Research article Special Issues

Asymptotic approximations to travelling waves in the diatomic Fermi-Pasta-Ulam lattice

  • Received: 23 November 2018 Accepted: 14 February 2019 Published: 14 March 2019
  • We construct high-order approximate travelling waves solutions of the diatomic Fermi-Pasta-Ulam lattice using asymptotic techniques which are valid for arbitrary mass ratios. Separately small amplitude ansatzs are made for the motion of the lighter and heavier particles, which are coupled The Fredholm alternative is used to derive consistency conditions, whose solution generates small amplitude expansions for both sets of particles.

    Citation: Jonathan A. D. Wattis. Asymptotic approximations to travelling waves in the diatomic Fermi-Pasta-Ulam lattice[J]. Mathematics in Engineering, 2019, 1(2): 327-342. doi: 10.3934/mine.2019.2.327

    Related Papers:

    [1] Hervé Le Dret, Annie Raoult . Homogenization of hexagonal lattices. Networks and Heterogeneous Media, 2013, 8(2): 541-572. doi: 10.3934/nhm.2013.8.541
    [2] Julian Braun, Bernd Schmidt . On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks and Heterogeneous Media, 2013, 8(4): 879-912. doi: 10.3934/nhm.2013.8.879
    [3] Mathias Schäffner, Anja Schlömerkemper . On Lennard-Jones systems with finite range interactions and their asymptotic analysis. Networks and Heterogeneous Media, 2018, 13(1): 95-118. doi: 10.3934/nhm.2018005
    [4] Leonid Berlyand, Volodymyr Rybalko . Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks and Heterogeneous Media, 2013, 8(1): 115-130. doi: 10.3934/nhm.2013.8.115
    [5] Manuel Friedrich, Bernd Schmidt . On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321
    [6] Andrea Braides, Margherita Solci, Enrico Vitali . A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2(3): 551-567. doi: 10.3934/nhm.2007.2.551
    [7] Phoebus Rosakis . Continuum surface energy from a lattice model. Networks and Heterogeneous Media, 2014, 9(3): 453-476. doi: 10.3934/nhm.2014.9.453
    [8] Ciro D'Apice, Rosanna Manzo . A fluid dynamic model for supply chains. Networks and Heterogeneous Media, 2006, 1(3): 379-398. doi: 10.3934/nhm.2006.1.379
    [9] Andrea Braides, Valeria Chiadò Piat . Non convex homogenization problems for singular structures. Networks and Heterogeneous Media, 2008, 3(3): 489-508. doi: 10.3934/nhm.2008.3.489
    [10] Lorenza D'Elia . Γ-convergence of quadratic functionals with non uniformly elliptic conductivity matrices. Networks and Heterogeneous Media, 2022, 17(1): 15-45. doi: 10.3934/nhm.2021022
  • We construct high-order approximate travelling waves solutions of the diatomic Fermi-Pasta-Ulam lattice using asymptotic techniques which are valid for arbitrary mass ratios. Separately small amplitude ansatzs are made for the motion of the lighter and heavier particles, which are coupled The Fredholm alternative is used to derive consistency conditions, whose solution generates small amplitude expansions for both sets of particles.




    [1] Betti M, Pelinovsky DE (2013) Periodic traveling waves in diatomic granular chains. J Nonlinear Sci 23: 689–730. doi: 10.1007/s00332-013-9165-6
    [2] Chirilus-Bruckner M, Chong C, Prill O, et al. (2012) Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations. Discrete Cont Dyn S 5: 879–901. doi: 10.3934/dcdss.2012.5.879
    [3] Collins MA (1981) A quasi-continuum approximation for solitons in an atomic chain Chem Phys Lett 77: 342–347.
    [4] Collins MA, Rice SA (1982) Some properties of large amplitude motion in an anharmonic chain with nearest neighbour interactions. J Chem Phys 77: 2607–2622. doi: 10.1063/1.444135
    [5] Collins MA (1985) Solitons in the diatomic chain. Phys Re. A 31: 1754–1762. doi: 10.1103/PhysRevA.31.1754
    [6] Faver TE, Wright JD (2015) Exact diatomic Fermi-Pasta-Ulam-Tsingou solitary waves with optical band ripples at infinity. arXiv: 1511.00942 [math.AP].
    [7] Fermi E, Pasta J, Ulam S (1955) Studies of nonlinear problems. Los Alamos report LA-1940, published later in Fermi E., Collected Papers (University of Chicago Press,Chicago), edited by Segre, E., (1965); also in Nonlinear Wave Motion, edited by Newell A. C., Lectures in Applied Mathematics, Vol. 15 (American Mathematical Society, Providence) (1974) p. 143.
    [8] Friesecke G, Wattis JAD (1994) Existence theorem for solitary waves on lattices. Comm Math Phys 161: 391–418. doi: 10.1007/BF02099784
    [9] Gaison J, Moskow S, Wright JD, et al. (2014) Approximation of polyatomic FPU lattices by KdV equations. Multiscale Model Simul 12: 953–995. doi: 10.1137/130941638
    [10] Hoffman A, Wright JD (2017) Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou lattices with small mass-ratio. Physica D 358: 33–59. doi: 10.1016/j.physd.2017.07.004
    [11] Huang G (1995) Soliton excitations in one-dimensional diatomic lattices. Phys Rev B 51: 12347– 12360. doi: 10.1103/PhysRevB.51.12347
    [12] Kevrekidis PG, Vainchtein A, Serra Garcia M et al. (2013) Interaction of traveling waves with mass-with-mass defects within a Hertzian chain. Phys Rev E 87: 042911. doi: 10.1103/PhysRevE.87.042911
    [13] Lustri CJ, Porter MA (2018) Nanoptera in a period-2 Toda chain. SIAM J Appl Dyn Syst 17: 1182–1212. doi: 10.1137/16M108639X
    [14] Ockendon JR, Howison SD, Lacey AA, et al. (1999) Applied Partial Differential Equations. Oxford: Oxford University Press, 43–44.
    [15] Pnevmatikos S, Flytzanis N, Remoissenet M (1986) Soliton dynamics of nonlinear diatomic lattices. Phys Rev B 33: 2308–2321. doi: 10.1103/PhysRevB.33.2308
    [16] Ponson L, Boechler N, Lai YM, et al. (2010) Nonlinear waves in disordered diatomic granular chains. Phys Rev E 82: 021301. doi: 10.1103/PhysRevE.82.021301
    [17] Porubov AV, Andrianov IV (2013) Nonlinear waves in diatomic crystals. Wave Motion 50: 1153– 1160. doi: 10.1016/j.wavemoti.2013.03.009
    [18] Qin WX (2015) Wave propagation in diatomic lattices. SIAM J Math Anal 47: 477–497. doi: 10.1137/130949609
    [19] Rosenau P (1986) Dynamics of nonlinear mass spring chains near the Continuum limit. Phys Lett A 118: 222–227. doi: 10.1016/0375-9601(86)90170-2
    [20] Rosenau P (1987) Dynamics of dense lattices. Phys Rev B 36: 5868–5876. doi: 10.1103/PhysRevB.36.5868
    [21] Segur H, Kruskal MD (1987) Nonexistence of small amplitude breather solutions in ϕ4 theory. Phys Rev Lett 58: 747–750. doi: 10.1103/PhysRevLett.58.747
    [22] Tew RB, Wattis JAD (2001) Quasi-continuum approximations for travelling kinks in diatomic lattices. J Phys A: Math Gen 34: 7163–7180. doi: 10.1088/0305-4470/34/36/304
    [23] Vainchtein A, Starosvetsky Y, Wright JD, et al. (2016) Solitary waves in diatomic chains. Phys Rev E 93: 042210. doi: 10.1103/PhysRevE.93.042210
    [24] Wattis JAD (1993) Approximations to solitary waves on lattices, II: quasi-continuum approximations for fast and slow waves. J Phys A: Math Gen 26: 1193–1209. doi: 10.1088/0305-4470/26/5/036
    [25] Wattis JAD (1996) Approximations to solitary waves on lattices, III: monatomic lattice with second neighbour interactions. J Phys A: Math Gen 29: 8139–8157. doi: 10.1088/0305-4470/29/24/035
    [26] Wattis JAD (2001) Solitary waves in a diatomic lattice: Analytic approximations for a wide range of speeds by quasi-continuum methods. Phys Lett A 284: 16–22. doi: 10.1016/S0375-9601(01)00277-8
    [27] Wattis JAD, James LM (2014) Discrete breathers in honeycomb Fermi–Pasta–Ulam lattices. J Phys A: Math Theor 47: 345101. doi: 10.1088/1751-8113/47/34/345101
    [28] Zabusky NJ, Kruskal MD (1965) Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Phys Rev Lett 15: 240–243.
  • This article has been cited by:

    1. Andrea Braides, Leonard Kreutz, An Integral-Representation Result for Continuum Limits of Discrete Energies with MultiBody Interactions, 2018, 50, 0036-1410, 1485, 10.1137/17M1121433
    2. Matko Ljulj, Kersten Schmidt, Adrien Semin, Josip Tambača, Homogenization of the time-dependent heat equation on planar one-dimensional periodic structures, 2022, 101, 0003-6811, 4046, 10.1080/00036811.2022.2078713
    3. Raz Kupferman, Cy Maor, Variational convergence of discrete geometrically-incompatible elastic models, 2018, 57, 0944-2669, 10.1007/s00526-018-1306-1
    4. Hervé Le Dret, Annie Raoult, Hexagonal lattices with three-point interactions, 2017, 108, 00217824, 613, 10.1016/j.matpur.2017.05.008
    5. Cesare Davini, Antonino Favata, Roberto Paroni, A REBO-Potential-Based Model for Graphene Bending by Γ
    Γ -Convergence, 2018, 229, 0003-9527, 1153, 10.1007/s00205-018-1236-2
    6. Marta Lewicka, Pablo Ochoa, 2015, Chapter 10, 978-3-319-18572-9, 279, 10.1007/978-3-319-18573-6_10
    7. Houssam Abdoul-Anziz, Pierre Seppecher, Strain gradient and generalized continua obtained by homogenizing frame lattices, 2018, 6, 2325-3444, 213, 10.2140/memocs.2018.6.213
    8. G. Rizzi, F. Dal Corso, D. Veber, D. Bigoni, Identification of second-gradient elastic materials from planar hexagonal lattices. Part I: Analytical derivation of equivalent constitutive tensors, 2019, 176-177, 00207683, 1, 10.1016/j.ijsolstr.2019.07.008
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5715) PDF downloads(1278) Cited by(6)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog