Loading [MathJax]/extensions/TeX/mathchoice.js
Research article Topical Sections

Inhibition of Pseudomonas aeruginosa biofilm formation and motilities by human serum paraoxonase (hPON1)

  • Received: 18 August 2016 Accepted: 12 October 2016 Published: 21 October 2016
  • Human serum paraoxonase 1 (hPON1) which hydrolyzes Pseudomonas aeruginosa acyl homoserine lactone (AHL) signal molecules was used as antibiofilm agent. hPON1 was purified by using ammonium sulfate precipitation and specially designed hydrophobic interaction chromatography (Sepharose 4B-L-tyrosine-1-Naphthylamine) from the fresh human serum. As cell motility of swarming, swimming and twitching are proven instrumental in biofilm formation, we investigated whether or not hPON1 affected the P. aeruginosa motility. hPON1 was reduced the early stage of biofilm formation, mature biofilm and motilities. The early stage and old biofilm were decreased more than 50% by 1 mg ml–1 of hPON1 concentration within range of 0.1–10 mg ml–1. Additionally, exopolymeric substance (EPS) of mature biofilm was indirectly decreased by hPON1. Inhibitory effect of hPON1 within range of 0.003–30 mg ml–1 on swarming and swimming motilities. But it resulted in highly inhibitory effects on twitching motility at concentration as low as 0.3 mg ml1 concentration. This study proved that hPON1 alone can be safely used to inhibit/disrupt the mature biofilms and cell motility of P. aeruginosa and beholds much promise in clinical applications.

    Citation: Aynur Aybey, Elif Demirkan. Inhibition of Pseudomonas aeruginosa biofilm formation and motilities by human serum paraoxonase (hPON1)[J]. AIMS Microbiology, 2016, 2(4): 388-401. doi: 10.3934/microbiol.2016.4.388

    Related Papers:

    [1] Mahmoud S. Mehany, Faizah D. Alanazi . An η-Hermitian solution to a two-sided matrix equation and a system of matrix equations over the skew-field of quaternions. AIMS Mathematics, 2025, 10(4): 7684-7705. doi: 10.3934/math.2025352
    [2] Abdur Rehman, Muhammad Zia Ur Rahman, Asim Ghaffar, Carlos Martin-Barreiro, Cecilia Castro, Víctor Leiva, Xavier Cabezas . Systems of quaternionic linear matrix equations: solution, computation, algorithm, and applications. AIMS Mathematics, 2024, 9(10): 26371-26402. doi: 10.3934/math.20241284
    [3] Vladislav N. Kovalnogov, Ruslan V. Fedorov, Denis A. Demidov, Malyoshina A. Malyoshina, Theodore E. Simos, Spyridon D. Mourtas, Vasilios N. Katsikis . Computing quaternion matrix pseudoinverse with zeroing neural networks. AIMS Mathematics, 2023, 8(10): 22875-22895. doi: 10.3934/math.20231164
    [4] Wenxv Ding, Ying Li, Anli Wei, Zhihong Liu . Solving reduced biquaternion matrices equation ki=1AiXBi=C with special structure based on semi-tensor product of matrices. AIMS Mathematics, 2022, 7(3): 3258-3276. doi: 10.3934/math.2022181
    [5] Abdur Rehman, Cecilia Castro, Víctor Leiva, Muhammad Zia Ur Rahman, Carlos Martin-Barreiro . Solving two-sided Sylvester quaternionic matrix equations: Theoretical insights, computational implementation, and practical applications. AIMS Mathematics, 2025, 10(7): 15663-15697. doi: 10.3934/math.2025702
    [6] Yang Chen, Kezheng Zuo, Zhimei Fu . New characterizations of the generalized Moore-Penrose inverse of matrices. AIMS Mathematics, 2022, 7(3): 4359-4375. doi: 10.3934/math.2022242
    [7] Abdur Rehman, Ivan Kyrchei, Muhammad Zia Ur Rahman, Víctor Leiva, Cecilia Castro . Solvability and algorithm for Sylvester-type quaternion matrix equations with potential applications. AIMS Mathematics, 2024, 9(8): 19967-19996. doi: 10.3934/math.2024974
    [8] Anli Wei, Ying Li, Wenxv Ding, Jianli Zhao . Three special kinds of least squares solutions for the quaternion generalized Sylvester matrix equation. AIMS Mathematics, 2022, 7(4): 5029-5048. doi: 10.3934/math.2022280
    [9] Dong Wang, Ying Li, Wenxv Ding . The least squares Bisymmetric solution of quaternion matrix equation AXB=C. AIMS Mathematics, 2021, 6(12): 13247-13257. doi: 10.3934/math.2021766
    [10] Qi Xiao, Jin Zhong . Characterizations and properties of hyper-dual Moore-Penrose generalized inverse. AIMS Mathematics, 2024, 9(12): 35125-35150. doi: 10.3934/math.20241670
  • Human serum paraoxonase 1 (hPON1) which hydrolyzes Pseudomonas aeruginosa acyl homoserine lactone (AHL) signal molecules was used as antibiofilm agent. hPON1 was purified by using ammonium sulfate precipitation and specially designed hydrophobic interaction chromatography (Sepharose 4B-L-tyrosine-1-Naphthylamine) from the fresh human serum. As cell motility of swarming, swimming and twitching are proven instrumental in biofilm formation, we investigated whether or not hPON1 affected the P. aeruginosa motility. hPON1 was reduced the early stage of biofilm formation, mature biofilm and motilities. The early stage and old biofilm were decreased more than 50% by 1 mg ml–1 of hPON1 concentration within range of 0.1–10 mg ml–1. Additionally, exopolymeric substance (EPS) of mature biofilm was indirectly decreased by hPON1. Inhibitory effect of hPON1 within range of 0.003–30 mg ml–1 on swarming and swimming motilities. But it resulted in highly inhibitory effects on twitching motility at concentration as low as 0.3 mg ml1 concentration. This study proved that hPON1 alone can be safely used to inhibit/disrupt the mature biofilms and cell motility of P. aeruginosa and beholds much promise in clinical applications.


    In this paper, we establish the following four symmetric quaternion matrix systems:

    {A11X1=B11,C11X1D11=E11,X2A22=B22,C22X2D22=E22,F11X1H11+X2F22=G11, (1.1)
    {A11X1=B11,C11X1D11=E11,X2A22=B22,C22X2D22=E22,F11X1+H11X2F22=G11, (1.2)
    {A11X1=B11,C11X1D11=E11,A22X2=B22,C22X2D22=E22,F11X1+H11X2F22=G11, (1.3)
    {A11X1=B11,C11X1D11=E11,A22X2=B22,C22X2D22=E22,F11X1+X2F22=G11, (1.4)

    where Aii, Bii, Cii, Dii, Eii, Fii(i=¯1,2), H11, and G11 are known matrices, while Xi(i=¯1,2) are unknown.

    In this paper, R and Hm×n denote the real number field and the set of all quaternion matrices of order m×n, respectively.

    H={v0+v1i+v2j+v3k|i2=j2=k2=ijk=1,v0,v1,v2,v3R}.

    Moreover, r(A), 0 and I represent the rank of matrix A, the zero matrix of suitable size, and the identity matrix of suitable size, respectively. The conjugate transpose of A is A. For any matrix A, if there exists a unique solution X such that

    AXA=A,XAX=X,(AX)=AX,(XA)=XA,

    then X is called the Moore-Penrose (MP) inverse. It should be noted that A is used to represent the MP inverse of A. Additionally, LA=IAA and RA=IAA denote two projectors toward A.

    H is known to be an associative noncommutative division algebra over R with extensive applications in computer science, orbital mechanics, signal and color image processing, control theory, and so on (see [1,2,3,4]).

    Matrix equations, significant in the domains of descriptor systems control theory [5], nerve networks [6], back feed [7], and graph theory [8], are one of the key research topics in mathematics.

    The study of matrix equations in H has garnered the attention of various researchers; consequently they have been analyzed by many studies (see, e.g., [9,10,11,12]). Among these the system of symmetric matrix equations is a crucial research object. For instance, Mahmoud and Wang [13] established some necessary and sufficient conditions for the three symmetric matrix systems in terms of MP inverses and rank equalities:

    {A1V=C1, VB1=C2,A3X+YB3=C3,A2Y+ZB2+A5VB5=C5,A4W+ZB4=C4,{A1V=C1, VB1=C2,A3X+YB3=C3,A2Z+YB2+A5VB5=C5,A4Z+WB4=C4,{A1V=C1, VB1=C2,A3X+YB3=C3,A2Y+ZB2+A5VB5=C5,A4Z+WB4=C4. (1.5)

    Wang and He [14] established the sufficient and necessary conditions for the existence of solutions to the following three symmetric coupled matrix equations and the expressions for their general solutions:

    {A1X+YB1=C1,A2Y+ZB2=C2,A3W+ZB3=C3,{A1X+YB1=C1,A2Z+YB2=C2,A3Z+WB3=C3,{A1X+YB1=C1,A2Y+ZB2=C2,A3Z+WB3=C3. (1.6)

    It is noteworthy that the following matrix equation plays an important role in the analysis of the solvability conditions of systems (1.1)–(1.4):

    A1U+VB1+A2XB2+A3YB3+A4ZB4=B. (1.7)

    Liu et al. [15] derived some necessary and sufficient conditions to solve the quaternion matrix equation (1.7) using the ranks of coefficient matrices and MP inverses. Wang et al. [16] derived the following quaternion equations after obtaining some solvability conditions for the quaternion equation presented in Eq (1.8) in terms of MP inverses:

    {A11X1=B11,C11X1D11=E11,X2A22=B22,C22X2D22=E22,F11X1+X2F22=G11. (1.8)

    To our knowledge, so far, there has been little information on the solvability conditions and an expression of the general solution to systems (1.1)–(1.4).

    In mathematical research and applications, the concept of η-Hermitian matrices has gained significant attention [17]. An η-Hermitian matrix, for η{i,j,k}, is defined as a matrix A such that A=Aη, where Aη=ηAη. These matrices have found applications in various fields including linear modeling and the statistics of random signals [1,17]. As an application of (1.1), this paper establishes some necessary and sufficient conditions for the following matrix equation:

    {A11X1=B11,C11X1Cη11=E11,F11X1Fη11+(F22X1)η=G11 (1.9)

    to be solvable.

    Motivated by the study of Systems (1.8), symmetric matrix equations, η-Hermitian matrices, and the widespread use of matrix equations and quaternions as well as the need for their theoretical advancements, we examine the solvability conditions of the quaternion systems presented in systems (1.1)–(1.4) by utilizing the rank equalities and the MP inverses of coefficient matrices. We then obtain the general solutions for the solvable quaternion equations in systems (1.1)–(1.4). As an application of (1.1), we utilize the MP inverse and the rank equality of matrices to investigate the necessary and sufficient conditions for the solvability of quaternion matrix equations involving η-Hermicity matrices. It is evident that System (1.8) is a specific instance of System (1.1).

    The remainder of this article is structured as follows. Section 2 outlines the basics. Section 3 examines some solvability conditions of the quaternion equation presented in System (1.1) using the MP inverses and rank equalities of the matrices, and derives the solution of System (1.1). Section 4 establishes some solvability conditions for matrix systems (1.2)–(1.4) to be solvable. Section 5 investigates some necessary and sufficient conditions for matrix equation (1.9) to have common solutions. Section 6 concludes the paper.

    Marsaglia and Styan [18] presented the following rank equality lemma over the complex field, which can be generalized to H.

    Lemma 2.1. [18] Let AHm×n, BHm×k, CHl×n, DHj×k, and EHl×i be given. Then, the following rank equality holds:

     r(ABLDREC0)=r(AB0C0E0D0)r(D)r(E).

    Lemma 2.2. [19] Let AHm×n be given. Then,

    (1)(Aη)=(A)η,(Aη)=(A)η;(2)r(A)=r(Aη)=r(Aη);(3)(LA)η=η(LA)η=(LA)η=LAη=RAη,(4)(RA)η=η(RA)η=(RA)η=RAη=LAη;(5)(AA)η=(A)ηAη=(AA)η=Aη(A)η;(6)(AA)η=Aη(A)η=(AA)η=(A)ηAη.

    Lemma 2.3. [20] Let A1 and A2 be given quaternion matrices with adequate shapes. Then, the equation A1X=A2 is solvable if, and only if, A2=A1A1A2. In this case, the general solution to this equation can be expressed as

    X=A1A2+LA1U1,

    where U1 is any matrix with appropriate size.

    Lemma 2.4. [20] Let A1 and A2 be given quaternion matrices with adequate shapes. Then, the equation XA1=A2 is solvable if, and only if, A2=A2A1A1. In this case, the general solution to this equation can be expressed as

    X=A2A1+U1RA1,

    where U1 is any matrix with appropriate size.

    Lemma 2.5. [21] Let A,B, and C be known quaternion matrices with appropriate sizes. Then, the matrix equation

    AXB=C

    is consistent if, and only if,

    RAC=0,CLB=0.

    In this case, the general solution to this equation can be expressed as

    X=ACB+LAU+VRB,

    where U and V are any quaternion matrices with appropriate sizes.

    Lemma 2.6. [15] Let Ci,Di, and Z(i=¯1,4) be known quaternion matrices with appropriate sizes.

    C1X1+X2D1+C2Y1D2+C3Y2D3+C4Y3D4=Z. (2.1)

    Denote

    RC1C2=C12,RC1C3=C13,RC1C4=C14,D2LD1=D21,D31LD21=N32,D3LD1=D31,D4LD1=D41,RC12C13=M23,S12=C13LM23,RC1ZLD1=T1,C32=RM23RC12,A1=C32C14,A2=RC12C14,A3=RC13C14,A4=C14,D13=LD21LN32,B1=D41,B2=D41LD31,B3=D41LD21,B4=D41D13,E1=C32T1,E2=RC12T1LD31,E3=RC13T1LD21,E4=T1D13,A24=(LA2,LA4),B13=(RB1RB3),A11=LA1,B22=RB2,A33=LA3,B44=RB4,E11=RA24A11,E22=RA24A33,E33=B22LB13,E44=B44LB13,N=RE11E22,M=E44LE33,K=K2K1,E=RA24KLB13,S=E22LN,K11=A2LA1,G1=E2A2A1E1B1B2,K22=A4LA3,G2=E4A4A3E3B3B4,K1=A1E1B1+LA1A2E2B2,K2=A3E3B3+LA3A4E4B4.

    Then, the following statements are equivalent:

    (1) Equation (2.1) is consistent.

    (2)

    RAiEi=0,EiLBi=0(i=¯1,4),RE11ELE44=0.

    (3)

    r(ZC2C3C4C1D10000)=r(D1)+r(C2,C3,C4,C1),r(ZC2C4C1D3000D1000)=r(C2,C4,C1)+r(D3D1),r(ZC3C4C1D2000D1000)=r(C3,C4,C1)+r(D2D1),r(ZC4C1D200D300D100)=r(D2D3D1)+r(C4,C1),r(ZC2C3C1D4000D1000)=r(C2,C3,C1)+r(D4D1),r(ZC2C1D300D400D100)=r(D3D4D1)+r(C2,C1),r(ZC3C1D200D400D100)=r(D2D4D1)+r(C3,C1),r(ZC1D20D30D40D10)=r(D2D3D4D1)+r(C1),r(ZC2C1000C4D3000000D1000000000ZC3C1C4000D2000000D1000D400D4000)=r(D30D100D20D1D4D4)+r(C2C100C400C3C1C4).

    Under these conditions, the general solution to the matrix equation (2.1) is

    X1=C1(ZC2Y1D2C3Y2D3C4Y3D4)C1U1D1+LC1U2,X2=RC1(ZC2Y1D2C3Y2D3C4Y3D4)D1+C1C1U1+U3RD1,Y1=C12TD21C12C13M23TD21C12S12C13TN32D31D21C12S12U4RN32D31D21+LC12U5+U6RD21,Y2=M23TD31+S12S12C13TN32+LM23LS12U7+U8RD31+LM23U4RN32,Y3=K1+LA2V1+V2RB1+LA1V3RB2, or Y3=K2LA4W1W2RB3LA3W3RB4,

    where T=T1C4Y3D4,Ui(i=¯1,8) are arbitrary matrices with appropriate sizes over H,

    V1=(Im,0)[A24(KA11V3B22A33W3B44)A24U11B13+LA24U12],W1=(0,Im)[A24(KA11V3B22A33W3B44)A24U11B13+LA24U12],W2=[RA24(KA11V3B22A33W3B44)B13+A24A24U11+U21RB13](0In),V2=[RA24(KA11V3B22A33W3B44)B13+A24A24U11+U21RB13](In0),V3=E11KE33E11E22NKE33E11SE22KME44E33E11SU31RME44E33+LE11U32+U33RE33,W3=NKE44+SSE22KM+LNLSU41+LNU31RMU42RE44,

    U11,U12,U21,U31,U32,U33,U41, and U42 are arbitrary quaternion matrices with appropriate sizes, and m and n denote the column number of C4 and the row number of D4, respectively.

    Some necessary and sufficient conditions for System (1.1) to be solvable will be established in this section. The general solution of System (1.1) will also be derived in this section. Moreover, we provide an example to illustrate our main results.

    Theorem 3.1. Let Aii,Bii,Cii,Dii,Eii,Fii,H11, and G11 (i = 1, 2) be given quaternion matrices. Put

    {A1=C11LA11,P1=E11C11A11B11D11,B2=RA22D22,P2=E22C22B22A22D22,^B1=RB2RA22F22,^A2=F11LA11LA1,^A3=F11LA11,^B3=RD11H11,^A4=LC22,^B4=RA22F22,H11L^B1=^B11,P=G11F11A11B11H11F11LA11A1P1D11H11B22A22F22C22P2B2RA22F22, (3.1)
    {^B22L^B11=N1,^B3L^B1=^B22,^B4L^B1=^B33,R^A2^A3=^M1,S1=^A3L^M1,T1=PL^B1,C=R^M1R^A2,C1=C^A4,C2=R^A2^A4,C3=R^A3^A4,C4=^A4,D=L^B11LN1,D1=^B33,D2=^B33L^B22,D4=^B33D,E1=CT1,E2=R^A2T1L^B22,E3=R^A3T1L^B11,E4=T1D,^C11=(LC2,LC4),D3=^B33L^B11,^D11=(RD1RD3),^C22=LC1,^D22=RD2,^C33=LC3,^D33=RD4,^E11=R^C11^C22,^E22=R^C11^C22,^E33=^D22L^D11,^E44=^D33L^D11,M=R^E11^E22,N=^E44L^E33,F=F2F1,E=R^C11FL^D11,S=^E22LM,^F11=C2LC1,G1=E2C2C1E1D1D2,^F22=C4LC3,G2=E4C4C3E3D3D4,F1=C1E1D1+LC1C2E2D2,F2=C3E3D3+LC3C4E4D4. (3.2)

    Then, the following statements are equivalent:

    (1) System (1.1) is solvable.

    (2)

    RA11B11=0,RA1P1=0,P1LD11=0,B22LA22=0,RC22P2=0,P2LB2=0,RCiEi=0,EiLDi=0(i=¯1,4),R^E11EL^E44=0.

    (3)

    r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11), (3.3)
    r(E11D11)=r(D11),r(B22A22)=r(A22), (3.4)
    r(E22,C22)=r(C22),r(E22C22B22D22A22)=r(D22,A22), (3.5)
    r(F220D22A22B11H11A1100C22G11C22F11E22C22B22)=r(F22,D22,A22)+r(A11C22F11), (3.6)
    r(H110D1100F2200D22A220C11E11000A11B11D1100C22G11C22F110E22C22B22)=r(C11A11C22F11)+r(H11D1100F220D22A22), (3.7)
    r(H11000F220D22A220A1100C22G11C22F11E22C22B22)=r(H1100F22D22A22)+r(A11C22F11), (3.8)
    r(H1100F22D22A22C22G11E22C22B22)=r(H1100F22D22A22), (3.9)
    r(G11F11B22F220A22B11H11A110)=r(F11A11)+r(F22,A22), (3.10)
    r(G11F110B22H110D110F2200A220C11E1100A11B11D110)=r(H11D110F220A22)+r(F11C11A11), (3.11)
    r(G11F11B22H1100F220A220A110)=r(H110F22A22)+r(F11A11), (3.12)
    r(G11B22H110F22A22)=r(H110F22A22), (3.13)
    r(H11000000D110F220000D22A220000H1100000000F22D22A220000F220F2200000A220C1100000E1100A1100000B11D110C22G11C22F11000E22C22B2200)=r(H1100000D110F22000D22A22000H110000000F22D22A220000F22F2200000A22)+r(C11A11C22F11). (3.14)

    Proof. (1)(2): The System (1.1) can be written as follows.

    A11X1=B11, X2A22=B22, (3.15)
    C11X1D11=E11, C22X2D22=E22, (3.16)

    and

    F11X1H11+X2F22=G11. (3.17)

    Next, the solvability conditions and the expression for the general solutions of Eq (3.15) to Eq (3.17) are given by the following steps:

    Step 1: According to Lemma 2.3 and Lemma 2.4, the system (3.15) is solvable if, and only if,

    RA11B11=0, B22LA22=0. (3.18)

    When condition (3.18) holds, the general solution of System (3.15) is

    X1=A11B11+LA11U1, X2=B22A22+U2RA22. (3.19)

    Step 2: Substituting (3.19) into (3.16) yields,

    A1U1D11=P1, C22U2B2=P2, (3.20)

    where A1,P1,B2,P2 are defined by (3.1). By Lemma 2.5, the system (3.20) is consistent if, and only if,

    RA1P1=0, P1LD11=0, RC22P2=0, P2LB2=0. (3.21)

    When (3.21) holds, the general solution to System (3.20) is

    U1=A1P1D11+LA1W1+W2RD11,U2=C22P2B2+LC22W3+W4RB2. (3.22)

    Comparing (3.22) and (3.19), hence,

    X1=A11B11+LA11A1P1D11+LA11LA1W1+LA11W2RD11,X2=B22A22+C22P2B2RA22+LC22W3RA22+W4RB2RA22. (3.23)

    Step 3: Substituting (3.23) into (3.17) yields

    W4^B1+^A2W1H11+^A3W2^B3+^A4W3^B4=P, (3.24)

    where ^Bi,^Aj(i=¯1,4,j=¯2,4) are defined by (3.1). It follows from Lemma 2.6 that Eq (3.24) is solvable if, and only if,

    RCiEi=0,EiLDi=0(i=¯1,4),R^E11EL^E44=0. (3.25)

    When (3.25) holds, the general solution to matrix equation (3.24) is

    W1=^A2T^B11^A2^A3^M1T^B11^A2S1^A3TN1^B22^B11^A2S1V4RN1^B22^B11+L^A2V5+V6R^B11,W2=^M1T^B22+S1S1^A3TN1+L^M1LS1V7+V8R^B22+L^M1V4RN1,W3=F1+LC2^V1+^V2RD1+LC1^V3RD2, or W3=F2LC4V1V2RD3LC3V3RD4,W4=(P^A2W1H11^A3W2^B3^A4W3^B4)^B1+V3R^B1,

    where Ci,Ei,Di(i=¯1,4),^E11,^E44 are defined as (3.2), T=T1^A4W3^B4,Vi(i=¯1,8) are arbitrary matrices with appropriate sizes over H,

    ^V1=(Im,0)[^C11(F^C22V3^D22^C33^V3^D33)^C11U11^D11+L^C11U12],V1=(0,Im)[^C11(F^C22V3^D22^C33^V3^D33)^C11U11^D11+L^C11U12],V2=[R^C11(F^C22V3^D22^C33^V3^D33)^D11+^C11^C11U11+U21R^D11](0In),^V2=[R^C11(F^C22V3^D22^C33^V3^D33)^D11+^C11^C11U11+U21R^D11](In0),^V3=^E11F^E33^E11^E22MF^E33^E11S^E22FN^E44^E33^E11SU31RN^E44^E33+L^E11U32+U33R^E33,V3=MF^E44+SS^E22FN+LMLSU41+LMU31RNU42R^E44,

    U11,U12,U21,U31,U32,U33,U41, and U42 are any quaternion matrices with appropriate sizes, and m and n denote the column number of C22 and the row number of A22, respectively. We summarize that System (1.1) has a solution if, and only if, (3.18), (3.21), and (3.25) hold, i.e., the System (1.1) has a solution if, and only if, (2) holds.

    (2)(3): We prove the equivalence in two parts. In the first part, we want to show that (3.18) and (3.21) are equivalent to (3.3) to (3.5), respectively. In the second part, we want to show that (3.25) is equivalent to (3.6) to (3.14). It is easy to know that there exist X01,X02,U01, and U02 such that

    A11X01=B11, X02A22=B22,A1U01D11=P1, C22U02B2=P2

    holds, where

    X01=A11B11,U01=A1P1D11,X02=B22A22,U02=C22P2B2,

    P1=E11C11X01D11,P2=E22C22X02D22, and P=G11F11X01H11F11LA11U01H11X02F22U02RA22F22.

    Part 1: We want to show that (3.18) and (3.21) are equivalent to (3.3) to (3.5), respectively. It follows from Lemma 2.1 and elementary transformations that

    (3.18)r(RA11B11)=0r(B11,A11)=r(A11)(3.3),(3.21)r(RA1P1)=0r(P1,A1)=r(A1)r(E11C11A11B11D11,C11LA11)=r(C11LA11)r(E11C11B11D11A11)=r(C11A11)(3.3),(3.21)r(P1LD11)=0r(P1D11)=r(D11)r(E11C11A11B11D11D11)=r(D11)r(E11D11)=r(D11)(3.4),(3.18)r(B22LA22)=0r(B22A22)=r(A22)(3.4).

    Similarly, we can show that (3.21) is equivalent to (3.5). Hence, (3.18) and (3.21) are equivalent to (3.3) and (3.5), respectively.

    Part 2: In this part, we want to show that (3.25) is equivalent to (3.6) and (3.14). According to Lemma 2.6, we have that (3.25) is equivalent to the following:

    r(P^A2^A3^A4^B1000)=r(^B1)+r(^A2,^A3,^A4), (3.26)
    r(P^A2^A4^B300^B100)=r(^A2,^A4)+r(^B3^B1), (3.27)
    r(P^A3^A4H1100^B100)=r(^A3,^A4)+r(H11^B1), (3.28)
    r(P^A4H110^B30^B10)=r(H11^B3^B1)+r(^A4), (3.29)
    r(P^A2^A3^B400^B100)=r(^A2,^A3)+r(^B4^B1), (3.30)
    r(P^A2^B30^B40^B10)=r(^B3^B4^B1)+r(^A2), (3.31)
    r(P^A3H110^B40^B10)=r(H11^B4^B1)+r(^A3), (3.32)
    r(PH11^B3^B4^B1)=r(H11^B3^B4^B1), (3.33)
    r(P^A200^A4^B30000^B1000000P^A3^A400H110000^B100^B40^B400)=r(^B30^B100H110^B1^B4^B4)+r(^A20^A40^A3^A4), (3.34)

    respectively. Hence, we only prove that (3.26)–(3.34) are equivalent to (3.6)–(3.14) when we prove that (3.25) is equivalent to (3.6)–(3.14). Now, we prove that (3.26)–(3.34) are equivalent to (3.6)–(3.14). In fact, we only prove that (3.26), (3.30), and (3.34) are equivalent to (3.6), (3.10), and (3.14); the remaining part can be proved similarly. According to Lemma 2.1 and elementary transformations, we have that

    (3.26)=r(P^A2^A3^A4^B1000)=r(^B1)+r(^A2,^A3,^A4)r(G11F11X01H11F11LA11U01H11X02F22U02RA22F22F11LA11LA1F11LA11LC22RB2RA22F22000)=r(RB2RA22F22)+r(F11LA11LA1,F11LA11,LC22)r(G11F11X01H11X02F22U02RA22F22F11I0RA22F2200B20A110000C220)=r(RA22F22,B2)+r(F11IA1100C22)r(G11F11IU02B20F2200B2A22B11H11A11000C22X02F220C2200)=r(F22,D22,A22)+r(F11IA1100C22)r(F220D22A22B11H11A1100C22G11C22F11E22C22B22)=r(F22,D22,A22)+r(A11F11C22)(3.6).

    Similarly, we have that (3.27)(3.7),(3.28)(3.8),(3.29)(3.9).

    (3.30)=r(P^A2^A3^B400^B100)=r(^A2,^A3)+r(^B4^B1)r(G11F11X01H11F11LA11U01H11X02F22U02RA22F22F11LA11LA1F11LA1RA22F2200RB2RA22F2200)=r(F11LA11LA1,F11LA11)+r(RA22F22RB2RA22F22)r(G11F11X01H11F11B22F220A220A110)=r(F11A11)+r(F22,A22)r(G11F11B22F220A22B11H11A110)=r(F11A11)+r(F22,A22)(3.10).

    Similarly, we have that (3.31)(3.11),(3.32)(3.12),(3.33)(3.13).

    (3.34)=r(P^A200^A4^B30000^B1000000P^A3^A400H110000^B100^B40^B400)=r(^B30^B100H110^B1^B4^B4)+r(^A20^A40^A3^A4)r(PF11LA11LA100LC22RD11H110000RB2RA22F22000000PF11LA11LC2200H110000RB2RA22F2200RA22F220RA22F2200)=r(RD11H110RB2RA22F2200H110RB2RA22F22RA22F22RA22F22)+r(F11LA11LA10LC220F11LA11LC22)r(PF11LA1100LC22000H110000D1100RA22F2200000B2000G11+X02F22+U02RA22F22F11LA11LC2200000H110000000RA22F220000B2RA22F220RA22F22000000A1000000)=r(H110D1100RA2200B200H110000RA22F2200B2RA22F22RA22F22000)+r(F11LA110LC220F11LA11LC22A100)r(H11000000D110F220000D22A220000H1100000000F22D22A220000F220F2200000A220C1100000E1100A1100000B11D110C22G11C22F11000E22C22B2200)=r(H1100000D110F22000D22A22000H110000000F22D22A220000F22F2200000A22)+r(C11A11C22F11)(3.14).

    Theorem 3.2. Let System (1.1) be solvable. Then, the general solution of System (1.1) is

    X1=A11B11+LA11A1P1D11+LA11LA1W1+LA11W2RD11,X2=B22A22+C22P2B2RA22+LC22W3RA22+W4RB2RA22,

    where

    W1=^A2T^B11^A2^A3^M1T^B11^A2S1^A3TN1^B22^B11^A2S1V4RN1^B22^B11+L^A2V5+V6R^B11,W2=^M1T^B22+S1S1^A3TN1+L^M1LS1V7+V8R^B22+L^M1V4RN1,W3=F1+LC2^V1+^V2RD1+LC1^V3RD2, or W3=F2LC4V1V2RD3LC3V3RD4,W4=(P^A2W1H11^A3W2^B3^A4W3^B4)^B1+V3R^B1,^V1=(Im,0)[^C11(F^C22V3^D22^C33^V3^D33)^C11U11^D11+L^C11U12],V1=(0,Im)[^C11(F^C22V3^D22^C33^V3^D33)^C11U11^D11+L^C11U12],V2=[R^C11(F^C22V3^D22^C33^V3^D33)^D11+^C11^C11U11+U21R^D11](0In),^V2=[R^C11(F^C22V3^D22^C33^V3^D33)^D11+^C11^C11U11+U21R^D11](In0),^V3=^E11F^E33^E11^E22MF^E33^E11S^E22FN^E44^E33^E11SU31RN^E44^E33+L^E11U32+U33R^E33,V3=MF^E44+SS^E22FN+LMLSU41+LMU31RNU42R^E44,

    T=T1^A4W3^B4,Vi(i=¯4,8) are arbitrary matrices with appropriate sizes over H, U11,U12,U21, U31,U32,U33,U41, and U42 are any quaternion matrices with appropriate sizes, and m and n denote the column number of C22 and the row number of A22, respectively.

    Next, we consider a special case of the System (1.1).

    Corollary 3.3. [16] Let Aii,Bii,Cii,Dii,Eii,Fii(i=1,2), and G11 be given matrices with appropriate dimensions over H. Denote

    T=C11LA11,K=RA22D22, B1=RKRA22F22,A1=F11LA11LT,C3=F11LA11,D3=RD11,C4=LC22,D4=RA22F22,Aα=RA1C3,Bβ=D3LB1,Cc=RAαC4,Dd=D4LB1,E=RA1E1LB1,A=A11B11+LA11T(E11C11A11B11D11)D,B=B22A22+C22(E22C22B22A22D22)KRA22,E1=G11F11ABF22,M=RAαCc,N=DdLBβ,S=CcLM.

    Then, the following statements are equivalent:

    (1) Equation (1.8) is consistent.

    (2)

    RA11B11=0,B22LA22=0,RC22E22=0,E11LD11=0,RT(E11C11A11B11D11)=0,(E22C22B22A22D22)LK=0,RMRAαE=0,ELBβLN=0,RAαELDd=0,RCcELBβ=0.

    (3)

    r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11),r(E11D11)=r(D11),r(B22A22)=r(A22),r(E22,C22)=r(C22),r(E22C22B22D22A22)=r(D22,A22),r(F220D22A22B11A1100C22G11C22F11E22C22B22)=r(F22,D22,A22)+r(A11C22F11),r(0F22D11D22A22C11E1100A11B11D1100C22F11C22G11D11E22C22B22)=r(C11A11C22F11)+r(F22D11,D22,A22),r(G11F11B22F220A22B11A110)=r(F11A11)+r(F22,A22),r(F11G11D11B220F22D11A22C11E110A11B11D110)=r(F22D11,A22)+r(F11C11A11).

    Finally, we provide an example to illustrate the main results of this paper.

    Example 3.4. Conside the matrix equation (1.1)

    A11=(a111a121),B11=(b111b112b121b122),C11=(c111c121),D11=(d111d121),E11=(e111e121),A22=(a211a212),B22=(b211b212b221b222),C22=(c211c212c221c222),D22=(d211),E22=(e211e221),F11=(f111f121),H11=(h111h112h121h122),F22=(f211f212),G11=(g111g112g121g122),

    where

    a111=0.9787+0.5005i+0.0596j+0.0424k,a121=0.7127+0.4711i+0.6820j+0.0714k,b111=0.5216+0.8181i+0.7224j+0.6596k,b112=0.9730+0.8003i+0.4324j+0.0835k,b121=0.0967+0.8175i+0.1499j+0.5186k,b122=0.6490+0.4538i0.8253j+0.1332k,c111=0.1734+0.8314i+0.0605j+0.5269k,c121=0.3909+0.8034i+0.3993j+0.4168k,d111=0.6569+0.2920i+0.0159j+0.1671k,d121=0.6280+0.4317i+0.9841j+0.1062k,e111=0.3724+0.4897i+0.9516j+0.0527k,e121=0.1981+0.3395i+0.9203j+0.7379k,a211=0.2691+0.4228i+0.5479j+0.9427k,a212=0.4177+0.9831i+0.3015j+0.7011k,b211=0.6663+0.6981i+0.1781j+0.9991k,b212=0.0326+0.8819i+0.1904j+0.4607k,b221=0.5391+0.6665i+0.1280j+0.1711k,b222=0.5612+0.6692i+0.3689j+0.9816k,c211=0.1564+0.6448i+0.1909j+0.4820k,c212=0.5895+0.3846i+0.2518j+0.6171k,c221=0.8555+0.3763i+0.4283j+0.1206k,c222=0.2262+0.5830i+0.2904j+0.2653k,d211=0.8244+0.9827i+0.7302j+0.3439k,e211=0.5847+0.9063i+0.8178j+0.5944k,e221=0.1078+0.8797i+0.2607j+0.0225k,f111=0.4253+0.1615i+0.4229j+0.5985k,f121=0.3127+0.1788i+0.0942j+0.4709k,h111=0.6959+0.6385i+0.0688j+0.5309k,h112=0.4076+0.7184i+0.5313j+0.1056k,h121=0.6999+0.0336i+0.3196j+0.6544k,h122=0.8200+0.9686i+0.3251j+0.6110k,f211=0.7788+0.4235i+0.0908j+0.2665k,f212=0.1537+0.2810i+0.4401j+0.5271k,g111=0.4574+0.5181i+0.6377j+0.2407k,g112=0.2891+0.6951i+0.2548j+0.6678k,g121=0.8754+0.9436i+0.9577j+0.6761k,g122=0.6718+0.0680i+0.2240j+0.8444k.

    Computing directly yields the following:

    r(B11A11)=r(A11)=2,r(E11C11B11D11A11)=r(C11A11)=2,r(E11D11)=r(D11)=1,r(B22A22)=r(A22)=2,r(E22C22)=r(C22)=2,r(E22C22B22D22A22)=r(D22A22)=3,r(F220D22A22B11H11A1100C22G11C22F11E22C22B22)=r(F22D22A22)+r(A11C22F11)=5,r(H110D1100F2200D22A220C11E11000A11B11D1100C22G11C22F110E22C22B22)=r(C11A11C22F11)+r(H11D1100F220D22A22)=7,r(H11000F220D22A220A1100C22G11C22F11E22C22B22)=r(H1100F22D22A22)+r(A11C22F11)=6,r(H1100F22D22A22C22G11E22C22B22)=r(H1100F22D22A22)=5,r(G11F11B22F220A22B11H11A110)=r(F11A11)+r(F22,A22)=5,r(G11F110B22H110D110F2200A220C11E1100A11B11D110)=r(H11D110F220A22)+r(F11C11A11)=6,r(G11F11B22H1100F220A220A110)=r(H110F22A22)+r(F11A11)=5, r(G11B22H110F22A22)=r(H110F22A22)=4,r(H11000000D110F220000D22A220000H1100000000F22D22A220000F220F2200000A220C1100000E1100A1100000B11D110C22G11C22F11000E22C22B2200)=r(H1100000D110F22000D22A22000H110000000F22D22A220000F22F2200000A22)+r(C11A11C22F11)=11.

    All rank equations in (3.3) to (3.14) hold. So, according to Theorem 3.1, the system of matrix equation (1.1) has a solution. By Theorem 3.2, the solution of System (1.1) can be expressed as

    X1=(0.4946+0.1700i0.1182j0.3692k0.40510.0631i0.2403j0.1875k),X2=(0.0122+0.2540i0.3398j0.3918k0.70020.3481i0.2169j+0.0079k).

    In this section, we use the same method and technique as in Theorem 3.1 to study the three systems of Eqs (1.2)–(1.4). We only present their results and omit their proof.

    Theorem 4.1. Consider the matrix equation (1.2) over H, where Aii,Bii,Cii,Dii,Eii,Fii,G11, and H11(i=¯1,2) are given. Put

    A1=C11LA11,P1=E11C11A11B11D11,B2=RA22D22,P2=E22C22B22A22D22,^A1=F11LA11LA1,^A2=F11LA1,^B2=RD11,^A3=H11LC22,^B3=RA22F22,^B4=RB2RA22F22,B=G11F11A11B11F11LA11A1P1D11H11B22A22F22H11C22P2B2RA22F22,R^A1^A2=A12,R^A1^A3=A13,R^A1H11=A14,^B3L^B2=N1,RA12A13=M1,S1=A13LM1,R^A1B=T1,C=RM1RA12,^C1=CA14,^C2=RA12A14,^C3=RA13A14,^C4=A14,D=L^B2LN1,^D1=^B4,^D2=^B4L^B3,^D3=^B4L^B2,^D4=^B4D,^E1=CT1,^E2=RA12T1L^B3,^E3=RA13T1L^B2,^E4=T1D,C24=(L^C2,L^C4),D13=(R^D1R^D3),C12=L^C1,D12=R^D2,C33=L^C3,D33=R^D4,E24=RC24C12,E13=RC24C33,E33=D12LD13,E44=D33LD13,M=RE24E13,N=E44LE33,F=F2F1,E=RC24FLD13,S=E13LM,^F11=^C2L^C1,^G1=^E2^C2^C1^E1^D1^D2,F33=^C4L^C3,^G2=^E4^C4^C3^E3^D3^D4,F1=^C1^E1^D1+L^C1^C2^E2^D2,F2=^C3^E3^D3+L^C3^C4^E4^D4.

    Then, the following statements are equivalent:

    (1) System (1.2) is consistent.

    (2)

    RA11B11=0,RA1P1=0,P1LD11=0,B22LA22=0,RC22P2=0,P2LB2=0,R^Ci^Ei=0,^EiL^Di=0(i=¯1,4),RE24ELE44=0.

    (3)

    r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11),r(E11D11)=r(D11),r(B22,A22)=r(A22),r(E22,C22)=r(C22),r(E22C22B22D22A22)=r(D22,A22),r(G11D11F11H11E11C110B11D11A110)=r(F11H11C110A110),r(G11D11F11H110F22D1100A22E11C1100B11D11A1100)=r(F22,A22)+r(F11H11C110A110),r(H11F11G11D110C11E110A11B11D11)=r(H11F110C110A11),r(H11F110G11D1100A22F22D110C110E110A110B11D11)=r(F22D11,A22)+r(H11F110C110A11),r(G11D11F11H1100F22D1100D22A22E11C1100000C22E22C22B22B11D11A11000)=r(F11H11C1100C22A110)+r(F22,D22,A22),r(G11D11F11H11B22F22D110A22E11C110B11D11A110)=r(F11C11A11)+r(F22,A22),r(H11F1100G11D1100D22A22F22D110C1100E110A1100B11D11C220E22C22B220)=r(H11F110C110A11C220)+r(D22,A22,F22D11),r(F11H11B22G11D110A22F22D11C110E11A110B11D11)=r(F11C11A11)+r(A22,F22D11),r(G11F1100H1100H5B220F22000000A22000H11F11H110H11B220G11D1100000D22A220F22D1100C2200E22000000C110000E11000A110000B11D11B11A110000000)=r(F2200A2200D22A220F22D11)+r(F1100H110H11F11H110C220000C11000A110A11000).

    Under these conditions, the general solution of System (1.2) is

    X1=A11B11+LA11A1P1D11+LA11LA1W1+LA11W2RD11,X2=B22A22+C22P2B2RA22+LC22W3RA22+W4RB2RA22,

    where

    W1=^A1(B^A2W1^B2^A3W3^B3H11W4^B4)+L^A1U1,W2=A12T^B2A12A13M1T^B2A12S1A13TN1^B3^B2A12S1U2RN1^B3^B2+LA12U3+U4R^B2,W3=M1T^B3+S1S1A13TN1+LM1LS1U5+U6R^B3+LM1U2RN1,W4=F1+L^C2V1+V2R^D1+L^C1V3R^D2, or W4=F2L^C4^V1^V2R^D3L^C3^V3R^D4,

    where T=T1H11W4^B4,Ui(i=¯1,6) are arbitrary matrices with appropriate sizes over H,

    V1=(Im,0)[C24(FC12V3D12C33^V3D33)C24U11D13+LC24U12],^V1=(0,Im)[C24(FC12V3D12C33^V3D33)C24U11D13+LC24U12],^V2=[RC24(FC12V3D12C33^V3D33)D13+C24C24U11+U21RD13](0In),V2=[RC24(FC12V3D12C33^V3D33)D13+C24C24U11+U21RD13](In0),V3=E24FE33E24E13MFE33E24SE13FNE44E33E24SU31RNE44E33+LE24U32+U33RE33,^V3=MFE44+SSE13FN+LMLSU41+LMU31RNU42RE44,

    U11,U12,U21,U31,U32,U33,U41, and U42 are any quaternion matrices with appropriate sizes, and m and n denote the column number of H11 and the row number of A22, respectively.

    Theorem 4.2. Consider the matrix equation (1.3) over H, where Aii,Bii,Cii,Dii,Eii,Fii,G11H11(i=¯1,2) are given. Put

    A1=C11LA11,P1=E11C11A11B11D11,A2=C22LA22,P2=E22C22A22B22D22,^A1=F11LA11LA1,^A2=F11LA11,^B2=RD11,^A11=H11LA22LA2,^A22=H11LA22,^B4=RD22F22,B=G11F11A11B11F11LA11A1P1D11H11A22B22F22H11LA22A2P2D22F22,R^A1^A2=A12,R^A1^A11=A13,R^A1^A22=A33,F22L^B2=N1,RA12A13=M1,S1=A13LM1,R^A1B=T1,C=RM1RA12,^C1=CA33,^C2=RA12A33,^C11=RA13A33,^C22=A33,D=L^B2LN1,^D1=^B4,^D2=^B4LF22,^D11=^B4L^B2,^D22=^B4D,^E1=CT1,^E2=RA12T1LF22,^E11=RA13T1L^B2,^E4=T1D,C24=(L^C2,L^C22),D13=(R^D1R^D11),C21=L^C1,D12=R^D2,C33=L^C11,D33=R^D22,E11=RC24C21,E22=RC24C33,E33=D12LD13,E44=D33LD13,M=RE11E22,N=E44LE33,F=F2F1,E=RC24FLD13,S=E22LM,^F11=^C2L^C1,^G1=^E2^C2^C1^E1^D1^D2,^F22=^C22L^C11,^G2=^E4^C22^C11^E11^D11^D22,F1=^C1^E1^D1+L^C1^C2^E2^D2,F2=^C11^E11^D11+L^C11^C22^E4^D22.

    Then, the following statements are equivalent:

    (1) System (1.3) is consistent.

    (2)

    RA11B11=0,RA1P1=0,P1LD11=0,RA22B22=0,RA2P2=0,P2LD22=0,R^Ci^Ei=0,R^C11^E11=0,R^C22^E4=0,^EiL^Di=0(i=¯1,2),^E11L^D11=0,^E4L^D22=0,RE11ELE44=0.

    (3)

    r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11),r(E11D11)=r(D11),r(B22,A22)=r(A22),r(E22C22B4D22A22)=r(C22A22),r(E22D22)=r(D22),r(G11F11H11B11A110B22F220A22)=r(F11H11A1100A22),r(G11F11H11F2200B11A11000A22)=r(F22)+r(F11H11A1100A22),r(H11F11G11D11A220B22F22D110C11E110A11B11D11)=r(H11F110C110A11A220),r(H11F11G11D1100F22D110C11E110A11B11D11A2200)=r(H11F110C110A11A220)+r(F22D11),r(G11F11H110F2200D22B11A110000C22E2200A22B22D22)=r(F11H11A1100C220A22)+r(F22,D22),r(G11F11F220B11A11)=r(F11A11)+r(F22),r(H11F110G11D1100D22F22D11C220E2200C110E11A2200B22F22D110A110B11D11)=r(H11F11C2200C11A2200A11)+r(D22,F22D11),r(F11G11D110F22D11C11E11A11B11D11)=r(F11C11A11)+r(F22D11),r(G11F11000H110F2200000000G11D11H11F11H11000F22D11000B22B11A1100000000C2200E2200E110C110000B22F22D11A2200000B11D110A110000000A220)=r(F22000D22F22D11)+r(F1100H110H11F11H110C22000A220000C11000A110A11000000A22).

    Under these conditions, the general solution of System (1.3) is

    X1=A11B11+LA11A1P1D11+LA11LA1W1+LA11W2RD11,X2=A22B4+LA22A2P2D22+LA22LA2W3+LA22W4RD22,

    where

    W1=^A1(B^A2W1^B2^A11W3F22^A22W4^B4)+L^A1U1,W2=A12T^B2A12A13M1T^B2A12S1A13TN1F22^B2A12S1U2RN1F22^B2+LA12U3+U4R^B2,W3=M1TF22+S1S1A13TN1+LM1LS1U5+U6RF22+LM1U2RN1,W4=F1+L^C2V1+V2R^D1+L^C1V3R^D2, or W4=F2L^C22^V1^V2R^D11L^C11^V3R^D22,

    where T=T1^A22W4^B4,Ui(i=¯1,6) are arbitrary matrices with appropriate sizes over H,

    V1=(Im,0)[C24(FC21V3D12C33^V3D33)C24U11D13+LC24U12],^V1=(0,Im)[C24(FC21V3D12C33^V3D33)C24U11D13+LC24U12],^V2=[RC24(FC21V3D12C33^V3D33)D13+C24C24U11+U21RD13](0In),V2=[RC24(FC21V3D12C33^V3D33)D13+C24C24U11+U21RD13](In0),V3=E11FE33E11E22MFE33E11SE22FNE44E33E11SU31RNE44E33+LE11U32+U33RE33,^V3=MFE44+SSE22FN+LMLSU41+LMU31RNU42RE44,

    U11,U12,U21,U31,U32,U33,U41, and U42 are any matrices with appropriate sizes, and m and n denote the column number of H11 and the row number of D22, respectively.

    Theorem 4.3. Consider the matrix equation (1.4) over H, where Aii,Bii,Cii,Dii,Eii,Fii(i=¯1,2), and G11 are given. Put

    ^A1=C11LA11,P1=E11C11A11B11D11,^A2=C22LA22,P2=E22C22A22B22D22,A5=F11LA1L^A1,A6=F11LA11,A7=LA22L^A2,A8=LA22,B5=RD11,B7=RD22F22,B=G11F11A11B11F11LA1^A1P1D11A22B22F22LA22^A2P2D22F22,RA5A6=A11,RA5A7=A2,RA5A8=A33,F22LB5=N1,RA11A2=M1,S1=A2LM1,RA5B=T1,C=RM1RA11,^C1=CA33,^C2=RA11A33,^C11=RA2A33,^C4=A33,D=LB5LN1,^D1=B7,^D2=B7LF22,^D3=B7LB5,^D4=B7D,^E1=CT1,^E2=RA11T1LF22,^E11=RA2T1LB5,^E4=T1D,C1=(L^C2,L^C4),D13=(R^D1R^D3),D1=L^C1,D2=R^D2,C33=L^C11,D33=R^D4,E11=RC1D1,E2=RC1C33,E33=D2LD13,E44=D33LD13,M=RE11E2,N=E44LE33,F=^F2^F1,E=RC1FLD13,S=E2LM,F11=^C2L^C1,^G1=^E2^C2^C1^E1^D1^D2,F33=^C4L^C11,^G2=^E4^C4^C11^E11^D3^D4,^F1=^C1^E1^D1+L^C1^C2^E2^D2,^F2=^C11^E11^D3+L^C11^C4^E4^D4.

    Then, the following statements are equivalent:

    (1) Equation (1.4) is consistent.

    (2)

    RA11B11=0,R^A1P1=0,P1LD11=0,RA22B22=0,R^A2P2=0,P2LD22=0, R^Ci^Ei=0,^EiL^Di=0(i=¯1,2),R^C11^E11=0,R^C4^E4=0,^E11L^D3=0,^E4L^D4=0,RE11ELE44=0.

    (3)

    r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11),r(E11D11)=r(D11), r(B22,A22)=r(A22),r(E22C22B22D22A22)=r(C22A22),r(E22D22)=r(D22),r(B11A11A22G11B22F22A22F11)=r(A11A22F11),r(F220B11A11A22G11A22F11)=r(F22)+r(A11A22F11),r(C11E11A11B11D11A22F11B22F22D11A22G11D11)=r(C11A11A22F11),r(0F22D11C11E11A11B11D11A22F11A22G11D11)=r(C11A11A22F11)+r(F22D11),r(F220D22C22G11C22F11E22B11A110A22G11A22F11B22D22)=r(F22,D22)+r(C22F11A22F11A11),r(G11F11F220B11A11)=r(F11A11)+r(F22),r(0D22F22D11C22F11E22C22G11D11C110E22A22F110A22G11D11B22F22D11A110B11D11)=r(C22F11C11A22F11A11)+r(D22,F22D11),r(F11G11D110F22D11C11E11A11B11D11)=r(F11C11A11)+r(F22D11),
    r(F22000000F22D110B22B11A11000C22G11C22F11C22G11D11C22F11E2200E11C110A22G11A22F11A22G11D11B22F22D11A22F11000B11D11A110A22G11A22F11000)=r(F22000F22D11D22)+r(C22F11C22F11A22F11A22F110C110A11A110A110A22F110).

    Under these conditions, the general solution of System (1.4) is

    X1=A11B11+LA1^A1P1^B1+LA1L^A1W1+LA1W2R^B1,X2=A2B22+LA2^A2P2^B2+LA2L^A2W3+LA3W4R^B2,

    where

    W1=A5(BA6W1B5A7W3F22A8W4B7)+LA5U1,W2=A1TB5A1A2M1TB5A1S1A2TN1F22B5A1S1U2RN1F22B5+LA1U3+U4RB5,W3=M1TF22+S1S1A2TN1+LM1LS1U5+U6RF22+LM1U2RN1,W4=^F1+L^C2V1+V2R^D1+L^C1V3R^D2, or W4=^F2L^C4^V1^V2R^D3L^C11^V3R^D4,

    where T=T1A8W4B7,Ui(i=¯1,6) are arbitrary matrices with appropriate sizes over H,

    V1=(Im,0)[C1(FD1V3D2C33^V3D33)C1U11D1+LC1U12],^V1=(0,Im)[C1(FD1V3D2C33^V3D33)C1U11D1+LC1U12],^V2=[RC1(FD1V3D2C33^V3D33)D1+C1C1U11+U21RD1](0In),V2=[RC1(FC2V3D2C33^V3D33)D1+C1C1U11+U21RD1](In0),V3=E11FE33E11E2MFE33E11SE2FNE44E33E11SU31RNE44E33+LE11U32+U33RE33,^V3=MFE44+SSE2FN+LMLSU41+LMU31RNU42RE44,

    U11,U12,U21,U31,U32,U33,U41, and U42 are any quaternion matrices with appropriate sizes, and m and n denote the column number of A22 and the row number of D22, respectively.

    In this section, we use the Lemma 2.2 and the Theorem 3.1 to study matrix equation (1.9) involving η-Hermicity matrices.

    Theorem 5.1. Let A11,B11,C11,E11,F11,F22, and G11(G11=Gη11) be given matrices. Put

    A1=C11LA11,P1=E11C11A11B11Cη11,B2=Aη1,P2=Pη1,ˆB1=RB2(F22LA11)η,ˆA3=F11LA11,ˆA2=ˆA3LA1,ˆA4=LC11,ˆB3=(F11ˆA4)η,ˆB4=(F22LA11)η,Fη11LˆB1=ˆB11,P=G11F11A11B11Fη11ˆA3A1P1(F11C11)η(F22A11B11)ηC11P2B2ˆB4,ˆB22LB11=N1,ˆB3LˆB1=ˆB22,ˆB4LˆB1=ˆB33,RˆA2ˆA3=ˆM1,S1=ˆA3LM1,T1=PL^B1,C=RM1RˆA2,C1=CˆA4,C2=RˆA2ˆA4,C3=RˆA3ˆA4,C4=ˆA4,D=LˆB11LN1,D1=ˆB33,D2=ˆB33LˆB22,D4=ˆB33D,E1=CT1,E2=RˆA2T1LˆB11,E4=T1D,ˆC11=(LC2,LC4),D3=ˆB33LˆB11,ˆD11=(RD1RD3),ˆC22=LC1,ˆD22=RD2, ˆC33=LC3,ˆD33=RD4,ˆE11=RˆC11ˆC22,ˆE22=RˆC11ˆC33,ˆE33=ˆD22LˆD11,ˆE44=ˆD33LˆD11,M=RˆE11ˆE22,N=ˆE44LˆE33, F=F2F1,E=RˆC11FLˆD11,S=ˆE22LM,^F11=C2LC1,G1=E2C2C1E1D1D2,^F22=C4LC3,G2=E4C4C3E3D3D4,F1=C1E1D1+LC1C2E2D2,F2=C3E3D3+LC3C4E4D4.

    Then, the following statements are equivalent:

    (1) System (1.9) is solvable.

    (2)

    RA11B11=0,RA1P1=0,P1(RC11)η=0,RCiEi=0,EiLDi=0(i=¯1,4),RˆE11ELˆE44=0.

    (3)

    \begin{align*} &r(B_{11}, A_{11}) = r(A_{11}), r\begin{pmatrix} E_{11} & C_{11} \\ B_{11} C_{11}^{\eta^{*}} & A_{11} \end{pmatrix} = r\begin{pmatrix} C_{11}\\A_{11} \end{pmatrix} ,\ r\begin{pmatrix} E_{11}\\C_{11}^{\eta^{*}} \end{pmatrix} = r(C_{11}),\\ &r\begin{pmatrix} F_{22}^{\eta^{*}} & 0 & C_{11}^{\eta^{*}} & A_{11}^{\eta^{\eta^{*}}} \\ B_{11} F_{11}^{\eta^{*}} & A_{11} & 0 & 0 \\ C_{11} G_{11} & C_{11} F_{11} & E_{11}^{\eta^{*}} & C_{11} B_{11}^{\eta^{*}} \end{pmatrix} = r\left(F_{22}^{\eta^{*}}, C_{11}^{\eta^{*}}, A_{11}^{\eta^{*}}\right)+r\binom{A_{11}}{C_{11} F_{11}},\\ &r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & -C_{11}^{\eta^{*}} & 0 & 0 \\ F_{22}^{\eta^{*}} & 0 & 0 & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} \\ 0 & C_{11} & E_{11} & 0 & 0 \\ 0 & A_{11} & B_{11} C_{11}^{\eta^{*}} & 0 & 0 \\ C_{11} G_{11} & C_{11} F_{11} & 0 & E_{11}^{\eta^{*}} & C_{11} B_{11}^{\eta^{*}} \end{pmatrix} = \\ &r\begin{pmatrix} C_{11} \\ A_{11} \\ 0 \end{pmatrix} +r\begin{pmatrix} F_{11}^{\eta^{*}} & C_{11}^{\eta^{*}} & 0 & 0 \\ F_{22}^{\eta^{*}} & 0 & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} \end{pmatrix},\\ &r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & 0 & 0 \\ F_{22}^{\eta^{*}} & 0 & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} \\ 0 & A_{11} & 0 & 0 \\ C_{11} G_{11} & C_{11} F_{11} & E_{11}^{\eta^{*}} & C_{11} B_{11}^{\eta^{*}} \end{pmatrix} = r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & 0 \\ F_{22}^{\eta^{*}} & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} \end{pmatrix} +r\binom{A_{11}}{C_{11} F_{11}},\\ &r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & 0 \\ F_{22}^{\eta^{*}} & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} \\ C_{11} G_{11} & E_{11}^{\eta^{*}} & C_{11} B_{11}^{\eta^{*}} \end{pmatrix} = r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & 0 \\ F_{22}^{\eta^{*}} & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}}, \end{pmatrix},\\ &r\begin{pmatrix} G_{11} & F_{11} & B_{11}^{\eta^{*}} \\ F_{22}^{\eta^{*}} & 0 & A_{11}^{\eta^{*}} \\ B_{11} F_{11}^{\eta^{*}} & A_{11} & 0 \end{pmatrix} = r\binom{F_{11}}{A_{11}}+r\left(F_{22}^{\eta^{*}}, A_{11}^{\eta^{*}}\right), \\ &r\begin{pmatrix} G_{11} & F_{11} & 0 & B_{11}^{\eta^{*}} \\ F_{11}^{\eta^{*}} & 0 & -C_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & 0 & 0 & A_{11}^{\eta^{*}} \\ 0 & C_{11} & E_{11} & 0 \\ 0 & A_{11} & B_{11} C_{11}^{\eta^{*}} & 0 \end{pmatrix} = r\begin{pmatrix} F_{11}^{\eta^{*}} & C_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & 0 & A_{11}^{\eta^{*}} \end{pmatrix} +r\begin{pmatrix} F_{11} \\ C_{11} \\ A_{11} \end{pmatrix},\\ &r\begin{pmatrix} G_{11} & F_{11} & B_{11}^{\eta^{*}} \\ F_{11}^{\eta^{*}} & 0 & 0 \\ F_{22}^{\eta^{*}} & 0 & A_{11}^{\eta^{*}} \\ 0 & A_{11} & 0 \end{pmatrix} = r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & A_{11}^{\eta^{*}} \end{pmatrix} +r\binom{F_{11}}{A_{11}}, \\ &r\begin{pmatrix} G_{11} & B_{11}^{\eta^{*}} \\ F_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & A_{11}^{\eta^{*}} \end{pmatrix} = r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & A_{11}^{\eta^{*}} \end{pmatrix},\\ &r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & 0 & 0 & 0 & 0 & 0 & C_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & 0 & 0 & 0 & 0 & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} & 0 & 0 \\ 0 & 0 & F_{11}^{\eta^{*}} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & F_{22}^{\eta^{*}} & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} & 0 & 0 & 0 & 0 \\ F_{22}^{\eta^{*}} & 0 & F_{22}^{\eta^{*}} & 0 & 0 & 0 & 0 & 0 & A_{11}^{\eta^{*}} \\ 0 & C_{11} & 0 & 0 & 0 & 0 & 0 & -E_{11} & 0 \\ 0 & A_{11} & 0 & 0 & 0 & 0 & 0 & -B_{11} C_{11}^{\eta^{*}} & 0 \\ C_{11} G_{11} & C_{11} F_{11} & 0 & 0 & 0 & E_{11}^{\eta^{*}} & C_{11} B_{11}^{\eta^{*}} & 0 & 0 \end{pmatrix} \\ & = r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & 0 & 0 & 0 & 0 & C_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & 0 & 0 & 0 & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} & 0 & 0 \\ 0 & F_{11}^{\eta^{*}} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & F_{22}^{\eta^{*}} & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} & 0 & 0 & 0 & 0 \\ F_{22}^{\eta^{*}} & F_{22}^{\eta^{*}} & 0 & 0 & 0 & 0 & 0 & A_{11}^{\eta^{*}} \end{pmatrix}+r\begin{pmatrix} C_{11} \\ A_{11} \\ C_{11} F_{11} \end{pmatrix}. \end{align*}

    Proof. Evidently, the system of Eq (1.9) has a solution if and only if the following matrix equation has a solution:

    \begin{equation} \begin{aligned} &A_{11}\hat{X_1} = B_{11}, C_{11}\hat{X_1}C_{11}^{\eta^{*}} = E_{11},\\ &\hat{X_2}A_{11}^{\eta^{*}} = B_{11}^{\eta^{*}}, C_{11}\hat{X_2}C_{11}^{\eta^{*}} = E_{11}^{\eta^{*}},\\ &F_{11}X_1F_{11}^{\eta^{*}}+\hat{X_2}^{\eta^{*}}F_{22}^{\eta^{*}} = G_{11}. \end{aligned} \end{equation} (5.1)

    If (1.9) has a solution, say, X_1 , then (\hat{X_1}, \ \hat{X_2}) : = (X_1, \ X_{1}^{\eta^{*}}) is a solution of (5.1). Conversely, if (5.1) has a solution, say (\hat{X_1}, \ \hat{X_2}) , then it is easy to show that (1.5) has a solution

    \begin{align*} X_1 : = \dfrac{\hat{X_1}+X_{2}^{\eta^{*}}}{2}. \end{align*}

    According to Theorem 3.1, we can deduce that this theorem holds.

    We have established the solvability conditions and the expression of the general solutions to some constrained systems (1.1)–(1.4). As an application, we have investigated some necessary and sufficient conditions for Eq (1.9) to be consistent. It should be noted that the results of this paper are valid for the real number field and the complex number field as special number fields.

    Long-Sheng Liu, Shuo Zhang and Hai-Xia Chang: Conceptualization, formal analysis, investigation, methodology, software, validation, writing an original draft, writing a review, and editing. All authors of this article have contributed equally. All authors have read and approved the final version of the manuscript for publication.

    This work is supported by the National Natural Science Foundation(No. 11601328) and Key scientific research projects of univesities in Anhui province(No. 2023AH050476).

    The authors declare that they have no conflicts of interest.

    [1] Pearson JP, Gray KM, Passador L, et al. (1994) Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci USA 9: 197–201.
    [2] Pearson JP, Passador L, Iglewski BH, et al. (1995) A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92: 1490–1494.
    [3] Ikeno T, Fukudo K, Ogawa M, et al. (2007) Small and rough colony Pseudomonas aeruginosa with elevated biofilm formation ability isolated in hospitalized patients. Microbiol Immunol 51: 929–938.
    [4] Diggle SP, Crusz SA, Camara M (2007) Quorum sensing. Curr Biol 17: 907–910.
    [5] Overhage J, Bains M, Brazas MD, et al. (2008) Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol 190: 2671–2679.
    [6] Verstraeten N, Braeken K, Debkumari B, et al. (2008) Living on a surface: Swarming and biofilm formation. Trends Microbiol 16: 496–506.
    [7] Skerker JM, Berg HC (2001) Direct observation of extension and retraction of type IV pili. Proc Nat Acad Sci USA 98: 6901–6904.
    [8] Murray T, Kazmierczak B (2008) Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. J Bacteriol 190: 2700–2708.
    [9] Allison C, Coleman N, Jones PL, et al. (1992) Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation. Infect Immun 60: 4740–4746.
    [10] Hewitt JA (2010) A comparative study of Pseudomonas aeruginosa strain. Master thesis. University of Notre Dame.
    [11] Alarcon I, Evans DJ, Fleiszig SMJ (2009) The role of twitching motility in Pseudomonas aeruginosa exit from and translocation of corneal epithelial cells. Ophthamol Vis Sci 50: 2237–2244.
    [12] Barrionuevo MR, Vullo DL (2012) Bacterial swimming, swarming and chemotactic response to heavy metal presence: which could be the influence on wastewater biotreatment efficiency. World J Microbiol Biotechnol 28: 2813–2825.
    [13] O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development Mol Microbiol 30: 295–304.
    [14] De Carvalho CCCR (2007) Biofilms: Recent developments on an old battle. Recent Pat Biotechnol 1: 49–57.
    [15] Xavier JB, Picioreanu C, Rani SA, et al. (2005) Biofilm control strategies based on enzymatic disruption of the extracellular polymeric substance matrix—A modeling study. J Microbiol 151: 3817–3832.
    [16] Draganov DI, La Du BN (2004)Pharmacogenetics of paraoxonase: a brief review.Naunyn Schmiedebergs Arch Pharmacol169: 78–88.
    [17] Draganov DI, Teiber JF, Speelman A, et al. (2005) Human paraoxonases (PON1, PON2 and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res 46: 1239–1247.
    [18] Ozer EA, Pezzulo A, Shih DM, et al. (2005) Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiol Lett 253: 29–37.
    [19] Yang F, Wang LH, Wang J, et al. (2005) Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett 579: 3713–3717.
    [20] Hassett C, Richter RJ, Humbert R, et al. (1991) Characterization of cDNA clones encoding rabbit and human serum paraoxonase: the mature protein retains its signal sequence. Biochem 30: 10141–10149.
    [21] Blatter MC, James RW, Messmer S, et al. (1993) Identification of a distinct human high-density lipoproteinsubspecies defined by a lipoprotein-associated protein, K-45. Identity of K-45 with paraoxonase. Eur J Biochem 211: 871–879.
    [22] Sinan S, Kockar F, Arslan O (2006) Novel purification strategy for human PON1 and inhibition of the activity by cephalosporin and aminoglikozide derived antibiotics. Biochimie 88: 565–574.
    [23] Aybey A, Sinan S, Askun T (2015) Signal interference effect of human paraoxonase 1 using as substrates N-hexanoyl-L-homoserine lactone and N-3-oxo-octanoyl-L-homoserine lactone on growth of pathogenic bacteria. Appl Biochem Microbiol 51: 726–731.
    [24] Gan N, Smolen A, Eckerson W, et al. (1991) Purification of human serum paraoxonase/arylesterase. Evidence for one esterase catalyzing both activities. Drug Metab Dispos 19: 100–106.
    [25] Lowry H, Rosebrough NJ, Farr AL, et al. (1951) Protein measurement with the Folin Phenol reagents. J Biol Chem 193: 265–275.
    [26] Thenmozhi R, Nithyanand P, Rathna J, et al. (2009) Antibiofilm activity of coralassociated bacteria against different clinical M serotypes of Streptococcus pyogenes. FEMS Immunol Med Microbiol 57: 284–294.
    [27] Nithya C, Begum MF, Pandian SK (2010) Marine bacterial isolates inhibit biofilm formation and disrupt mature biofilms of Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 88: 341–358.
    [28] Dubois M, Gilles KA, Hamilton JK, et al. (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350–356.
    [29] Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3: 163–175.
    [30] Deziel E, Lepine F, Milot S, et al. (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiol 149: 2005–2013.
    [31] Smith RS, Iglewski BH (2003) P. aeruginosa quorum- sensing signals and virulence. Curr Opin Microbiol 6: 56–60.
    [32] Veesenmeyer JL, Hauser AR, Lisboa T, et al. (2009) Pseudomonas aeruginosa virulence and therapy: evolving translational strategies. Crit Care Med 37: 1777–1786.
    [33] Aybey A, Demirkan E (2016) Inhibition of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa by human serum paraoxonase, J Med Microbiol 65: 105–113.
    [34] Fekete A, Kuttler C, Rothballer M, et al. (2010) A Dynamic regulation of N-acyl-homoserine lactone production and degradation in Pseudomonas putida IsoF. FEMS Microbiol Ecol 72: 22–34.
    [35] Gallagher LA, McKnight SL, Kuznetsova MS, et al. (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184: 6472–6480.
    [36] Lepine F, Deziel E, Milot S, et al. (2003) A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. Biochim Biophys Acta 1622: 36–41.
    [37] Yildiz FH, Schoolnik GK (1999) Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci USA 96: 4028–4033.
    [38] Orgaz B, Kives J, Pedregosa AM, et al. (2006) Bacterial biofilm removal using fungal enzymes. Enzyme Microb Tech 40: 51–56.
    [39] Herzberg M, Rezene TZ, Ziemba C, et al. (2009) Impact of higher alginate expression on deposition of Pseudomonas aeruginosa in radial stagnation point flow and reverse osmosis systems. Environ Sci Technol 43: 7376–7383.
    [40] Bernier SP, Ha DG, Khan W, et al. (2011) Modulation of Pseudomonas aeruginosa surface-associated group behaviors by individual amino acids through c-di-GMP signaling. Res Microbiol 162: 680–688.
    [41] Conrad JC, Gibiansky ML, Jin F, et al. (2011) Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa. Biophys J 100: 1608–1616.
    [42] Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13: 27–33.
    [43] Fraser GM, Hughes C (1999) “Swarming motility.” Curr Opin Microbiol 2: 630–635.
    [44] Inoue T, Shingaki R, Fukui K (2008) Inhibition of swarming motility of Pseudomonas aeruginosa by brannched-chain fatty acids. FEMS Microbiol Lett 281: 81–86.
    [45] O’May C, Tufenkji N (2011) The Swarming Motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials. Appl Environ Microbiol 77: 3061–3067.
    [46] Chow S, Gu K, Jiang L, et al. (2011) Salicylic acid affects swimming, twitching and swarming motility in Pseudomonas aeruginosa, resulting in decreased biofilm formation. J Exper Microbiol Immun 15: 22–29.
    [47] Reimmann C, Ginet N, Michel L, et al. (2002) Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiol 148: 923–932
    [48] Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56: 289–314.
    [49] Pamp SJ, Tolker-Nielsen T. (2007) Multiple Roles of Biosurfactants in Structural Biofilm Development by Pseudomonas aeruginosa. J Bacteriol 189: 2531–2539.
  • This article has been cited by:

    1. Mahmoud S. Mehany, Faizah D. Alanazi, An \eta -Hermitian solution to a two-sided matrix equation and a system of matrix equations over the skew-field of quaternions, 2025, 10, 2473-6988, 7684, 10.3934/math.2025352
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5444) PDF downloads(1242) Cited by(4)

Figures and Tables

Figures(3)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog