We prove a homogenization theorem for non-convex functionals depending on
vector-valued functions, defined on Sobolev spaces with respect to oscillating measures.
The proof combines the use of the localization methods of
-convergence with a 'discretization' argument, which allows to
link the oscillating energies to functionals defined on a single Lebesgue space, and to
state the hypothesis of -connectedness of the underlying periodic measure
in a handy way.
Citation: Andrea Braides, Valeria Chiadò Piat. Non convex homogenization problems for singular structures[J]. Networks and Heterogeneous Media, 2008, 3(3): 489-508. doi: 10.3934/nhm.2008.3.489
Related Papers:
[1]
Andrea Braides, Valeria Chiadò Piat .
Non convex homogenization problems for singular structures. Networks and Heterogeneous Media, 2008, 3(3): 489-508.
doi: 10.3934/nhm.2008.3.489
[2]
Antoine Gloria Cermics .
A direct approach to numerical homogenization in finite elasticity. Networks and Heterogeneous Media, 2006, 1(1): 109-141.
doi: 10.3934/nhm.2006.1.109
[3]
T. A. Shaposhnikova, M. N. Zubova .
Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks and Heterogeneous Media, 2008, 3(3): 675-689.
doi: 10.3934/nhm.2008.3.675
[4]
Patrick Henning .
Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems. Networks and Heterogeneous Media, 2012, 7(3): 503-524.
doi: 10.3934/nhm.2012.7.503
[5]
Vivek Tewary .
Combined effects of homogenization and singular perturbations: A bloch wave approach. Networks and Heterogeneous Media, 2021, 16(3): 427-458.
doi: 10.3934/nhm.2021012
[6]
Erik Grandelius, Kenneth H. Karlsen .
The cardiac bidomain model and homogenization. Networks and Heterogeneous Media, 2019, 14(1): 173-204.
doi: 10.3934/nhm.2019009
[7]
Leonid Berlyand, Volodymyr Rybalko .
Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks and Heterogeneous Media, 2013, 8(1): 115-130.
doi: 10.3934/nhm.2013.8.115
[8]
Junlong Chen, Yanbin Tang .
Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure. Networks and Heterogeneous Media, 2023, 18(3): 1118-1177.
doi: 10.3934/nhm.2023049
[9]
Ben Schweizer, Marco Veneroni .
The needle problem approach to non-periodic homogenization. Networks and Heterogeneous Media, 2011, 6(4): 755-781.
doi: 10.3934/nhm.2011.6.755
[10]
Mohamed Camar-Eddine, Laurent Pater .
Homogenization of high-contrast and non symmetric conductivities for non periodic columnar structures. Networks and Heterogeneous Media, 2013, 8(4): 913-941.
doi: 10.3934/nhm.2013.8.913
Abstract
We prove a homogenization theorem for non-convex functionals depending on
vector-valued functions, defined on Sobolev spaces with respect to oscillating measures.
The proof combines the use of the localization methods of
-convergence with a 'discretization' argument, which allows to
link the oscillating energies to functionals defined on a single Lebesgue space, and to
state the hypothesis of -connectedness of the underlying periodic measure
in a handy way.
This article has been cited by:
1.
Omar Anza Hafsa, Jean-Philippe Mandallena,
Γ-convergence of nonconvex integrals in Cheeger--Sobolev spaces and homogenization,
2017,
10,
1864-8266,
381,
10.1515/acv-2015-0053
2.
Andrea Braides, Lorenza D’Elia,
Homogenization of discrete thin structures,
2022,
0362546X,
112951,
10.1016/j.na.2022.112951
3.
Andrea Braides, Andrea Cancedda, Valeria Chiadò Piat,
Homogenization of metrics in oscillating manifolds,
2017,
23,
1292-8119,
889,
10.1051/cocv/2016018
4.
Andrea Braides, Valeria Chiadò Piat,
Homogenization of networks in domains with oscillating boundaries,
2019,
98,
0003-6811,
45,
10.1080/00036811.2018.1430782