Processing math: 49%
Research article

On the obstacle problem in fractional generalised Orlicz spaces

  • Received: 07 July 2024 Revised: 28 August 2024 Accepted: 04 September 2024 Published: 12 September 2024
  • We consider the one and the two obstacles problems for the nonlocal nonlinear anisotropic g-Laplacian Lsg, with 0<s<1. We prove the strict T-monotonicity of Lsg and we obtain the Lewy-Stampacchia inequalities FLsguFLsgψ and FLsgφLsguFLsgψ, respectively, for the one obstacle solution uψ and for the two obstacles solution ψuφ, with given data F. We consider the approximation of the solutions through semilinear problems, for which we prove a global L-estimate, and we extend the local Hölder regularity to the solutions of the obstacle problems in the case of the fractional p(x,y)-Laplacian operator. We make further remarks on a few elementary properties of related capacities in the fractional generalised Orlicz framework, with a special reference to the Hilbertian nonlinear case in fractional Sobolev spaces.

    Citation: Catharine W. K. Lo, José Francisco Rodrigues. On the obstacle problem in fractional generalised Orlicz spaces[J]. Mathematics in Engineering, 2024, 6(5): 676-704. doi: 10.3934/mine.2024026

    Related Papers:

    [1] Yin Yang, Sujuan Kang, Vasiliy I. Vasil'ev . The Jacobi spectral collocation method for fractional integro-differential equations with non-smooth solutions. Electronic Research Archive, 2020, 28(3): 1161-1189. doi: 10.3934/era.2020064
    [2] Junseok Kim, Soobin Kwak, Hyun Geun Lee, Youngjin Hwang, Seokjun Ham . A maximum principle of the Fourier spectral method for diffusion equations. Electronic Research Archive, 2023, 31(9): 5396-5405. doi: 10.3934/era.2023273
    [3] Jye Ying Sia, Yong Kheng Goh, How Hui Liew, Yun Fah Chang . Constructing hidden differential equations using a data-driven approach with the alternating direction method of multipliers (ADMM). Electronic Research Archive, 2025, 33(2): 890-906. doi: 10.3934/era.2025040
    [4] Messoud Efendiev, Vitali Vougalter . Linear and nonlinear non-Fredholm operators and their applications. Electronic Research Archive, 2022, 30(2): 515-534. doi: 10.3934/era.2022027
    [5] M. Usman, T. Zubair, J. Imtiaz, C. Wan, W. Wu . An iterative spectral strategy for fractional-order weakly singular integro-partial differential equations with time and space delays. Electronic Research Archive, 2022, 30(5): 1775-1798. doi: 10.3934/era.2022090
    [6] Xiumin Lyu, Jin Li, Wanjun Song . Numerical solution of a coupled Burgers' equation via barycentric interpolation collocation method. Electronic Research Archive, 2025, 33(3): 1490-1509. doi: 10.3934/era.2025070
    [7] Jin Li, Yongling Cheng . Barycentric rational interpolation method for solving fractional cable equation. Electronic Research Archive, 2023, 31(6): 3649-3665. doi: 10.3934/era.2023185
    [8] Jin Li, Yongling Cheng . Barycentric rational interpolation method for solving time-dependent fractional convection-diffusion equation. Electronic Research Archive, 2023, 31(7): 4034-4056. doi: 10.3934/era.2023205
    [9] Yutong Chen, Jiabao Su . Resonant problems for non-local elliptic operators with unbounded nonlinearites. Electronic Research Archive, 2023, 31(9): 5716-5731. doi: 10.3934/era.2023290
    [10] Ming-Kai Wang, Cheng Wang, Jun-Feng Yin . A class of fourth-order Padé schemes for fractional exotic options pricing model. Electronic Research Archive, 2022, 30(3): 874-897. doi: 10.3934/era.2022046
  • We consider the one and the two obstacles problems for the nonlocal nonlinear anisotropic g-Laplacian Lsg, with 0<s<1. We prove the strict T-monotonicity of Lsg and we obtain the Lewy-Stampacchia inequalities FLsguFLsgψ and FLsgφLsguFLsgψ, respectively, for the one obstacle solution uψ and for the two obstacles solution ψuφ, with given data F. We consider the approximation of the solutions through semilinear problems, for which we prove a global L-estimate, and we extend the local Hölder regularity to the solutions of the obstacle problems in the case of the fractional p(x,y)-Laplacian operator. We make further remarks on a few elementary properties of related capacities in the fractional generalised Orlicz framework, with a special reference to the Hilbertian nonlinear case in fractional Sobolev spaces.



    With more attention to integro-differential equations, the numerical calculation of fractional integro-differential equations has been also paid more attention by many scholars. Fractional integro-differential equations have a profound physical background and a rich connotation. For various phenomena in damping laws, diffusion process[31], earthquake model[13], fluid-dynamic traffic model[14], mathematical physics and engineering[28,37], chemistry, acoustics, fluid and continuum mechanics[8], psychology[1,35] and other fields, fractional integro-differential equations are suitable models.

    In recent years, several numerical methods were proposed to solve the fractional integro-differential equation. The most common methods are the Adomian decomposition method [25], collocation method [33] and fractional differential transform method [2]. In [16], Huang proposed a method for solving linear fractional integro-differential equations by Taylor's expansion, including Fredholm type and Volterra type. Yang et al. [34] used the Laplace decomposition method to solve the fractional integro-differential equation. M. Jani et al. [17] proposed a numerical method for solving fractional integro-differential equations with nonlocal boundary conditions by using Bernstein polynomials.

    The fractional differential operators are nonlocal and have weakly singular kernels. The fractional differential equations are more complicated than the integer-order counterparts. In recent years, many numerical methods have been extended to fractional integro-differential equations. Most of the analyses have some unreasonable limitations on solutions in order to achieve high accuracy. When these equations are transformed into the equivalent Volterra integral equations of the second kind with a weakly singular kernel, even if the input function is smooth, the solution of the equation usually exhibits a weak singularity at z=0. Which leads to a non-smooth solution and a lower order of convergence.

    So far, in order to solve the fractional differential equations and fractional integro-differential equations with non-smooth solutions, several methods have been proposed. One method is to approximate the fractional derivative operators in the governing differential equation directly and then the corresponding collocation schemes are derived [3,18]. Another method is to rewrite the governing differential equation in an equivalent integral equation, solved by the corresponding collocation method [22,36,21]. The integral collocation method is more stable than the differential collocation method. The reason is that numerical differentiation is sensitive to small perturbations in the input. But numerical integration is essentially stable [10]. Therefore, when using the differential collocation method to solve differential equations, we need to employ efficient integration preprocessing to overcome the ill-conditioning problem. It is necessary with increasing of the number of collocation nodes [15]. We would like to note that Hao proposed an efficient finite difference algorithm to solve fractional boundary value problems with non-smooth solutions in [12].

    For many types of equations with non-smooth solutions, the idea of introducing suitable transformations has been considered. It would eliminate the singularity in the transformed equation, and lead to a high convergence order. For the second kind of Volterra integral equation, Chen and Tang [9] proposed a variable transformation to eliminate the singularity of the solution. With a strict error analysis, the method is shown to have a spectral convergence. Pedas [19] made a proper transformation, and used the piecewise polynomial collocation method to solve the resulting equation on a mildly graded grid or a uniform grid. Baratella and Orsi [7] used a variable transformation to turn the solution of the linear Volterra integral equation of the second kind smooth, and solved it by the standard product integration method. Tang [20] used a variable transformation and the Jacobi spectral collocation method to solve the Abel-Volterra integral equation of the second kind. For the linear Fredholm integral equation of the second kind, Monegato and Scuderi [26] proposed a non-linear transformation to eliminate the singularity of the equation. Ghoreishi [11] used a variable transformation and a spectral method to solve the multi-order fractional differential equation. Pedas et al. [27] regularized the solution of fractional initial and boundary value problems by a suitable smoothing transformation. They solved the transformed equation by a piecewise polynomial collocation method on a mildly graded grid and on a uniform grid. Zaky [38] used a smoothing transformation and the Jacobi spectral collocation method to solve the rational-order fractional terminal value problems with non-smooth solutions.

    Based on the above works, we apply the smoothing transformation and the Jacobi spectral collocation method with high accuracy and global characteristics to the following fractional integro-differential equations.

    Dαz˜y(z)=˜y(z)+z0˜K(z,τ)˜y(τ)dτ+˜g(z),zI=[0,T],˜y(0)=λ, (1)

    where ˜g(z) is the source function, and ˜K(z,τ) is the kernel function. The given function ˜g(z) and ˜K(z,τ) are continuous on their respective domains 0τzT and ΔT:={(z,τ)R2:0τzT}, λR. Dαz is the Caputo fractional derivative of rational-order α, 0<α<1.

    Let Γ() denote the Gamma function. For any positive integer n with n1<α<n, the Caputo derivative is defined as follows:

    Dαzf(z)=1Γ(nα)za(zτ)nα1f(n)(τ)dτ,z[a,b].

    In addition, the Riemann-Liouville fractional integral Iαz of order α is defined by

    Iαzf(z)=1Γ(α)za(zτ)α1f(τ)dτ,z[a,b].

    We note that,

    Iαz(Dαzf(z))=f(z)n1k=0f(k)(a)zkk!. (2)

    The layout of this paper as follows: In Section 2, we introduce the basic properties of Jacobi polynomials and Jacobi-Gauss interpolation. The fractional integral differential equation is transformed into an equivalent integral equation, in Section 3. A smoothing transformation of variable is defined for the new equation so that the solution is smooth, in Section 3. The Jacobi spectral-collocation method is defined in Section 4. The convergence analysis of the collocation method is derived in Section 5. In Section 6, we give several numerical examples verifying the accuracy of the theoretical estimation and the feasibility and effectiveness of the method. Finally, some concluding remarks are drawn in Section 7.

    In this section, we introduce some basic properties about Jacobi polynomials and Jacobi-Gauss interpolation that are related to spectral-collocation methods [30].

    The Jacobi polynomials, denoted by Pα,βn(x), are orthogonal with the Jacobi weight function ωα,β(x)=(1x)α(1+x)β over Λ=(1,1), namely,

    (Pα,βi(x),Pα,βj(x))ωα,β=11Pα,βi(x)Pα,βj(x)ωα,β(x)dx=γα,βiδi,j, (3)

    where δi,j is the Kronecker function and

    γα,βi=(2)α+β+1Γ(i+α+1)Γ(i+β+1)(2i+α+β+1)Γ(i+1)Γ(i+α+β+1). (4)

    For a given positive integer N0, let PN denote the space of all polynomials of degree not exceeding N. We denote by {xα,βi,ϖα,βi}Ni=0 the set of quadrature nodes and weights of the Jacobi-Gauss integration. The Jacobi-Gauss integration formula has the form

    Λφ(x)ωα,β(x)dxNi=0φ(xi)ϖα,βi. (5)

    The above quadrature formula (5) is exact for any φ(x)P2N+1. Hence, by (3),

    Nk=0Jα,βi(xα,βk)Jα,βj(xα,βk)ϖα,βk=γα,βiδi,j,0i+j2N+1. (6)

    For any μC(Λ), the Jacobi-Gauss interpolation operator Iα,βx,N:C(Λ)PN is determined uniquely by

    Iα,βx,Nμ(xα,βj)=μ(xα,βj),0jN. (7)

    The interpolation condition (7) implies that Iα,βx,Nμ=μ for all μPN. On the other hand, since Iα,βx,NμPN, we can write

    Iα,βx,Nμ(x)=Ni=0ˆμα,βiJα,βi(x),ˆμα,βi=1γα,βiNj=0μ(xj)Jα,βi(xj)ϖα,βj. (8)

    In particular, for β=0, the set of Jacobi polynomials is reduced to Jαi(x). Therefore, we can also write xαj=xα,0j,ϖαj=ϖα,0j and Iαx,N=Iα,0x,N.

    In this section, we use the definition and related properties of Riemann-Liouville fractional integral and Caputo fractional derivative to transform the original fractional equation with initial conditions into the second kind of Volterra integral equation with weak singular kernel. We show the equation has a non-smooth solution. Then we apply the smoothing transformation to eliminate the singularity of the solution at the left endpoint.

    First, we use (2) to transform the original equation (1) into an equivalent Volterra integral equation with weak singular kernel.

    ˜y(z)=λ+1Γ(α)z0(zs)α1(˜y(s)+˜g(s))ds+1Γ(α)z0(zs)α1s0˜K(s,τ)˜y(τ)dτds.

    Using Dirichlet's formula

    z0s0ϕ(s,τ)dτds=z0zτϕ(s,τ)dsdτ,

    we derive

    ˜y(z)=λ+1Γ(α)z0(zs)α1˜g(s)ds+1Γ(α)z0((zs)α1+zs(zτ)α1˜K(τ,s)dτ)˜y(s)ds. (9)

    The equation (9) is transformed into the following Volterra integral equation of the second kind by the linear transformation w=τszs, w[0,1],

    ˜y(z)=f(z)+z0(zs)α1K(w(zs)+s,s)˜y(s)ds, (10)

    where

    f(z)=λ+1Γ(α)z0(zs)α1˜g(s)ds,K(w(zs)+s,s)=1Γ(α)(1+10(zs)(1w)α1˜K(w(zs)+s,s)dw).

    Lemma 3.1. The kernel function K(w(zs)+s,s) in (10) is continuous and bounded.

    Proof. We have

     K(w(zs)+s,s)=1Γ(α)(1+10(zs)(1w)α1˜K(w(zs)+s,s)dw)=1Γ(α)(1+10(zs)(1w)α1w0˜K(w(zs)+s,s)dw).

    For z[0,T] and s[0,z], zs[z,T]. It is known that ˜K(w(zs)+s,s) is bounded and continuous on ΔT. Let ˜K(w(zs)+s,s) have the maximum and minimum values on ΔT, Qmax and Qmin, respectively. There is

    1Γ(α)(1zQminB(1,α))K(w(zs)+s,s)1Γ(α)(1+TQmaxB(1,α)),

    where B(,) is the β function: B(ξ,η)=10sξ1(1s)η1dξ. The lemma is proved.

    We give some lemmas on smoothness of solution of the general Volterra integral equation of the second kind.

    Lemma 3.2. [23] Consider the following general Volterra integral equation of the second kind:

    y(z)=f(z)+1Γ(γ)z0(zs)γK(z,s,y(s))ds,zI=[0,T], (11)

    where γ>1, f:IRn is a continuous bounded function, K:S×RnRn is a continuous bounded function, and {S=(z,s):0szT}.

    1. If f(z) and K(z,s,y(s)) are differentiable, the integral equation has a unique solution y(z) that is also differentiable on (0,T];

    2. If f(z)=F(z,z1+γ), F(z1,z2) and K(z,s,y(s)) are differentiable, the integral equation has a unique solution y(z) that satisfies

    y(z)=Y(z,z1+γ),

    where Y(z1,z2) is differentiable at (0,0).

    We note that the solution of equation (14) is not smooth at z=0 in general.

    It can be obtained from the above lemma that the Eq.(10) has a unique solution y(z), which is differentiable on z(0,T] and is not necessarily smooth at z=0. For 0<1α<1, the equation has a singular term (zs)α1. By the literature [5], for any positive integer m, if K(τ(w(zs)),s) and f(z) are continuous differentiable functions of order m in the corresponding area, there exists a function Y=Y(z,v) possessing continuous derivatives of order m, such that the solution of the Eq.(10) can be written as y(z)=Y(z,zα). This indicates that when z0, y(m)(z)zαm, and thus y(z)Cm[0,T].

    Lemma 3.3. [4] Let 0<α<1. We assume that fCm(I), KCm(D) for some m0.

    1. If m=0, the Volterra integral equation,

    y(z)=f(z)+z0(zs)μK(z,s)y(s)ds,1>μ>0,zI, (12)

    possesses a unique solution y(z)C(I). This solution has the representation

    y(z)=f(z)+z0Rμ(z,s)f(s)ds,zI,

    where the resolvent kernel Rμ(z,s) of the kernel (zs)μK(z,s) has the form

    Rμ(z,s)=(zs)μQμ(z,s).

    Here, Qμ(z,s) is continuous on D.

    2. If m1, every nontrivial solution has the property that y(z)C1(I): as z0+ the solution behaves like

    y(z)Czμ,0<μ<1.

    In earlier work, when 0<1α<1, the general form of the exact solution of the Eq.(10) has been derived, in next lemma.

    Lemma 3.4. [5] Assume that fCm(I) with mN+, and K(w(zs)+s,s)Cm(I×I) with K(w(zs)+s,w(zs)+s)0 on I=[0,T]. Then, the regularity of the unique solution of the weakly singular Volterra integral equation (10) can be described by

    y(z)C[0,T]Cm(0,T],y(z)∣≤Cμzμ,z(0,T],y(z)=(j,k)μγj,k(μ)zj+k(1μ)+Ym(z;μ),zI, (13)

    where (j,k)μ:={(j,k):j,kN+0,j+k(1μ)<m},γj,k(μ) are some constants and Ym(;μ)Cm(I).

    Lemma 3.5. [6] Suppose that fCm(I), K(w(zs)+s,s)Cm(I×I) on I=[0,T], and K(w(zs)+s,s)0 with m0. Let μ=1α, 0<μ<1. The Volterra integral equation (10) has a unique solution y(z)C[0,T]Cm(0,T]. Further, y(z) has the following form

    y(z)=f(z)+k=1ψk(z)zk(1μ),zI,

    where ψkCm(I),k1, and the series is absolutely uniformly convergent on I.

    If μ=pq is rational (i.e.,p,qN, reduced to lowest terms), then the solution of the Eq.(10) can be expressed in the form

    y(z)=f(z)+q1s=1νs(z)zs(1μ),zI, (14)

    where νsCm(I)(0sq1).

    From the above lemma, y(z)Cm[0,T]. For the Eq.(13), Chen and Tang [9] proposed the function transformation ˜y(t)=tu+m1[y(t)y(0)] to remove a single term singularity like t1um. They used the spectral-collocation method and achieved excellent results. Our work has been inspired by their excellent results in [9,32]. We apply the similar transformation mentioned above to (14), and obtain the following lemma. This result will be the starting point to the construction of the numerical method presented later.

    Lemma 3.6. Using the following transformation for (14),

    z=tσ,Y(t)=y(z),tI=[0,T1σ],σN+, (15)

    it is deduced that

    1. if σ=q or a multiple of q, then Y(t)Cm(I);

    2. if σqqp, then Y(t) is at least a first-order differentiable function.

    Proof. Taking the above transformation (15) to (14), we obtain

    y(tσ)=f(tσ)+q1s=1νs(tσ)tsσ(1μ)=f(tσ)+q1s=1νs(tσ)tsσ(qpq).

    Thus we deduce the two conclusions in the lemma.

    By the Lemma 3.5, it follows that the solution of the Eq.(10) can be written in the form of ˜y(z)=y1(z)+y2(z) where, for a fixed m, y1(z)Cm(I) and y2(z) is the non-smooth part of the solution.

    Our first step is to replace ˜y(z) by ˜y(z):=y(z)+λ, where y(0)=0. Hence, the Eq.(1) can be expressed in terms of y as

    Dαzy(z)=(y(z)+˜g(z)+λ)+z0˜K(z,τ)(y(τ)+λ)dτ,z(0,T],y(0)=0. (16)

    An equivalent integral form of the above equation is

    y(z)=1Γ(α)z0(zs)α1(y(s)+˜g(s)+λ)ds+1Γ(α)z0(zs)α1s0˜K(s,τ)(y(τ)+λ)dτds. (17)

    We apply the smoothing transformation

    z=tσs=γσ,1<σN,

    reducing the problem (17) to the following integral equation whose solution does not involve anymore singularities in the first derivative.

    y(tσ)=1Γ(α)t0σγσ1(tσγσ)α1(y(γσ)+˜g(γσ)+λ)dγ+1Γ(α)t0σγσ1(tσγσ)α1γσ0˜K(γσ,τ)(y(τ)+λ)dτdγ. (18)

    Moreover, using the linear transformation

    t=T1σ(x+12),xΛ,γ=T1σ(ξ+12),ξ(1,x),

    the Eq.(18) becomes

    y(T(x+12)σ)=1Γ(α)x1σT2(ξ+12)σ1(T(x+12)σT(ξ+12)σ)α1×(y(T(ξ+12)σ)+˜g(T(ξ+12)σ)+λ)dξ+1Γ(α)×x1σT2(ξ+12)σ1(T(x+12)σT(ξ+12)σ)α1×T(ξ+12)σ0˜K(T(ξ+12)σ,τ)(y(τ)+λ)dτdξ. (19)

    Furthermore, in order to transform the integral interval (0,T(ξ+12)σ) into (1,ξ), we use the linear transformation τ=T(η+12)σ,ηΛ, we obtain

    y(T(x+12)σ)=1Γ(α)x1σT2(ξ+12)σ1(T(x+12)σT(ξ+12)σ)α1×(y(T(ξ+12)σ)+˜g(T(ξ+12)σ)+λ)dξ+1Γ(α)×x1(σT2)2(ξ+12)σ1(T(x+12)σT(ξ+12)σ)α1×ξ1(η+12)σ1˜K(T(ξ+12)σ,T(η+12)σ)×(y(T(η+12)σ)+λ)dηdξ. (20)

    We use the following linear transformation to convert the integration interval (1,ξ) to (1,1).

    η=η(ξ,θ)=ξ+12θ+ξ12,θΛ.

    Equation (20) can be written as

    y(T(x+12)σ)=1Γ(α)x1σT2(ξ+12)σ1(T(x+12)σT(ξ+12)σ)α1×(y(T(ξ+12)σ)+˜g(T(ξ+12)σ)+λ)dξ+1Γ(α)×x1(σT2)2(ξ+12)σ(T(x+12)σT(ξ+12)σ)α1×11(η+12)σ1˜K(T(ξ+12)σ,T(η(ξ,θ)+12)σ)×(y(T(η(ξ,θ)+12)σ)+λ)dθdξ. (21)

    Using the formula

    aσbσ=(ab)σ1i=0aibσi1,

    (21) becomes

    y(T(x+12)σ)=Tα2αΓ(α)x1(xξ)α1g(x,ξ)(y(T(ξ+12)σ)+˜g(T(ξ+12)σ)+λ)dξ+Tα+12α+1Γ(α)x1(xξ)α1×11g(x,ξ,θ)˜K(T(ξ+12)σT(η(ξ,θ)+12)σ)×(y(T(η(ξ,θ)+12)σ)+λ)dθdξ, (22)

    where

    g(x,ξ)=σ(ξ+12)σ1(σ1i=0(x+12)i(ξ+12)σi1)α1,g(x,ξ,θ)=σ2(η(ξ,θ)+12)σ1(ξ+12)σ(σ1i=0(x+12)i(ξ+12)σi1)α1.

    Finally, by the change of variable

    ξ=ξ(x,v)=x+12v+x12,x,vΛ,

    and setting

    Y(x)=y(T(x+12)σ),

    (22) is reduced to

    Y(x)=Tα4αΓ(α)11(x+1)α(1v)α1G(x,ξ(x,v))dv,+Tα+122α+1Γ(α)11(x+1)α(1v)α1
    ×11K(ξ(x,v),η)(Y(η)+λ)dθdv, (23)

    where

    G(x,ξ(x,v))=g(x,ξ(x,v))(Y(ξ)+˜g(T(ξ(x,v)+12)σ)+λ),K(ξ(x,v),η)=g(x,ξ(x,v),θ)˜K(T(ξ(x,v)+12)σ,T(η(ξ(x,v),θ)+12)σ)).

    In this section, we propose the Jacobi spectral-collocation method to (23). Solving Equation (23) by the Jacobi spectral-collocation method is to find YN(x)PN, such that

    YN(x)=Iα1x,NTα4αΓ(α)11Iα1v,N(x+1)α(1v)α1GN(x,ξ(x,v))dv+Iα1x,NTα+122α+1Γ(α)11Iα1v,N(x+1)α(1v)α1×11KN(ξ(x,v),η)dθdv, (24)

    where

    GN(x,ξ(x,v))=g(x,ξ(x,v))(YN(ξ)+˜g(T(ξ(x,v)+12)σ)+λ),KN(ξ(x,v),η)=K(ξ(x,v),η)(YN(η)+λ).

    In order to implement the above basic algorithm more effectively, we set

    YN(x)=Ni=0μiJα1i(x),Iα1x,NIα1v,N11(x+1)αKN(ξ(x,v),η)dθ=Ni=0Nj=0di,jJα1i(x)Jα1j(v),Iα1x,NIα1v,N(x+1)αGN(x,ξ(x,v))=Ni=0Nj=0bi,jJα1i(x)Jα1j(v). (25)

    Employing (25) and (3), we can directly calculate the result that

    Iα1x,NTα+1(x+1)α22α+1Γ(α)Iα1v,N11(1v)α111KN(ξ(x,v),η)dθdv=Tα+122α+1Γ(α)Ni=0Nj=0di,jJα1i(x)11(1v)α1Jα1j(v)dv=Tα+12α+1Γ(α+1)Ni=0di,0Jα1i(x). (26)

    Using (26), (5) and (8) it yields

    di,0=α(2i+α)4αNj=0Nm=0Nk=0(xj+1)αˆKN(ξ(x,v),η)Jα1i(xj)ωα1jωα1mω0,0k, (27)

    where

    ˆKN(ξ(x,v),η)=K(ξ(xj,vm),η(ξ(xj,vm),θk))(YN(η(ξ(xj,vm),θk))+λ).

    Similarly, by Eqs. (3) and (25), we conclude that

     Iα1x,NTα(x+1)α4αΓ(α)Iα1v,N11(1v)α1GN(x,ξ(x,v))dv=Tα4αΓ(α)Ni=0Nj=0bi,jJα1i(x)11(1v)α1Jα1j(v)dv=Tα2αΓ(α+1)Ni=0bi,0Jα1i(x). (28)

    Using (28), (5) and (8), we obtain

    bi,0=α(2i+α)4αNj=0Nm=0(xj+1)αˆGN(x,ξ(x,v))Jα1i(xj)ωα1jωα1m, (29)

    where

    ˆGN(x,ξ(x,v))=g(xj,ξ(xj,vm))(YN(ξ(xj,vm))+˜g(T(ξ(xj,vm)+12)σ)+λ).

    In summary, by (25)-(29), we deduce that

     Ni=0μiJα1i(x)=Tα+12α+1Γ(α+1)Ni=0di,0Jα1i(x)+Tα2αΓ(α+1)Ni=0bi,0Jα1i(x). (30)

    Finally, using (3) it yields

    μi=Tα+12α+1Γ(α+1)di,0+Tα2αΓ(α+1)bi,0,0iN. (31)

    The numerical solution can be obtained by solving the equations.

    In this section, we estimate the error of the numerical solution. We bound the error in the L and L2ωα,β norms. In order to give the subsequent lemmas conveniently, we first introduce some spaces.

    Let the region ΛRn be a non-empty Lebesgue measurable set, u(x) is a real value Lebesgue measurable function defined on Λ. Lp(Λ) is defined as

    Lp(Λ)={u:uLp(Λ)<, 1p},

    equipped with the norm,

    uLp(Λ)=(Λ|u(x)|pdx)1p,1p<,uL(Λ)=esssupx(Λ)|u(x)|.

    For a non-negative integer l, and 1p, the Sobolev space is defined as:

    Hl,p(Λ)={uLp(Λ):αuLp(Λ),  |α|l}.

    If p=2, we record Hl,2(Λ) as Hl(Λ), which is a separable Hilbert Space. If l=0, Hl,p(Λ) is Lp(Λ) space.

    Then we introduce the weighted L2ωα,β(Λ) space. Assume that the weight function ωα,β(x)=(1x)α(1+x)β with α,β>1, then

    L2ωα,β(Λ)={u:u is measurable anduωα,β<},

    endowed with the norm and inner product

    uωα,β=(Λ|u(x)|2ωα,β(x)dx)12,(u,v)ωα,β=Λu(x)v(x)ωα,β(x)dx, u,vL2ωα,β(Λ).

    The weighted Hilbert space is defined as follows

    Hlωα,β(Λ):={u:mxuL2ωα,β(Λ), 0ml},

    equipped with the norm, semi-norm and inner product

    ul,ωα,β=(lm=0mu2ωα,β)12,|u|l,ωα,β=luωα,β,
    (u,v)l,ωα,β=lm=0Λmxu(x)mxv(x)ωα,βdx.

    For a non-negative integer l, we introduce the non-uniformly Jacobi-weighted Sobolev space

    Blωα,β(Λ):={u:mxuL2ωα+m,β+m(Λ), 0ml},

    endowed with the norm, semi-norm and inner product

    uBlωα,β=(u,u)1/2Blωα,β,|u|Blωα,β=lxuωα+l,β+l,
    (u,v)Blωα,β=lm=0(mxu,mxv)ωα+m,β+m,

    where uωα,β is the norm of L2ωα,β(Λ). Especially, L2(Λ)=B0ω0,0, =L2(Λ) and =L(Λ). The non-uniform Jacobi-weighted Sobolev space distinguishes itself from the usual weighted Sobolev space Hlωα,β by involving different weight functions for derivatives of different orders. It is clear that Hlωα,β is a subspace of Blωα,β, that is uBlωα,βcuHlωα,β.

    The space L(Λ) is the Banach space of the measurable functions u that are bounded outside a set of measure zero, equipped the norm

    u=esssupx(Λ)|u(x)|.

    We denote by Cm(Λ) the space of m-times continuously differentiable functions on the interval Λ.

    Lemma 5.1. [24] Let Fj(x)Nj=0 be the Nth Lagrange interpolation polynomials associated with the N+1 Gauss points of the Jacobi polynomials. Then

    Iα,βNL(I)=maxx[1,1]Nj=0|Fj(x)|={O(logN),1α,β12,O(Nϵ+12),ϵ=max(α,β),otherwise.

    Lemma 5.2. [29] For α,β>1, and any uBlωα,β with l1, and integers 0mlN+1,

    mx(uIα,βx,Nu)ωα+m,β+mcNmllxuωα+l,β+l.

    Moreover, for any uHlω1/2,1/2 with 1lN+1,

    uI1/2,1/2x,NucN1/2luω1/2,1/2,

    where c is a positive constant independent of l,N and u.

    Lemma 5.3. [38] Let vα1i be the Jacobi-Gauss nodes in Λ and ξα1i=ξ(x,vα1i). The mapped Jacobi-Guass interpolation operator xIα1ξ,N:C(1,x)PN(1,x) is defined by

    xIα1ξ,Nu(ξα1i)=u(ξα1i),0iN.

    Hence

    xIα1ξ,Nu(ξα1i)=u(ξα1i)=u(ξ(x,vα1i))=Iα1v,Nu(ξ(x,vα1i)),

    and

    xIα1ξ,Nu(ξ)=Iα1v,Nu(ξ(x,v))v=2ξx+1+1xx+1.

    From the above formula, we can derive the following results

    x1(xξ)α1xIα1ξ,Nu(ξ)dξ=(1+x2)α11(1v)α1Iα1v,Nu(ξ(x,v))dv=(1+x2)αNi=0ωα1iu(ξα1i),x1(xξ)α1(xIα1ξ,Nu(ξ))2dξ=(1+x2)αNi=0ωα1iu2(ξα1i).

    Moreover, if we denote I as the identity operator, for any 1lN+1, we have that

     x1(xξ)α1(IxIα1ξ,N)u(ξ)2dξ=(1+x2)α11(1v)α1(IIα1v,N)u(ξ(x,v))2dvcN2l(1+x2)α11(1v)α+l1(1+v)llvu(ξ(x,v))2dv=cN2lx1(xξ)α+l1(1+ξ)llξu(ξ)2dξ.

    Now, we are ready to prove the following convergence results.

    Theorem 5.4. Let Y be the exact solution of the original equation (16). Let YN be the numerical solution obtained by the discrete scheme (25) combined with the approximate Eq. (24). Let eN=YYN.

    eNωα1,0Y(x)Iα1x,NY(x)ωα1,0+Iα1x,NYYNωα1,05i=1Eiωα1,0, (32)

    where

    E1=Y(x)Iα1x,NY(x),E2=Tα2αΓ(α)Iα1x,Nx1(xξ)α1(IxIα1ξ,N)G(x,ξ)dξ,E3=Tα2αΓ(α)Iα1x,Nx1(xξ)α1xIα1ξ,NˆG(x,ξ)(YYN)dξ,E4=Tα+12α+1Γ(α)Iα1x,Nx1(xξ)α111(IxIα1ξ,N)K(x,ξ,η)dθdξ,E5=Tα+12α+1Γ(α)Iα1x,Nx1(xξ)α111xIα1ξ,NˆK(x,ξ,η)(YYN)dθdξ. (33)

    Here

    G(x,ξ)=g(x,ξ)(Y(ξ)+˜g(T(ξ+12)σ)+λ),ˆG(x,ξ)(YYN)=g(x,ξ)(Y(ξ)YN(ξ)),K(x,ξ,η)=g(x,ξ,θ)˜K(T(ξ+12)σ,T(η(ξ,θ)+12)σ)(Y(η(ξ,θ))+λ),ˆK(x,ξ,η)(YYN)=g(x,ξ,θ)˜K(T(ξ+12)σ,T(η(ξ,θ)+12)σ)(Y(η(ξ,θ))YN(η(ξ,θ))).

    Proof. It follows from (22) that

    Iα1x,NY(x)=Tα2αΓ(α)Iα1x,Nx1(xξ)α1G(x,ξ)dξ+Tα+12α+1Γ(α)Iα1x,Nx1(xξ)α111K(x,ξ,η)dθdξ,YN(x)=Tα2αΓ(α)Iα1x,Nx1(xξ)α1xIα1ξ,NGN(x,ξ)dξ+Tα+12α+1Γ(α)Iα1x,Nx1(xξ)α111xIα1ξ,NKN(x,ξ,η)dθdξ, (34)

    where xIα1ξ,N is defined in Lemma 5.3, and

    G(x,ξ)=g(x,ξ)(Y(ξ)+˜g(T(ξ+12)σ)+λ),GN(x,ξ)=g(x,ξ)(YN(ξ)+˜g(T(ξ+12)σ)+λ),K(x,ξ,η)=g(x,ξ,θ)˜K(T(ξ+12)σ,T(η(ξ,θ)+12)σ)(Y(η(ξ,θ))+λ),
    KN(x,ξ,η)=g(x,ξ,θ)˜K(T(ξ+12)σ,T(η(ξ,θ)+12)σ)(YN(η(ξ,θ))+λ).

    By (34), we obtain

     Iα1x,NYYN=Tα2αΓ(α)Iα1x,Nx1(xξ)α1(IxIα1ξ,N)G(x,ξ)dξ+Tα2αΓ(α)Iα1x,Nx1(xξ)α1xIα1ξ,NˆG(x,ξ)(YYN)dξ+Tα+12α+1Γ(α)Iα1x,Nx1(xξ)α111(IxIα1ξ,N)K(x,ξ,η)dθdξ+Tα+12α+1Γ(α)Iα1x,Nx1(xξ)α111xIα1ξ,NˆK(x,ξ,η)(YYN)dθdξ, (35)

    where

    ˆG(x,ξ)(YYN)=g(x,ξ)(Y(ξ)YN(ξ)),ˆK(x,ξ,η)(YYN)=g(x,ξ,θ)˜K(T(ξ+12)σ,T(η(ξ,θ)+12)σ)(Y(η(ξ,θ))YN(η(ξ,θ))).

    The theorem is proved.

    Theorem 5.5. Let Y be the exact solution of the original equation (16). Let YN is the numerical solution obtained by the discrete scheme (25) combined with the approximate equation (24). Let α(0,1). Assume that YBlωα1,0(Λ) with 1lN+1. We conclude the error estimate:

     eNωα1,0cNlGlξ(Y+g)ωα+l1,l+c(N1l+Nl)KlξYωα+l1,l+cNl(1+NK+K+G)lxYωα+l1,l, (36)

    where

    G=maxi[0,N]maxξ[1,x]g(xi,ξ),K=maxi[0,N]maxk[0,N]maxξ[1,x]g(xi,ξ,θk)K(ξ,η(ξ,θk)).

    Proof. By Lemma 5.2,

    E1ωα1,0=Y(x)Iα1x,NY(x)ωα1,0cNllxYωα+l1,l. (37)

    Using (5), we get

     E2ωα1,0=Tα2αΓ(α)Iα1x,Nx1(xξ)α1(IxIα1ξ,N)G(x,ξ)dξωα1,0=Tα2αΓ(α)[Ni=0ωi(xi1(xiξ)α1(IxiIα1ξ,N)G(xi,ξ)dξ)2]1/2. (38)

    Apply the Cauchy-Schwarz inequality,

    xi1a(ξ)b(ξ)dξ2xi1a(ξ)2dξxi1b(ξ)2dξ, (39)

    where

    a(ξ)=(xiξ)α12,b(ξ)=(xiξ)α12(IxiIα1ξ,N)G(xi,ξ),

    and Lemma 5.3, we derive

    E2ωα1,0=Tα2αΓ(α)[Ni=0ωixi1(xiξ)α1dξ×xi1(xiξ)α1(IxiIα1ξ,N)G(xi,ξ)dξ2]1/2Tα2αΓ(α+1)[Ni=0ωiα(xi+1)α×xi1(xiξ)α1(IxiIα1ξ,N)G(xi,ξ)dξ2]1/2cNlG(Ni=0ωiα(xi+1)α)1/2maxi[0,N]×(xi1(xiξ)α+l1(1+ξ)llξ(Y(ξ)+g(ξ))2dξ)1/2, (40)

    where

    g(ξ)=(˜g(T(ξ+12)σ)+λ),G=maxi[0,N]maxξ[1,x]g(xi,ξ).

    For any xi(1,1), and α(0,1),

    Ni=0ωiα(xi+1)α2. (41)

    Hence

    E2ωα1,0cNlGlξ(Y()+g())ωα+l1,l. (42)

    In the same way, by the Cauchy-Schwarz inequality, we deduce that

     E3ωα1,0=Tα2αΓ(α)Iα1x,Nx1(xξ)α1xIα1ξ,N(ˆG(x,ξ)(YYN))dξωα1,0=Tα2αΓ(α)[Ni=0ωi(xi1(xiξ)α1xiIα1ξ,N(ˆG(xi,ξ)(YYN))dξ)2]1/2TαG2αΓ(α)[Ni=0ωixi1(xiξ)α1dξxi1(xiξ)α1×xiIα1ξ,N(Y(ξ)YN(ξ))2dξ]1/2. (43)

    Using Lemma 5.3 yields

     E3ωα1,0GTα2αΓ(α)(Ni=0ωiα(xi+1)α)1/2maxi[0,N](xi1(xiξ)α1xiIα1ξ,N×(Y(ξ)YN(ξ))2dξ)1/2GTα2α1/2Γ(α)maxi[0,N]((xi1(xiξ)α1xiIα1ξ,NY(ξ)Y(ξ)2dξ)1/2+(xi1(xiξ)α1Y(ξ)YN(ξ)2dξ)1/2)cGNlmaxi[0,N](xi1(xiξ)α+l1(1+ξ)llξY2dξ)1/2 +GTα2α+1/2Γ(α)maxi[0,N](xi1(xiξ)α1Y(ξ)YN(ξ)2dξ)1/2cGNllxYωα+l1,l+cGeNωα1,0. (44)

    Similarly, by (5), we obtain that

     E4ωα1,0=Tα+12α+1Γ(α)Iα1x,Nx1(xξ)α111(IxIα1ξ,N)K(x,ξ,η)dθdξωα1,0=Tα+12α+1Γ(α)[Ni=0ωi(xi1(xiξ)α111×(IxiIα1ξ,N)K(xi,ξ,η)dθdξ)2]1/2. (45)

    By the Cauchy-Schwarz inequality, we further get

    E4ωα1,0=Tα+12α+1Γ(α)[Ni=0ωixi1(xiξ)α1dξxi1(xiξ)α1 ×11(IxiIα1ξ,N)K(xi,ξ,η)dθ2dξ)]1/2Tα+1K2α+1Γ(α+1)(Ni=0ωiα(xi+1)α)1/2[xi1(xiξ)α1×Nk=0(IxiIα1ξ,N)(Y(η(ξ,θk))+λ)2dξ]1/2, (46)

    where

    K(ξ,η(ξ,θ))=˜K(T(ξ+12)σ,T(η(ξ,θ)+12)σ),K=maxi[0,N]maxk[0,N]maxξ[1,x]g(xi,ξ,θk)K(ξ,η(ξ,θk)).

    Applying Lemma 5.3 leads to

    E4ωα1,0c(N1l+Nl)K(Ni=0ωiα(xi+1)α)1/2maxi[0,N]maxk[0,N]×(xi1(xiξ)α+l1(1+ξ)llξ(Y(η(ξ,θk))+λ)2dξ)1/2c(N1l+Nl)K(Ni=0ωiα(xi+1)α)1/2maxi[0,N]maxk[0,N]×(xi1(xiξ)α+l1(1+ξ)llξY(η(ξ,θk))2dξ)1/2. (47)

    By (41),

    E4ωα1,0c(N1l+Nl)KlξY()ωα+l1,l. (48)

    Similarly, using the Cauchy-Schwarz inequality, we further get

     E5ωα1,0=Tα+12α+1Γ(α)Iα1x,Nx1(xξ)α111xIα1ξ,NˆK(x,ξ,η)(YYN)dθdξωα1,0=Tα+12α+1Γ(α)[Ni=0ωixi1(xiξ)α1dξxi1(xξ)α1Nk=0xiIα1ξ,N׈K(x,ξ,η(ξ,θk))(YYN)2dξ]1/2. (49)

    From the above formula, we can get

     E5ωα1,0Tα+1K2α+1Γ(α)[Ni=0ωixi1(xiξ)α1dξxi1(xiξ)α1Nk=0xiIα1ξ,N×Y(η(ξ,θk))Y(η(ξ,θk))+Y(η(ξ,θk))YN(η(ξ,θk))2dξ]1/2Tα+1K2α+1Γ(α+1)(Ni=0ωiα(xi+1)α)1/2maxi[0,N]maxk[0,N][xi1(xiξ)α1Nk=0xiIα1ξ,NY(η(ξ,θk))Y(η(ξ,θk))2dξ]1/2+cTα+1K2α+1Γ(α+1)(Ni=0ωiα(xi+1)α)1/2maxi[0,N]maxk[0,N][xi1(xiξ)α1Nk=0(Y(η(ξ,θk))YN(η(ξ,θk)))2dξ]1/2. (50)

    Also using Lemma 5.3 and (41), we obtain

     E5ωα1,0c(N1l+Nl)Kmaxi[0,N]maxk[0,N](xi1(xiξ)α+l1(1+ξ)l
    ×lξY(η(ξ,θk))2dξ)1/2+c(N+1)K×maxi[0,N]maxk[0,N](xi1(xiξ)α1Y(η(ξ,θk))YN(η(ξ,θk))2dξ)1/2.

    Drawn by the above formula,

     E5ωα1,0c(N1l+Nl)KlxYωα+l1,l+c(N+1)KeNωα1,0. (51)

    In summary,

     eNωα1,0c(N1l+Nl)KlξYωα+l1,l+cNlGlξ(Y+g)ωα+l1,l+cNl(1+NK+K+G)lxYωα+l1,l. (52)

    Theorem 5.6. Let Y be the exact solution of the original equation (16). YN is the numerical solution obtained by the discrete scheme (25) combined with the approximate equation (24). Let α(0,1). Suppose that YHlωα1,0(Λ)Hlw1/2,1/2(Λ) with 1lN+1, we conclude the following error estimate:

    eNcGN1/2llξ(Y(ξ)+g(ξ))ωα+l1,l+cN1lYω1/2,1/2+c(G+NK+K)N1/2llxYωα+l1,l+cK(N3/2l+N1/2l)lξYωα+l1,l,

    where

    G=maxx[1,1]maxξ[1,x]g(x,ξ),K=maxx[1,1]maxθk[1,1]maxξ[1,x]g(x,ξ,θk)K(ξ,η(ξ,θk)).

    Proof. According to (32),

    eNYIα1x,NY+Iα1x,NYYN5i=1Ei. (53)

    By (5.1) and (5.2), we deduce that

    E1=YIα1x,NY=YI1/2x,NY+Iα1x,NI1/2x,NYIα1x,NY(1+Iα1x,N)YI1/2x,NYcN1lYω1/2,1/2. (54)

    The Cauchy-Schwarz inequality, along with Lemmas 5.1 and 5.3, lead to

     E2=Tα2αΓ(α)Iα1x,Nx1(xξ)α1(IxIα1ξ,N)G(x,ξ)dξTα2αΓ(α)Iα1x,Nmaxx[1,1]x1(xξ)α1(IxIα1ξ,N)G(x,ξ)dξ
    cN1/2maxx[1,1]x1(xξ)α1(IxIα1ξ,N)G(x,ξ)dξcN1/2maxx[1,1][x1(xξ)α1dξx1(xξ)α1(IxIα1ξ,N)×G(x,ξ)2dξ]1/2cGN1/2lmaxx[1,1][x1(xξ)α1(1+ξ)llξ(Y(ξ)+g(ξ))2dξ]1/2cGN1/2llξ(Y(ξ)+g(ξ))ωα+l1,l, (55)

    where

    g(ξ)=(˜g(T(ξ+12)σ)+λ),G=maxx[1,1]maxξ[1,x]g(x,ξ).

    Similarly, by Lemma 5.1 and the Cauchy-Schwarz inequality, we obtain

     E3=Tα2αΓ(α)Iα1x,Nx1(xξ)α1xIα1ξ,N(ˆG(x,ξ)(YYN)))dξTα2αΓ(α)Iα1x,Nmaxx[1,1]x1(xξ)α1xIα1ξ,N(ˆG(x,ξ)(YYN)))dξTα2αΓ(α)N1/2maxx[1,1](xi1(xiξ)α1dξxi1(xiξ)α1×xIα1ξ,N(ˆG(x,ξ)(YYN)))2dξ)1/2. (56)

    Using the Lemma 5.3 yields

    \begin{eqnarray} && \quad \ \mid E_{3}\mid\\ &&\leq cN^{1/2}\max\limits_{x\in[-1, 1]}(\int_{-1}^{x_{i}}(x_{i}-\xi)^{\alpha-1}\mid{_{x}I_{\xi, N}^{\alpha-1}} \Big(\hat{G}(x, \xi)({Y}-Y_{N})\Big)\mid ^{2}d\xi)^{1/2}\\ &&\leq cG^{**}N^{1/2}\max\limits_{x\in[-1, 1]}\left[\int_{-1}^{x}(x-\xi)^{\alpha-1}\mid{{_{x}I_{\xi, N}^{\alpha-1}}}Y(\xi)\right.\\ &&\left.\quad- Y(\xi)\mid ^{2}+\mid Y(\xi)-Y_{N}(\xi)\mid ^{2}d\xi\right]^{1/2}\\ &&\leq cG^{**}N^{1/2-l}\big\Vert\partial_{x}^{l}Y \big\Vert_{\omega^{\alpha+l-1, l}}+cG^{**}N^{1/2}\big\Vert e_{N}\big\Vert_{\omega^{\alpha-1, 0}}. \end{eqnarray} (57)

    By Lemma 5.1,

    \begin{eqnarray} && \quad \ \mid E_{4}\mid \\ && = \frac{T^{\alpha+1}}{2^{\alpha+1}\Gamma(\alpha)}\mid {I_{x, N}^{\alpha-1}}\int_{-1}^{x}(x-\xi)^{\alpha-1}\int_{-1}^{1}(I-{_{x}I_{\xi, N}^{\alpha-1}}){K}(x, \xi, \eta)d\theta d\xi\mid\\ &&\leq\frac{T^{\alpha+1}}{2^{\alpha+1}\Gamma(\alpha)}\big\Vert {I_{x, N}^{\alpha-1}}\big\Vert_\infty\max\limits_{x\in[-1, 1]}\mid \int_{-1}^{x}(x-\xi)^{\alpha-1} \int_{-1}^{1}(I-{_{x}I_{\xi, N}^{\alpha-1}})\\ &&\quad\times{K}(x, \xi, \eta)d\theta d\xi\mid \\ &&\leq cN^{1/2} \max\limits_{x\in[-1, 1]}\mid \int_{-1}^{x}(x-\xi)^{\alpha-1}\int_{-1}^{1}(I-{_{x}I_{\xi, N}^{\alpha-1}}) {K}(x, \xi, \eta)d\theta d\xi\mid. \end{eqnarray} (58)

    We obtain from the Cauchy-Schwarz inequality that

    \begin{eqnarray} && \quad \ \mid E_{4}\mid \\ &&\leq cN^{1/2} \max\limits_{x\in[-1, 1]}\left[ \int_{-1}^{x}(x-\xi)^{\alpha-1}\mid\int_{-1}^{1}(I-{_{x}I_{\xi, N}^{\alpha-1}}){K}(x, \xi, \eta)\mid^{2} d\theta d\xi\right]^{1/2} \\ &&\leq cN^{1/2}\max\limits_{x\in[-1, 1]}\left[ \int_{-1}^{x}(x-\xi)^{\alpha-1}\mid{\sum\limits_{k = 0}^{N}}({I-{_{x}I_{\xi, N}^{\alpha-1}}}){K}(x, \xi, \eta)\mid^{2} d\xi\right]^{1/2}\\ &&\leq cK^{**}(N^{3/2-l}+N^{1/2-l})\max\limits_{x\in[-1, 1]}\max\limits_{\theta_{k}\in[-1, 1]}\left[ \int_{-1}^{x}(x-\xi)^{\alpha+l-1}\right.\\ &&\quad\left.\times(1+\xi)^{l}\mid{\partial}_{\xi}^{l}\Big({Y(\eta(\xi, \theta_{k}))}+\lambda\Big)\mid^{2}d\xi\right]^{1/2} \\ &&\leq cK^{**}(N^{3/2-l}+N^{1/2-l})\big\Vert{\partial}_{\xi}^{l}Y\big\Vert_{\omega^{\alpha+l-1, l}}, \end{eqnarray} (59)

    where

    \begin{eqnarray*} &&{K}(\xi, \eta(\xi, \theta)) = {\tilde{K}}\Big(T(\frac{\xi+1}{2})^{\sigma}, {T}(\frac{\eta(\xi, \theta)+1}{2})^{\sigma}\Big), \\ &&K^{**} = \max\limits_{x\in[-1, 1]}\max\limits_{\theta_{k}\in[-1, 1]}\max\limits_{\xi\in[-1, x]} g(x, \xi, \theta_{k}){K}(\xi, \eta(\xi, \theta_{k})). \end{eqnarray*}

    By Lemma 5.1 and 5.3,

    \begin{eqnarray} && \quad \ \mid E_{5}\mid \\ && = \frac{T^{\alpha+1}}{2^{\alpha+1}\Gamma(\alpha)}\mid {I_{x, N}^{\alpha-1}}\int_{-1}^{x}(x-\xi)^{\alpha-1}\int_{-1}^{1}{_{x}I_{\xi, N}^{\alpha-1}} \hat{{K}}(x, \xi, \eta)(Y-Y_{N})d\theta d\xi\mid\\ &&\leq\frac{T^{\alpha+1}}{2^{\alpha+1}\Gamma(\alpha)}\big\Vert {I_{x, N}^{\alpha-1}}\big\Vert_\infty\max\limits_{x\in[-1, 1]}\mid \int_{-1}^{x}(x-\xi)^{\alpha-1} \int_{-1}^{1}{_{x}I_{\xi, N}^{\alpha-1}} \\ &&\quad\times\hat{{K}}(x, \xi, \eta)(Y-Y_{N})d\theta d\xi\mid \\ &&\leq cN^{1/2} \max\limits_{x\in[-1, 1]}\mid \int_{-1}^{x}(x-\xi)^{\alpha-1}\int_{-1}^{1}{_{x}I_{\xi, N}^{\alpha-1}} \hat{{K}}(x, \xi, \eta)(Y-Y_{N})d\theta d\xi\mid. \end{eqnarray} (60)

    We further get from the Cauchy-Schwarz inequality that

    \begin{eqnarray} && \quad \ \mid E_{5}\mid\\ &&\leq cN^{1/2}\max\limits_{x\in[-1, 1]}\left[\int_{-1}^{x}(x-\xi)^{\alpha-1}d\xi\int_{-1}^{x}(x-\xi)^{\alpha-1}\mid\int_{-1}^{1}{_{x}I_{\xi, N}^{\alpha-1}}\hat{{K}}(x, \xi, \eta)\right.\\ &&\left.\quad\times(Y-Y_{N})d\theta\mid^{2} d\xi\right]^{1/2}\\ &&\leq cN^{1/2} \max\limits_{x\in[-1, 1]}\left[ \int_{-1}^{x}(x-\xi)^{\alpha-1}\mid\int_{-1}^{1}{_{x}I_{\xi, N}^{\alpha-1}} \hat{{K}}(x, \xi, \eta)(Y-Y_{N})d\theta\mid^{2} d\xi\right]^{1/2} \\ &&\leq cK^{**}N^{1/2}\max\limits_{x\in[-1, 1]}\\ &&\quad\times\left[ \int_{-1}^{x}(x-\xi)^{\alpha-1}\mid{\sum\limits_{k = 0}^{N}}{_{x}I_{\xi, N}^{\alpha-1}}\Big({Y(\eta(\xi, \theta_{k}))}-Y_{N}(\eta(\xi, \theta_{k}))\Big)\mid^{2} d\xi\right]^{1/2}\\ &&\leq c(N^{3/2}+N^{1/2})K^{**}\max\limits_{x\in[-1, 1]}\max\limits_{\theta_{k}\in[-1, 1]}\\ &&\quad\times\left[\int_{-1}^{x}(x-\xi)^{\alpha-1}\mid{}{_{x}I_{\xi, N}^{\alpha-1}}Y(\eta(\xi, \theta_{k}))-Y(\eta(\xi, \theta_{k}))\mid^{2} d\xi\right]^{1/2} \end{eqnarray}
    \begin{eqnarray} &&\quad+c(N^{3/2}+N^{1/2})K^{**}\max\limits_{x\in[-1, 1]}\max\limits_{\theta_{k}\in[-1, 1]}\\ &&\quad\times\left[\int_{-1}^{x}(x-\xi)^{\alpha-1}\mid{}Y(\eta(\xi, \theta_{k}))-Y_{N}(\eta(\xi, \theta_{k}))\mid^{2} d\xi\right]^{1/2}. \end{eqnarray} (61)

    It follows from Lemma 5.3 that

    \begin{eqnarray} && \quad \ \mid E_{5}\mid\\ && \leq(N^{3/2}+N^{1/2})K^{**}\max\limits_{x\in[-1, 1]}\max\limits_{\theta_{k}\in[-1, 1]}\left[ \int_{-1}^{x}(x-\xi)^{\alpha+l-1, l}(1+\xi)^{l}\right.\\ &&\quad\left.\times\mid{\partial}_{\xi}^{l}Y(\eta(\xi, \theta_{k}))\mid^{2}d\xi\right]^{1/2}+c(N^{3/2-l}+N^{1/2-l})K^{**} \max\limits_{x\in[-1, 1]}\\ &&\quad\times\max\limits_{\theta_{k}\in[-1, 1]}\left[ \int_{-1}^{x}(x-\xi)^{\alpha-1}\mid e_{N}(\eta(\xi, \theta_{k}))\mid^{2}d\xi\right]^{1/2}\\ &&\leq c(N^{3/2-l}+N^{1/2-l})K^{**}\big\Vert{\partial}_{x}^{l}Y\big\Vert_{\omega^{\alpha+l-1, l}}\\ &&\quad+c(N^{3/2}+N^{1/2})K^{**}\big\Vert e_{N}\big\Vert_{\omega^{\alpha-1, 0}}. \end{eqnarray} (62)

    In summary, we get

    \begin{eqnarray} && \quad \ \big\Vert e_{N}\big\Vert_\infty\\ &&\leq cG^{**}N^{1/2-l}\big\Vert{\partial}_{\xi}^{l}\Big({Y(\xi)}+{g(\xi)}\Big)\big\Vert_{\omega^{\alpha+l-1, l}}+cN^{1-l}\big\Vert Y\big\Vert_{\omega^{-1/2, -1/2}}\\ &&\quad+c(G^{**}+NK^{**}+K^{**})N^{1/2-l}\big\Vert\partial_{x}^{l}Y \big\Vert_{\omega^{\alpha+l-1, l}}\\ &&\quad+cK^{**}(N^{3/2-l}+N^{1/2-l})\big\Vert{\partial}_{\xi}^{l}Y\big\Vert_{\omega^{\alpha+l-1, l}}. \end{eqnarray} (63)

    The theorem is proved.

    In this section, we give numerical examples to illustrate the feasibility and efficiency of the method.

    We consider the following fractional integro-differential equation:

    \begin{eqnarray} &&^{c}_{0}D_{t}^{\frac{2}{3}}{y}(t) = \Gamma(\frac{5}{3})-t^{\frac{8}{3}}-\beta(1, \frac{5}{3})t^{\frac{5}{3}}-{t^{2}}{y(t)}+\int_{0}^{t}{y(\tau)}d\tau, \\ &&{{y}}_{0} = 0, \quad t\in[0, 1]. \end{eqnarray} (64)

    The exact solution is {t}^{\frac{2}{3}} .

    In the table 1, we list L^{\infty} - and L^2_{\omega^{\alpha-1, 0}} -error with N = 10 and \sigma takes values of 1-9. As can be seen from the table, for \sigma takes values of 3, 6 and 9, which are multiples of 3, the error decreases faster and the convergence is better. Through a lot of numerical experiments, we conclude that not for all \sigma taking multiple value of 3, the convergence is better. One cannot predict that the greater the value of \sigma is, the better the convergence is. There is a critical point, which is the value of 27. For \sigma takes values of 2 to 27, the error convergence is better than that without smoothing transformation. To be more intuitive, we give a comparison of the exact solution and numerical solution with N = 10 and \sigma = 1 , 3, 6, and 9 in Figures 1 and 2. And in Figure 3, we give L^\infty - and L^2_{\omega^{\alpha-1, 0}} -error between the exact solution and the numerical solution with N = 10 and \sigma = 1 to 9 and 28. Obviously, the error deceases faster when the value of 3, 6 and 9, which is the multiple of 3. Moreover, at the value of 28, the error convergence effect does not work well without smoothing transformation.

    Table 1.  The L^{\infty} - and L^2_{\omega^{\alpha-1, 0}} -error for N = 10 and \sigma takes values of 1-9.
    N \sigma =1 \sigma =2 \sigma =3
    \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2}
    2 4.31E-03 4.31E-03 4.12E-04 5.06E-04 3.21E-05 3.14E-05
    4 7.92E-04 7.07E-04 2.76E-05 2.84E-05 2.34E-08 1.87E-08
    6 2.63E-04 2.32E-04 5.37E-06 4.37E-06 1.44E-11 1.05E-11
    8 1.15E-04 1.01E-04 1.32E-06 1.05E-06 3.00E-15 1.76E-15
    10 6.01E-05 5.26E-05 4.08E-07 3.32E-07 2.33E-15 1.20E-15
    N \sigma = 4 \sigma = 5 \sigma = 6
    \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2}
    26.47E-036.21E-031.30E-021.24E-021.72E-021.65E-02
    41.70E-051.29E-052.40E-051.75E-056.46E-094.82E-09
    67.51E-075.35E-074.86E-073.18E-078.14E-105.29E-10
    87.42E-085.85E-083.20E-082.20E-085.97E-123.60E-12
    101.46E-081.05E-084.08E-092.89E-093.76E-141.94E-14
    N \sigma = 7 \sigma = 8 \sigma = 9
    \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2}
    21.84E-021.77E-021.68E-021.61E-021.27E-021.21E-02
    40.31E-030.22E-031.03E-030.73E-032.13E-031.52E-03
    65.14E-073.09E-078.26E-074.92E-073.70E-072.28E-07
    81.20E-086.94E-091.11E-085.96E-099.08E-105.12E-10
    107.20E-104.42E-104.26E-102.40E-103.16E-111.68E-11

     | Show Table
    DownLoad: CSV
    Figure 1.  The exact solution and numerical solution for N = 10 and \sigma = 1 and 3.
    Figure 2.  The exact solution and numerical solution for N = 10 and \sigma = 6 and 9.
    Figure 3.  For N = 10 , \sigma takes values of 1-9 and 28, the error of L^\infty and L^2_{\omega^{\alpha-1, 0}} changes as the collocation point N increases.

    Consider

    \begin{eqnarray} &&{}^{c}_{0}{D}_{t}^{\frac{1}{2}}{y}(t) = f(t)+\int_{0}^{t}t\tau y(\tau)d\tau, \quad t\in[0, 1], \\ &&{{y}}_{0} = 0, \end{eqnarray} (65)

    where f(t) = \frac{\sqrt{\pi}}{2}BesselJ[0, \sqrt{t}]-t\Big(-2(-6+t)\sqrt{t}cos\sqrt{t}+6(-2+t)sin\sqrt{t}\Big) .

    The exact solution is sin\sqrt{t} .

    We list the L^{\infty} - and L^2_{\omega^{\alpha-1, 0}} -error with N = 10 and \sigma takes values of 1-6 in Table 2. From the table, we can also see that when \sigma takes values of 2 and 4, which is the multiple of 2, the error decreases faster. And through a large number of numerical experiments, we get a critical point of \sigma , which is the value of 14. When \sigma takes values of 2-13, the error convergence is better than that without smoothing transformation. For the sake of intuition, we give a comparison when N = 10 and \sigma takes values of 1, 2 and 4 in Figure 4. In Figures 5, the L^\infty - and L^2_{\omega^{\alpha-1, 0}} -error between the exact solution and the numerical solution are given when N = 10 and \sigma takes values 1-6 and 14. It clear that when \sigma takes values of 2 and 4, which are multiples of 2, the error is smaller. While \sigma takes the value of 14, the error is worse than that without smoothing transformation.

    Table 2.  The L^{\infty} - and L^2_{\omega^{\alpha-1, 0}} -error for N = 10 and \sigma takes values of 1-6.
    N \sigma =1 \sigma =2 \sigma =3
    \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2}
    2 3.13E-04 4.55E-04 2.79E-04 3.21E-04 1.86E-03 2.14E-03
    4 2.30E-05 2.85E-05 2.11E-07 1.85E-07 3.37E-06 3.58E-06
    6 4.27E-06 5.23E-06 1.62E-10 1.54E-10 5.11E-07 4.18E-07
    8 1.38E-06 1.51E-06 1.01E-13 8.56E-14 6.87E-08 6.62E-08
    10 5.29E-07 5.61E-07 4.77E-15 4.36E-15 1.88E-08 1.57E-08
    N \sigma = 4 \sigma = 5 \sigma = 6
    \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2}
    23.94E-034.53E-035.31E-036.11E-033.86E-034.44E-03
    42.70E-052.51E-051.38E-041.27E-044.51E-044.12E-04
    63.23E-072.62E-078.69E-077.52E-071.09E-069.15E-07
    81.44E-091.12E-095.54E-083.90E-081.67E-071.18E-07
    103.14E-112.70E-112.06E-091.61E-093.68E-092.52E-09

     | Show Table
    DownLoad: CSV
    Figure 4.  The exact solution and numerical solution for N = 10 and \sigma = 1, 2 and 4.
    Figure 5.  For N = 10 and \sigma takes values of 1-6 and 14, the error of L^\infty and L^2_{\omega^{\alpha-1, 0}} changes as the collocation point N increases.

    Consider the following equation

    \begin{eqnarray} &&^{c}_{0}D_{t}^{\frac{1}{4}}{y}(t) = f(t)+\int_{0}^{t}te^{\tau} y(\tau)d\tau, \quad t\in[0, 1], \\ &&{{y}}_{0} = 0, \end{eqnarray} (66)

    where f(t) = \frac{t}{4}\Big(2 {e^t}(3-2t)\sqrt{t}-3\sqrt{\pi}Erfi[\sqrt{t}]+\frac{3\sqrt{\pi}{t^{\frac{1}{4}}}}{\Gamma(\frac{9}{4})}\Big) .

    The exact solution is {y}(t) = t\sqrt{t} .

    In Table 3, We list the L^{\infty} - and L^2_{\omega^{\alpha-1, 0}} -error when N = 10 and \sigma takes values of 1-6. From the table, when \sigma takes the value of 4, which is the multiple of 4, the error decreases faster and the convergence is better. Through a lot of numerical experiments, we derive a critical point of the \sigma , which is the value of 8 . When \sigma takes values of 2-7, the error is better than the situation that the smoothing transformation is not performed. We give a comparison when N = 10 and \sigma takes values of 1, 2 and 4 in Figures 6. In Figure 7, the L^\infty - and L^2_{\omega^{\alpha-1, 0}} -error are given when N = 10 and \sigma takes values of 1-6 and 8. Obviously, when \sigma takes multiples of 4, the error decreases faster. However, when \sigma takes the value of 8, the error is not good without smoothing transformation.

    Table 3.  The L^{\infty} -and L^2_{\omega^{\alpha-1, 0}} -error for N = 10 and \sigma takes values of 1-6.
    N \sigma =1 \sigma =2 \sigma =3
    \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2}
    2 3.34E-04 6.18E-04 3.65E-03 6.78E-03 3.94E-02 6.96E-02
    4 5.68E-05 9.69E-05 3.54E-06 5.57E-06 1.79E-04 2.87E-04
    6 1.17E-05 1.97E-05 1.77E-08 2.78E-08 5.01E-07 7.54E-07
    8 3.58E-06 6.02E-06 1.66E-09 2.60E-09 3.82E-09 4.57E-09
    10 1.39E-06 2.33E-06 2.68E-10 4.17E-10 2.67E-10 2.90E-10
    N \sigma = 4 \sigma = 5 \sigma = 6
    \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2} \|u-U\|_{L^\infty} \|u-U\|_{L^2}
    27.75E-021.37E-019.07E-021.60E-018.04E-021.42E-01
    47.27E-041.25E-031.02E-031.21E-032.33E-033.89E-03
    61.27E-051.84E-051.00E-041.47E-043.62E-045.36E-04
    86.24E-088.53E-081.10E-061.50E-068.27E-061.13E-05
    102.09E-102.73E-108.63E-091.13E-081.15E-071.50E-07

     | Show Table
    DownLoad: CSV
    Figure 6.  The exact solution and numerical solution for N = 10 and \sigma = 1, 2 and 4.
    Figure 7.  For N = 10 and \sigma takes values of 1-6 and 8, the error of L^\infty and L^2_{\omega^{\alpha-1, 0}} changes as the collocation point N increases.

    In this paper, we first study in detail the reason why the fractional integro-differential equation has non-smooth solution. We eliminate the singularity of the solution by introducing a smooth transformation. Then we use the Jacobi spectral-collocation method with global and high precision characteristics to solve the transformed equation. Particularly, we have proved that the convergence rate for non-smooth solutions can be enhanced by using a suitable smoothing transformation, which allows us to adjust a parameter in the solution in view of a priori known regularity of the given data. The proposed scheme has many advantages, including (i) ease of implementation, (ii) lower computational cost, and (iii) exponential accuracy. In addition, we give a theoretical proof of the convergence of collocation method, in both L^\infty -norm and L^2_{\omega^{\alpha, \beta}} -norm. Finally, we give some specific numerical examples. The numerical results confirm the validity of scheme and the correctness of the conclusions for solving the fractional integro-differential equation. This indicates that the proposed scheme possesses a good prospect in solving fractional integro-differential equations with non-smooth solutions. Next, we will apply the methods in this paper to solve the nonlinear fractional integro-differential equations.

    This work was supported by National Natural Science Foundation of China Project (11671342, 11771369, and 11931003), the Project of Scientic Research Fund of the Hunan Provincial Science and Technology Department (2020JJ2027, 2018WK4006, and 2019YZ3003), and the Key Project of Hunan Provincial Department of Education (17A210).



    [1] D. R. Adams, Capacity and the obstacle problem, Appl. Math. Optim., 8 (1982), 39–57. https://doi.org/10.1007/BF01447750 doi: 10.1007/BF01447750
    [2] D. R. Adams, L. I. Hedberg, Function spaces and potential theory, Vol. 314, Springer, 1996. https://doi.org/10.1007/978-3-662-03282-4
    [3] R. A. Adams, Sobolev spaces, Vol. 65, Elsevier, 1975.
    [4] H. Attouch, C. Picard, Problèmes variationnels et théorie du potentiel non linéaire, Ann. Fac. Sci. Toulouse Math., 1 (1979), 89–136.
    [5] H. Attouch, C. Picard, Inéquations variationnelles avec obstacles et espaces fonctionnels en théorie du potentiel, Appl. Anal., 12 (1981), 287–306. https://doi.org/10.1080/00036818108839369 doi: 10.1080/00036818108839369
    [6] E. Azroul, A. Benkirane, M. Shimi, M. Srati, On a class of nonlocal problems in new fractional Musielak-Sobolev spaces, Appl. Anal., 101 (2022), 1933–1952. https://doi.org/10.1080/00036811.2020.1789601 doi: 10.1080/00036811.2020.1789601
    [7] E. Azroul, A. Benkirane, M. Shimi, M. Srati, Embedding and extension results in fractional Musielak-Sobolev spaces, Appl. Anal., 102 (2023), 195–219. https://doi.org/10.1080/00036811.2021.1948019 doi: 10.1080/00036811.2021.1948019
    [8] A. Bahrouni, Comparison and sub-supersolution principles for the fractional p(x)-Laplacian, J. Math. Anal. Appl., 458 (2018), 1363–1372. https://doi.org/10.1016/j.jmaa.2017.10.025 doi: 10.1016/j.jmaa.2017.10.025
    [9] D. Baruah, P. Harjulehto, P. Hästö, Capacities in generalized Orlicz spaces, J. Funct. Spaces, 2018 (2018), 8459874. https://doi.org/10.1155/2018/8459874 doi: 10.1155/2018/8459874
    [10] L. Brasco, E. Parini, M. Squassina, Stability of variational eigenvalues for the fractional p-Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1813–1845. https://doi.org/10.3934/dcds.2016.36.1813 doi: 10.3934/dcds.2016.36.1813
    [11] S. S. Byun, H. Kim, J. Ok, Local Hölder continuity for fractional nonlocal equations with general growth, Math. Ann., 387 (2023), 807–846. https://doi.org/10.1007/s00208-022-02472-y doi: 10.1007/s00208-022-02472-y
    [12] M. L. M. Carvalho, E. D. Silva, J. C. de Albuquerque, S. Bahrouni, On the L^\infty-regularity for fractional Orlicz problems via Moser's iteration, Math. Meth. Appl. Sci., 46 (2023), 4688–4704. https://doi.org/10.1002/mma.8795 doi: 10.1002/mma.8795
    [13] J. Chaker, M. Kim, M. Weidner, Harnack inequality for nonlocal problems with non-standard growth, Math. Ann., 386 (2023), 533–550. https://doi.org/10.1007/s00208-022-02405-9 doi: 10.1007/s00208-022-02405-9
    [14] J. Chaker, M. Kim, M. Weidner, Regularity for nonlocal problems with non-standard growth, Calc. Var. Partial Differ. Equ., 61 (2022), 227. https://doi.org/10.1007/s00526-022-02364-8 doi: 10.1007/s00526-022-02364-8
    [15] S. Challal, A. Lyaghfouri, Hölder continuity of solutions to the A-Laplace equation involving measures, Commun. Pure Appl. Anal., 8 (2009), 1577–1583. https://doi.org/10.3934/cpaa.2009.8.1577 doi: 10.3934/cpaa.2009.8.1577
    [16] I. Chlebicka, P. Gwiazda, A. Świerczewska Gwiazda, A. Wróblewska-Kamińska, Partial differential equations in anisotropic Musielak-Orlicz spaces, Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-88856-5
    [17] J. C. de Albuquerque, L. R. S. de Assis, M. L. M. Carvalho, A. Salort, On fractional Musielak-Sobolev spaces and applications to nonlocal problems, J. Geom. Anal., 33 (2023), 130. https://doi.org/10.1007/s12220-023-01211-2 doi: 10.1007/s12220-023-01211-2
    [18] L. M. Del Pezzo, J. D. Rossi, Traces for fractional Sobolev spaces with variable exponents, Adv. Oper. Theory, 2 (2017), 435–446. https://doi.org/10.22034/aot.1704-1152 doi: 10.22034/aot.1704-1152
    [19] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
    [20] J. Fernández Bonder, A. Salort, Fractional order Orlicz-Sobolev spaces, J. Funct. Anal., 277 (2019), 333–367. https://doi.org/10.1016/j.jfa.2019.04.003 doi: 10.1016/j.jfa.2019.04.003
    [21] J. Fernández Bonder, A. Salort, H. Vivas, Interior and up to the boundary regularity for the fractional g-Laplacian: the convex case, Nonlinear Anal., 223 (2022), 113060. https://doi.org/10.1016/j.na.2022.113060 doi: 10.1016/j.na.2022.113060
    [22] J. Fernández Bonder, A. Salort, H. Vivas, Global Hölder regularity for eigenfunctions of the fractional g-Laplacian, J. Math. Anal. Appl., 526 (2023), 127332. https://doi.org/10.1016/j.jmaa.2023.127332 doi: 10.1016/j.jmaa.2023.127332
    [23] N. Gigli, S. Mosconi, The abstract Lewy-Stampacchia inequality and applications, J. Math. Pures Appl., 104 (2015), 258–275. https://doi.org/10.1016/j.matpur.2015.02.007 doi: 10.1016/j.matpur.2015.02.007
    [24] P. Harjulehto, P. Hästö, Orlicz spaces and generalized Orlicz spaces, Vol. 2236, Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-15100-3
    [25] P. Harjulehto, P. Hästö, R. Klén, Generalized Orlicz spaces and related PDE, Nonlinear Anal., 143 (2016), 155–173. https://doi.org/10.1016/j.na.2016.05.002 doi: 10.1016/j.na.2016.05.002
    [26] P. Harjulehto, A. Karppinen, Stability of solutions to obstacle problems with generalized Orlicz growth, Forum Math., 36 (2024), 285–304. https://doi.org/10.1515/forum-2022-0099 doi: 10.1515/forum-2022-0099
    [27] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Clarendon Press, 1993.
    [28] U. Kaufmann, J. D. Rossi, R. Vidal, Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians, Electron. J. Qual. Theory Differ. Equ., 76 (2017), 1–10. https://doi.org/10.14232/ejqtde.2017.1.76 doi: 10.14232/ejqtde.2017.1.76
    [29] D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, Vol. 31, Society for Industrial and Applied Mathematics, 2000. https://doi.org/10.1137/1.9780898719451
    [30] J. Korvenpää, T. Kuusi, G. Palatucci, The obstacle problem for nonlinear integro-differential operators, Calc. Var. Partial Differ. Equ., 55 (2016), 63. https://doi.org/10.1007/s00526-016-0999-2 doi: 10.1007/s00526-016-0999-2
    [31] M. A. Krasnosel'ski\breve{\rm{i}}, J. B. Ruticki\breve{\rm{i}}, Convex functions and Orlicz spaces, P. Noordhoff Ltd., 1961.
    [32] T. Kuusi, G. Mingione, Y. Sire, Nonlocal self-improving properties, Anal. PDE, 8 (2015), 57–114. https://doi.org/10.2140/apde.2015.8.57 doi: 10.2140/apde.2015.8.57
    [33] T. Leonori, I. Peral, A. Primo, F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015), 6031–6068. https://doi.org/10.3934/dcds.2015.35.6031 doi: 10.3934/dcds.2015.35.6031
    [34] E. Lindgren, P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differ. Equ., 49 (2014), 795–826. https://doi.org/10.1007/s00526-013-0600-1 doi: 10.1007/s00526-013-0600-1
    [35] C. Lo, Nonlocal anisotropic problems with fractional type derivatives, Faculdade de Ciências da Universidade de Lisboa, Ph.D. Thesis, 2022.
    [36] C. W. K. Lo, J. F. Rodrigues, On a class of nonlocal obstacle type problems related to the distributional Riesz fractional derivative, Port. Math., 80 (2023), 157–205. https://doi.org/10.4171/pm/2100 doi: 10.4171/pm/2100
    [37] C. W. K. Lo, J. F. Rodrigues, On the stability of the s-nonlocal p-obstacle problem and their coincidence sets and free boundaries, arXiv, 2024. https://doi.org/10.48550/arXiv.2402.18106
    [38] O. Méndez, J. Lang, Analysis on function spaces of Musielak-Orlicz type, CRC Press, 2018. https://doi.org/10.1201/9781498762618
    [39] S. Molina, A. Salort, H. Vivas, Maximum principles, Liouville theorem and symmetry results for the fractional g-Laplacian, Nonlinear Anal., 212 (2021), 112465. https://doi.org/10.1016/j.na.2021.112465 doi: 10.1016/j.na.2021.112465
    [40] U. Mosco, Implicit variational problems and quasi variational inequalities, In: J. P. Gossez, E. J. Lami Dozo, J. Mawhin, L. Waelbroeck, Nonlinear operators and the calculus of variations, Lecture Notes in Mathematics, Springer, 543 (1976), 83–156. https://doi.org/10.1007/BFb0079943
    [41] J. Musielak, Orlicz spaces and modular spaces, Vol. 1034, Springer, 1983. https://doi.org/10.1007/BFb0072210
    [42] J. Ok, Local Hölder regularity for nonlocal equations with variable powers, Calc. Var. Partial Differ. Equ., 62 (2023), 32. https://doi.org/10.1007/s00526-022-02353-x doi: 10.1007/s00526-022-02353-x
    [43] E. H. Ouali, A. Baalal, M. Berghout, Density properties for fractional Musielak-Sobolev spaces, arXiv, 2024. https://doi.org/10.48550/arXiv.2403.12305
    [44] G. Palatucci, The Dirichlet problem for the p-fractional Laplace equation, Nonlinear Anal., 177 (2018), 699–732. https://doi.org/10.1016/j.na.2018.05.004 doi: 10.1016/j.na.2018.05.004
    [45] M. Piccinini, The obstacle problem and the Perron method for nonlinear fractional equations in the Heisenberg group, Nonlinear Anal., 222 (2022), 112966. https://doi.org/10.1016/j.na.2022.112966 doi: 10.1016/j.na.2022.112966
    [46] J. F. Rodrigues, Obstacle problems in mathematical physics, Vol. 134, Amsterdam: North-Holland Publishing Co., 1987.
    [47] J. F. Rodrigues, R. Teymurazyan, On the two obstacles problem in Orlicz-Sobolev spaces and applications, Complex Var. Elliptic Equ., 56 (2011), 769–787. https://doi.org/10.1080/17476933.2010.505016 doi: 10.1080/17476933.2010.505016
    [48] X. Ros-Oton, Nonlocal elliptic equations in bounded domains: a survey, Publ. Mat., 60 (2016), 3–26. https://doi.org/10.5565/PUBLMAT_60116_01 doi: 10.5565/PUBLMAT_60116_01
    [49] R. Servadei, E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam., 29 (2013), 1091–1126. https://doi.org/10.4171/rmi/750 doi: 10.4171/rmi/750
    [50] S. Shi, J. Xiao, Fractional capacities relative to bounded open Lipschitz sets complemented, Calc. Var. Partial Differ. Equ., 56 (2017), 3. https://doi.org/10.1007/s00526-016-1105-5 doi: 10.1007/s00526-016-1105-5
    [51] S. Shi, J. Xiao, On fractional capacities relative to bounded open Lipschitz sets, Potential Anal., 45 (2016), 261–298. https://doi.org/10.1007/s11118-016-9545-2 doi: 10.1007/s11118-016-9545-2
    [52] S. Shi, L. Zhang, Dual characterization of fractional capacity via solution of fractional p-Laplace equation, Math. Nachr., 293 (2020), 2233–2247. https://doi.org/10.1002/mana.201800438 doi: 10.1002/mana.201800438
    [53] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, 15 (1965), 189–258.
    [54] M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42 (2015), 499–547. https://doi.org/10.1007/s11118-014-9443-4 doi: 10.1007/s11118-014-9443-4
  • This article has been cited by:

    1. Xiulian Shi, Ding-Xuan Zhou, Spectral Collocation Methods for Fractional Integro-Differential Equations with Weakly Singular Kernels, 2022, 2022, 2314-4785, 1, 10.1155/2022/3767559
    2. Yifei Wang, Jin Huang, Li Zhang, Ting Deng, A combination method for solving multi-dimensional systems of Volterra integral equations with weakly singular kernels, 2022, 91, 1017-1398, 473, 10.1007/s11075-022-01270-6
    3. Raniyah E. Alsulaiman, Mohamed A. Abdou, Eslam M. Youssef, Mai Taha, Solvability of a nonlinear integro-differential equation with fractional order using the Bernoulli matrix approach, 2023, 8, 2473-6988, 7515, 10.3934/math.2023377
    4. Xiulian Shi, Keyan Wang, Hui Sun, Spectral collocation methods for fractional multipantograph delay differential equations*, 2023, 63, 0363-1672, 505, 10.1007/s10986-023-09614-y
    5. M.H. Heydari, J. Navari, M. Hosseininia, M. Razzaghi, A numerical method based on the hat functions to solve a category of nonlinear fractional integro-differential equations involving Caputo-Hadamard derivative, 2025, 03770427, 116506, 10.1016/j.cam.2025.116506
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1223) PDF downloads(287) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog