In an earlier paper, Cruz-Uribe, Rodney and Rosta proved an equivalence between weighted Poincaré inequalities and the existence of weak solutions to a family of Neumann problems related to a degenerate $ p $-Laplacian. Here we prove a similar equivalence between Poincaré inequalities in variable exponent spaces and solutions to a degenerate $ {p(\cdot)} $-Laplacian, a non-linear elliptic equation with nonstandard growth conditions.
Citation: David Cruz-Uribe, Michael Penrod, Scott Rodney. Poincaré inequalities and Neumann problems for the variable exponent setting[J]. Mathematics in Engineering, 2022, 4(5): 1-22. doi: 10.3934/mine.2022036
In an earlier paper, Cruz-Uribe, Rodney and Rosta proved an equivalence between weighted Poincaré inequalities and the existence of weak solutions to a family of Neumann problems related to a degenerate $ p $-Laplacian. Here we prove a similar equivalence between Poincaré inequalities in variable exponent spaces and solutions to a degenerate $ {p(\cdot)} $-Laplacian, a non-linear elliptic equation with nonstandard growth conditions.
[1] | M. Biegert, A priori estimates for the difference of solutions to quasi-linear elliptic equations, Manuscripta Math., 133 (2010), 273–306. doi: 10.1007/s00229-010-0367-z |
[2] | D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces, Heidelberg: Birkhäuser/Springer, 2013. |
[3] | D. Cruz-Uribe, K. Moen, S. Rodney, Matrix $\mathcal A_p$ weights, degenerate Sobolev spaces, and mappings of finite distortion, J. Geom. Anal., 26 (2016), 2797–2830. doi: 10.1007/s12220-015-9649-8 |
[4] | D. Cruz-Uribe, S. Rodney, Bounded weak solutions to elliptic PDE with data in Orlicz spaces, J. Differ. Equations, 297 (2021), 409–432. doi: 10.1016/j.jde.2021.06.025 |
[5] | D. Cruz-Uribe, S. Rodney, E. Rosta, Poincaré inequalities and neumann problems for the $p$-laplacian, Can. Math. Bull., 61 (2018), 738–753. doi: 10.4153/CMB-2018-001-6 |
[6] | L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Heidelberg: Springer, 2011. |
[7] | D. E. Edmunds, J. Lang, O. Méndez, Differential operators on spaces of variable integrability, Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., 2014. |
[8] | E. B. Fabes, C. E. Kenig, R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Commun. Part. Diff. Eq., 7 (1982), 77–116. doi: 10.1080/03605308208820218 |
[9] | P. Harjulehto, P. Hästö, Út V. Lê, M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal., 72 (2010), 4551–4574. doi: 10.1016/j.na.2010.02.033 |
[10] | K. Ho, I. Sim, Existence results for degenerate $p(x)$-Laplace equations with Leray-Lions type operators, Sci. China Math., 60 (2017), 133–146. doi: 10.1007/s11425-015-0385-0 |
[11] | Y. H. Kim, L. Wang, C. Zhang, Global bifurcation for a class of degenerate elliptic equations with variable exponents, J. Math. Anal. Appl., 371 (2010), 624–637. doi: 10.1016/j.jmaa.2010.05.058 |
[12] | L. Kong, A degenerate elliptic system with variable exponents, Sci. China Math., 62 (2019), 1373–1390. doi: 10.1007/s11425-018-9409-5 |
[13] | P. Lindqvist, Notes on the p-laplace equation, 2006, preprint. |
[14] | G. Mingione, Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math., 51 (2006), 355–426. doi: 10.1007/s10778-006-0110-3 |
[15] | A. Ron, Z. Shen, Frames and stable bases for shift-invariant subspaces of $L_2(\mathbf R^d)$, Can. J. Math., 47 (1995), 1051–1094. doi: 10.4153/CJM-1995-056-1 |
[16] | V. D. Rǎdulescu, D. D. Repovš, Partial differential equations with variable exponents, Boca Raton, FL: CRC Press, 2015. |
[17] | E. T. Sawyer, R. L. Wheeden, Hölder continuity of weak solutions to subelliptic equations with rough coefficients, Mem. Amer. Math. Soc., 180 (2006), 847. |
[18] | E. T. Sawyer, R. L. Wheeden, Degenerate Sobolev spaces and regularity of subelliptic equations, T. Am. Math. Soc., 362 (2010), 1869–1906. |
[19] | R. E. Showalter, Monotone operators in Banach spaces and nonlinear partial differential equations, Providence, RI: American Mathematical Society, 1997. |