow, Ann. Inst. H. Poincaré Anal. Non Linéaire, 37 (2020), 983–1016. doi: 10.1016/j.anihpc.2020.02.007
    [39] V. Julin, G. Pisante, Minimality via second variation for microphase separation of diblock copolymer melts, J. Reine Angew. Math., 2017 (2017), 81–117.
    [40] H. Knüpfer, C. B. Muratov, On an isoperimetric problem with a competing nonlocal term Ⅱ: The general case, Commun. Pure Appl. Math., 66 (2013), 1129–1162. doi: 10.1002/cpa.21451
    [41] N. Q. Le, On the convergence of the Ohta–Kawasaki equation to motion by nonlocal Mullins–Sekerka law, SIAM J. Math. Anal., 42 (2010), 1602–1638. doi: 10.1137/090768643
    [42] C. Mantegazza, Lecture notes on mean curvature flow, Basel: Birkhäuser/Springer Basel AG, 2011.
    [43] C. Mantegazza, A. C. Mennucci, Hamilton–Jacobi equations and distance functions on Riemannian manifolds, Appl. Math. Optim., 47 (2003), 1–25.
    [44] M. Morini, P. Sternberg, Cascade of minimizers for a nonlocal isoperimetric problem in thin domains, SIAM J. Math. Anal., 46 (2014), 2033–2051. doi: 10.1137/130932594
    [45] W. W. Mullins, Theory of thermal grooving, J. Appl. Phys., 28 (1975), 333–339.
    [46] W. W. Mullins, R. F. Sekerka, Morphological stability of a particle growing by diffusion or heat flow, J. Appl. Phys., 34 (1963), 323–329. doi: 10.1063/1.1702607
    [47] C. B. Muratov, A. Zaleski, On an isoperimetric problem with a competing nonlocal term: quantitative results, Ann. Glob. Anal. Geom., 47 (2015), 63–80. doi: 10.1007/s10455-014-9435-z
    [48] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. doi: 10.1016/j.bulsci.2011.12.004
    [49] T. Ohta, K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules, 19 (1986), 2621–2632. doi: 10.1021/ma00164a028
    [50] R. L. Pego, Front migration in the nonlinear Cahn–Hilliard equation, Proc. Roy. Soc. London Ser. A, 422 (1989), 261–278.
    [51] P. Petersen, Riemannian geometry, 2 Eds., New York: Springer, 2006.
    [52] L. C. Piccinini, G. Stampacchia, G. Vidossich, Equazioni differenziali ordinarie in ${\bf{R}}^{n}$ (problemi e metodi), Serie di Matematica e Fisica, Napoli: Liguori Editore, 1979.
    [53] X. Ren, J. Wei, Concentrically layered energy equilibria of the di–block copolymer problem, Eur. J. Appl. Math., 13 (2002), 479–496. doi: 10.1017/S0956792502004928
    [54] X. Ren, J. Wei, Stability of spot and ring solutions of the diblock copolymer equation, J. Math. Phys., 45 (2004), 4106–4133. doi: 10.1063/1.1782280
    [55] X. Ren, J. Wei, Wriggled lamellar solutions and their stability in the diblock copolymer problem, SIAM J. Math. Anal., 37 (2005), 455–489. doi: 10.1137/S0036141003433589
    [56] X. Ren, J. Wei, Many droplet pattern in the cylindrical phase of diblock copolymer morphology, Rev. Math. Phys., 19 (2007), 879–921. doi: 10.1142/S0129055X07003139
    [57] X. Ren, J. Wei, Single droplet pattern in the cylindrical phase of diblock copolymer morphology, J. Nonlinear Sci., 17 (2007), 471–503. doi: 10.1007/s00332-007-9005-7
    [58] X. Ren, J. Wei, Spherical solutions to a nonlocal free boundary problem from diblock copolymer morphology, SIAM J. Math. Anal., 39 (2008), 1497–1535. doi: 10.1137/070690286
    [59] A. Ros, Stable periodic constant mean curvature surfaces and mesoscopic phase separation, Interfaces Free Bound., 9 (2007), 355–365.
    [60] M. Ross, Schwarz' P and D surfaces are stable, Differ. Geom. Appl., 2 (1992), 179–195. doi: 10.1016/0926-2245(92)90032-I
    [61] T. Runst, W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, Walter de Gruyter and Co., 1996.
    [62] A. H. Schoen, Infinite periodic minimal surfaces without self–intersections, NASA Tech. Report D-5541, 1970.
    [63] L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematics and its Applications, Canberra: Australian National University, 1983.
    [64] P. Sternberg, I. Topaloglu, On the global minimizers of a nonlocal isoperimetric problem in two dimensions, Interfaces Free Bound., 13 (2011), 155–169.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1503) PDF downloads(103) Cited by(1)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog