Citation: Jonathan A. D. Wattis. Asymptotic approximations to travelling waves in the diatomic Fermi-Pasta-Ulam lattice[J]. Mathematics in Engineering, 2019, 1(2): 327-342. doi: 10.3934/mine.2019.2.327
[1] | Hervé Le Dret, Annie Raoult . Homogenization of hexagonal lattices. Networks and Heterogeneous Media, 2013, 8(2): 541-572. doi: 10.3934/nhm.2013.8.541 |
[2] | Julian Braun, Bernd Schmidt . On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks and Heterogeneous Media, 2013, 8(4): 879-912. doi: 10.3934/nhm.2013.8.879 |
[3] | Mathias Schäffner, Anja Schlömerkemper . On Lennard-Jones systems with finite range interactions and their asymptotic analysis. Networks and Heterogeneous Media, 2018, 13(1): 95-118. doi: 10.3934/nhm.2018005 |
[4] | Leonid Berlyand, Volodymyr Rybalko . Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks and Heterogeneous Media, 2013, 8(1): 115-130. doi: 10.3934/nhm.2013.8.115 |
[5] | Manuel Friedrich, Bernd Schmidt . On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321 |
[6] | Andrea Braides, Margherita Solci, Enrico Vitali . A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2(3): 551-567. doi: 10.3934/nhm.2007.2.551 |
[7] | Phoebus Rosakis . Continuum surface energy from a lattice model. Networks and Heterogeneous Media, 2014, 9(3): 453-476. doi: 10.3934/nhm.2014.9.453 |
[8] | Ciro D'Apice, Rosanna Manzo . A fluid dynamic model for supply chains. Networks and Heterogeneous Media, 2006, 1(3): 379-398. doi: 10.3934/nhm.2006.1.379 |
[9] | Andrea Braides, Valeria Chiadò Piat . Non convex homogenization problems for singular structures. Networks and Heterogeneous Media, 2008, 3(3): 489-508. doi: 10.3934/nhm.2008.3.489 |
[10] | Lorenza D'Elia . Γ-convergence of quadratic functionals with non uniformly elliptic conductivity matrices. Networks and Heterogeneous Media, 2022, 17(1): 15-45. doi: 10.3934/nhm.2021022 |
[1] |
Betti M, Pelinovsky DE (2013) Periodic traveling waves in diatomic granular chains. J Nonlinear Sci 23: 689–730. doi: 10.1007/s00332-013-9165-6
![]() |
[2] |
Chirilus-Bruckner M, Chong C, Prill O, et al. (2012) Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations. Discrete Cont Dyn S 5: 879–901. doi: 10.3934/dcdss.2012.5.879
![]() |
[3] | Collins MA (1981) A quasi-continuum approximation for solitons in an atomic chain Chem Phys Lett 77: 342–347. |
[4] |
Collins MA, Rice SA (1982) Some properties of large amplitude motion in an anharmonic chain with nearest neighbour interactions. J Chem Phys 77: 2607–2622. doi: 10.1063/1.444135
![]() |
[5] |
Collins MA (1985) Solitons in the diatomic chain. Phys Re. A 31: 1754–1762. doi: 10.1103/PhysRevA.31.1754
![]() |
[6] | Faver TE, Wright JD (2015) Exact diatomic Fermi-Pasta-Ulam-Tsingou solitary waves with optical band ripples at infinity. arXiv: 1511.00942 [math.AP]. |
[7] | Fermi E, Pasta J, Ulam S (1955) Studies of nonlinear problems. Los Alamos report LA-1940, published later in Fermi E., Collected Papers (University of Chicago Press,Chicago), edited by Segre, E., (1965); also in Nonlinear Wave Motion, edited by Newell A. C., Lectures in Applied Mathematics, Vol. 15 (American Mathematical Society, Providence) (1974) p. 143. |
[8] |
Friesecke G, Wattis JAD (1994) Existence theorem for solitary waves on lattices. Comm Math Phys 161: 391–418. doi: 10.1007/BF02099784
![]() |
[9] |
Gaison J, Moskow S, Wright JD, et al. (2014) Approximation of polyatomic FPU lattices by KdV equations. Multiscale Model Simul 12: 953–995. doi: 10.1137/130941638
![]() |
[10] |
Hoffman A, Wright JD (2017) Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou lattices with small mass-ratio. Physica D 358: 33–59. doi: 10.1016/j.physd.2017.07.004
![]() |
[11] |
Huang G (1995) Soliton excitations in one-dimensional diatomic lattices. Phys Rev B 51: 12347– 12360. doi: 10.1103/PhysRevB.51.12347
![]() |
[12] |
Kevrekidis PG, Vainchtein A, Serra Garcia M et al. (2013) Interaction of traveling waves with mass-with-mass defects within a Hertzian chain. Phys Rev E 87: 042911. doi: 10.1103/PhysRevE.87.042911
![]() |
[13] |
Lustri CJ, Porter MA (2018) Nanoptera in a period-2 Toda chain. SIAM J Appl Dyn Syst 17: 1182–1212. doi: 10.1137/16M108639X
![]() |
[14] | Ockendon JR, Howison SD, Lacey AA, et al. (1999) Applied Partial Differential Equations. Oxford: Oxford University Press, 43–44. |
[15] |
Pnevmatikos S, Flytzanis N, Remoissenet M (1986) Soliton dynamics of nonlinear diatomic lattices. Phys Rev B 33: 2308–2321. doi: 10.1103/PhysRevB.33.2308
![]() |
[16] |
Ponson L, Boechler N, Lai YM, et al. (2010) Nonlinear waves in disordered diatomic granular chains. Phys Rev E 82: 021301. doi: 10.1103/PhysRevE.82.021301
![]() |
[17] |
Porubov AV, Andrianov IV (2013) Nonlinear waves in diatomic crystals. Wave Motion 50: 1153– 1160. doi: 10.1016/j.wavemoti.2013.03.009
![]() |
[18] |
Qin WX (2015) Wave propagation in diatomic lattices. SIAM J Math Anal 47: 477–497. doi: 10.1137/130949609
![]() |
[19] |
Rosenau P (1986) Dynamics of nonlinear mass spring chains near the Continuum limit. Phys Lett A 118: 222–227. doi: 10.1016/0375-9601(86)90170-2
![]() |
[20] |
Rosenau P (1987) Dynamics of dense lattices. Phys Rev B 36: 5868–5876. doi: 10.1103/PhysRevB.36.5868
![]() |
[21] |
Segur H, Kruskal MD (1987) Nonexistence of small amplitude breather solutions in ϕ4 theory. Phys Rev Lett 58: 747–750. doi: 10.1103/PhysRevLett.58.747
![]() |
[22] |
Tew RB, Wattis JAD (2001) Quasi-continuum approximations for travelling kinks in diatomic lattices. J Phys A: Math Gen 34: 7163–7180. doi: 10.1088/0305-4470/34/36/304
![]() |
[23] |
Vainchtein A, Starosvetsky Y, Wright JD, et al. (2016) Solitary waves in diatomic chains. Phys Rev E 93: 042210. doi: 10.1103/PhysRevE.93.042210
![]() |
[24] |
Wattis JAD (1993) Approximations to solitary waves on lattices, II: quasi-continuum approximations for fast and slow waves. J Phys A: Math Gen 26: 1193–1209. doi: 10.1088/0305-4470/26/5/036
![]() |
[25] |
Wattis JAD (1996) Approximations to solitary waves on lattices, III: monatomic lattice with second neighbour interactions. J Phys A: Math Gen 29: 8139–8157. doi: 10.1088/0305-4470/29/24/035
![]() |
[26] |
Wattis JAD (2001) Solitary waves in a diatomic lattice: Analytic approximations for a wide range of speeds by quasi-continuum methods. Phys Lett A 284: 16–22. doi: 10.1016/S0375-9601(01)00277-8
![]() |
[27] |
Wattis JAD, James LM (2014) Discrete breathers in honeycomb Fermi–Pasta–Ulam lattices. J Phys A: Math Theor 47: 345101. doi: 10.1088/1751-8113/47/34/345101
![]() |
[28] | Zabusky NJ, Kruskal MD (1965) Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Phys Rev Lett 15: 240–243. |
1. | Andrea Braides, Leonard Kreutz, An Integral-Representation Result for Continuum Limits of Discrete Energies with MultiBody Interactions, 2018, 50, 0036-1410, 1485, 10.1137/17M1121433 | |
2. | Matko Ljulj, Kersten Schmidt, Adrien Semin, Josip Tambača, Homogenization of the time-dependent heat equation on planar one-dimensional periodic structures, 2022, 101, 0003-6811, 4046, 10.1080/00036811.2022.2078713 | |
3. | Raz Kupferman, Cy Maor, Variational convergence of discrete geometrically-incompatible elastic models, 2018, 57, 0944-2669, 10.1007/s00526-018-1306-1 | |
4. | Hervé Le Dret, Annie Raoult, Hexagonal lattices with three-point interactions, 2017, 108, 00217824, 613, 10.1016/j.matpur.2017.05.008 | |
5. |
Cesare Davini, Antonino Favata, Roberto Paroni,
A REBO-Potential-Based Model for Graphene Bending by
Γ
Γ
-Convergence,
2018,
229,
0003-9527,
1153,
10.1007/s00205-018-1236-2
|
|
6. | Marta Lewicka, Pablo Ochoa, 2015, Chapter 10, 978-3-319-18572-9, 279, 10.1007/978-3-319-18573-6_10 | |
7. | Houssam Abdoul-Anziz, Pierre Seppecher, Strain gradient and generalized continua obtained by homogenizing frame lattices, 2018, 6, 2325-3444, 213, 10.2140/memocs.2018.6.213 | |
8. | G. Rizzi, F. Dal Corso, D. Veber, D. Bigoni, Identification of second-gradient elastic materials from planar hexagonal lattices. Part I: Analytical derivation of equivalent constitutive tensors, 2019, 176-177, 00207683, 1, 10.1016/j.ijsolstr.2019.07.008 |