Review

Right versus left-sided colon cancer: Is it time to consider these as different diseases?

  • Primary tumour location has emerged as an important characteristic in understanding the outcomes for patients with colorectal cancer. Recent international re-appraisal of randomised controlled data as well as case series and epidemiological databases clearly demonstrate that primary tumour location is both an independent prognostic marker and has predictive value in relation to anti-EGFR therapy. Consequently, location should be taken into consideration in the clinical management of patients affected by colon cancer as well as informing research and the design of future clinical trials.

    Citation: Paul J Ross, Krishnie Srikandarajah, Julien de Naurois. Right versus left-sided colon cancer: Is it time to consider these as different diseases?[J]. AIMS Medical Science, 2018, 5(3): 303-315. doi: 10.3934/medsci.2018.3.303

    Related Papers:

    [1] Ray-Ming Chen . Extracted features of national and continental daily biweekly growth rates of confirmed COVID-19 cases and deaths via Fourier analysis. Mathematical Biosciences and Engineering, 2021, 18(5): 6216-6238. doi: 10.3934/mbe.2021311
    [2] Aili Wang, Xueying Zhang, Rong Yan, Duo Bai, Jingmin He . Evaluating the impact of multiple factors on the control of COVID-19 epidemic: A modelling analysis using India as a case study. Mathematical Biosciences and Engineering, 2023, 20(4): 6237-6272. doi: 10.3934/mbe.2023269
    [3] Peng An, Xiumei Li, Ping Qin, YingJian Ye, Junyan Zhang, Hongyan Guo, Peng Duan, Zhibing He, Ping Song, Mingqun Li, Jinsong Wang, Yan Hu, Guoyan Feng, Yong Lin . Predicting model of mild and severe types of COVID-19 patients using Thymus CT radiomics model: A preliminary study. Mathematical Biosciences and Engineering, 2023, 20(4): 6612-6629. doi: 10.3934/mbe.2023284
    [4] Sarafa A. Iyaniwura, Rabiu Musa, Jude D. Kong . A generalized distributed delay model of COVID-19: An endemic model with immunity waning. Mathematical Biosciences and Engineering, 2023, 20(3): 5379-5412. doi: 10.3934/mbe.2023249
    [5] Rahat Zarin, Usa Wannasingha Humphries, Amir Khan, Aeshah A. Raezah . Computational modeling of fractional COVID-19 model by Haar wavelet collocation Methods with real data. Mathematical Biosciences and Engineering, 2023, 20(6): 11281-11312. doi: 10.3934/mbe.2023500
    [6] Amir Yasseen Mahdi, Siti Sophiayati Yuhaniz . Optimal feature selection using novel flamingo search algorithm for classification of COVID-19 patients from clinical text. Mathematical Biosciences and Engineering, 2023, 20(3): 5268-5297. doi: 10.3934/mbe.2023244
    [7] Zhenwu Xiang, Qi Mao, Jintao Wang, Yi Tian, Yan Zhang, Wenfeng Wang . Dmbg-Net: Dilated multiresidual boundary guidance network for COVID-19 infection segmentation. Mathematical Biosciences and Engineering, 2023, 20(11): 20135-20154. doi: 10.3934/mbe.2023892
    [8] Fang Wang, Lianying Cao, Xiaoji Song . Mathematical modeling of mutated COVID-19 transmission with quarantine, isolation and vaccination. Mathematical Biosciences and Engineering, 2022, 19(8): 8035-8056. doi: 10.3934/mbe.2022376
    [9] Xianfang Wang, Qimeng Li, Yifeng Liu, Zhiyong Du, Ruixia Jin . Drug repositioning of COVID-19 based on mixed graph network and ion channel. Mathematical Biosciences and Engineering, 2022, 19(4): 3269-3284. doi: 10.3934/mbe.2022151
    [10] Javad Hassannataj Joloudari, Faezeh Azizi, Issa Nodehi, Mohammad Ali Nematollahi, Fateme Kamrannejhad, Edris Hassannatajjeloudari, Roohallah Alizadehsani, Sheikh Mohammed Shariful Islam . Developing a Deep Neural Network model for COVID-19 diagnosis based on CT scan images. Mathematical Biosciences and Engineering, 2023, 20(9): 16236-16258. doi: 10.3934/mbe.2023725
  • Primary tumour location has emerged as an important characteristic in understanding the outcomes for patients with colorectal cancer. Recent international re-appraisal of randomised controlled data as well as case series and epidemiological databases clearly demonstrate that primary tumour location is both an independent prognostic marker and has predictive value in relation to anti-EGFR therapy. Consequently, location should be taken into consideration in the clinical management of patients affected by colon cancer as well as informing research and the design of future clinical trials.


    In 14th December 2020, the UK has found a new variant of SARS-CoV-2 or SARS-CoV-2 VOC 202012/01 (Variant of Concern, year 2020, month 12, variant 01) [1,2,3] or B.1.1.7. There are some researches on the emergence of this SARS-CoV-2 variant [4,5]. The variant [6] has caused a huge concern across the globe [7] and has spread across other continents. Based on known epidemiologic, scientific modellings, and clinical findings, it suggests this variant has indeed increased the overall transmissibility.

    On the other hand, it also indicates that there is no change in severity [8] - measured by length of hospitalization and 28-day case fatality - or occurrence of reinfection in the UK [9], despite some scientists' dire warnings [10]. Even though the evaluation of variant is still going on [11], we need to find a systematic method to delve into the fundamental features of this mutant variant. This might concern whether 202012/01 diminishes the potency of the developed vaccines [12].

    To trace the fundamental features of this new variant, we sample 9 regional daily COVID-19 data in the UK from 27th March, 2020 to 8th, January, 2021 [13] as the preliminary study and sample data from 28th July 2020 to 11th May 2021 as the follow-up study. Then we create a set of batches of data vectors whose dimensions are decided by the days chosen. In our research, we choose 7 days as the datum dimension. Furthermore, to find the fundamental features of B1.1.7, we introduce the 3-valued featured vectors whose elements consist of only $ -, 0 and 1. These features are easy to apply and would serve as our fundamental database for further feature recognition. We then utilise the concept of vector rejection to measure the similarities between the set of data vectors and the features based on the total norms for the vector rejections. Afterwards, we obtain distance tensor products which record such similarities. By choosing the minimal total norms regarding the features, we retrieve the minimal total norms and their corresponding features. Since these extracted features vary, we trace their paths via cosine values for the dynamical features. This path would reveal the fundamental trend and dynamical structures of the features for B1.1.7 in the UK. The preliminary focuses on comparing the dynamical structures of COVID-19 with respect to data with London (9 regions), where it is supposed to be the onset of B1.1.7., and without London (8 regions).

    Our results show there is no obvious shift for the main features before and after the variant - this confirms there is no fundamental change in the behaviour of the variant. These findings indicate B1.1.7 contain no leading features, and, in principle, shall bolster the efficacy of the vaccines.

    We devise rejection distance which derives from the concept of vector rejections and three-valued featured database. Both shall serve as our fundamental methods in tracking the features of B1.1.7.

    Claim 1. (rejection distance) The norm of $ \vec{c} $, a vector rejection of $ \vec{a} $ on $ \vec{b} $, is $ ||\vec{c}|| = \frac{\sqrt{(|\vec{a}||\cdot||\vec{b}||)^2-(\vec{a}\boldsymbol{\cdot}\vec{b})^2}}{||\vec{b}||} $ or specifically the rejection distance between $ \vec{a} $ and $ \vec{b} $

    $ RejDist(\vec{a},\vec{b}): = \frac{\sqrt{(|\vec{a}||\cdot||\vec{b}||)^2-(\vec{a}\boldsymbol{\cdot}\vec{b})^2}}{||\vec{b}|| }. $

    Proof. By the property that $ \vec{c} = \vec{a}-||\vec{a}||\cdot cos\theta\cdot\frac{\vec{b}}{||\vec{b}||} = \vec{a}-\frac{\vec{a}\boldsymbol{\cdot}\vec{b}}{||\vec{b}||^2}\cdot\vec{b} $ and the operation of the inner product $ \boldsymbol{\cdot} $, the result follows immediately.

    Rejection distance acts as a role for measuring the distances between features, including empirical features or theoretical features (3-valued features, for example). This measurement will serve our optimal feature findings.

    Definition 2.1. (Distance Tensor Product, DTP) For any ordered set of vectors, whose dimension are the same, $ V = (\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_m) $ and $ W = (\vec{w}_1, \vec{w}_2, \cdots, \vec{w}_n) $, we define their distance tensor product by a $ m $-by-$ n $ matrix $ DTP(V, W) $ whose $ (i, j) $ element is $ RejDist(\vec{v}_i, \vec{w}_j) $.

    DTP shows the norms of the vector rejections, which reveal the distances between a set of given datum vectors and the featured vectors or the distance between feature vectors.

    Unlike Principal Component Analysis, or PCA [14], which heavily relies on the statistical property, the 3-valued features are applied directly to trace the trend of mutant variants of COVID-19. 3-valued features consist of a set of value $ \{-1, 0, 1\} $, which is also used in wavelet analysis [15]. In total, there are $ 3^n-1 $ features (or vectors) - the $ 0 $ vector is excluded from the whole potential features, where $ n $ denotes the dimension of the datum vector.

    In this section, we specify the implementation processes mentioned in section 3. From the database, we select three metrics: newCasesBySpecimenDate (M1, or 1), newDeaths28DaysByDeathDate (M2, or 2), and newDeaths60DaysByDeathDate (M3, or 3) - there indexes 1, 2, 3 will be used later on; and Area Type "Region" (there are 9 regions: Yorkshire and The Humber (R1), East of England (R2), North East(R3), North West(R4), South East(R5), East Midlands(R6), South West(R7), London(R8), West Midlands(R9)). The data are sorted by date, from 27th, March, 2020 to 8th, January, 2021. The data are stored in three matrices, according to M1, M2, and M3. The we calculate their first difference (change) of the new cases, 28-day deaths, and 60-day deaths, as shown in the following (the length for each vector is 287, since we sample 288 points of time). The value in interval $ i $ is the original value in $ i+1 $ minus the one in $ i $. When compared with the original data, these values are the second-order difference.

    The data come from two main parts. One is for the preliminary study for the onset of the variant spread in the UK. The periods cover from 27th, March, 2020 to 8th, January, 2021. It lists the daily new cases, 28-day deaths and 60-day deaths of COVID-19 for 9 regions in the UK. Specifically, the metrics (or indicators) from the database are M1, M2, and M3. M2 is a variable for the new increase of people who had a positive test result for COVID-19 and died within 28 days of the first positive test, up to the date of death. M3 is a variable for the new increase of people who had a positive test result for COVID-19 and died within 60 days of the first positive test, up to the date of death.

    This imported data are further separated into two sets of data - the preliminary study - one covers only 8 regions by excluding London and the other covers 9 regions which contain London. The second part is a follow-up study covering a period from 28th, July, 2020 to 11th, May, 2021 [16]. The data are not separated and are treated as a whole, i.e., the 9 regions.

    Then we set every 7 days as the dimension of one datum vector and 9 regions as the number of data vectors. In other words, there are $ 287/7 = 41 $ ordered batches of data sets - each set contains 9 points (or datum sub-vectors, or simply datum vectors), and each point is a 7-dimensional datum vector. We form these data with respect to cases, 28-day deaths and 60-day deaths for the 287 intervals. There are several steps in the implementation. These procedures are designed for preliminary study, but the follow-up study would also follow suit.

    1. Download the data related to daily COVID-19 cases and deaths.

    2. Sort the data by the 288 dates, 9 regions and 3 metrics, according to our analytical purposes. The results are presented in Table 1. Let us still call them raw data, though they are actually processed to fit our purpose.

    Table 1.  Time-series sorted data for 9 regions and 3 metrics.
    date region area label M1 M2 M3
    $ 2020/3/27 $ Yorkshire and The Humber $ 1 $ $ 153 $ $ 20 $ $ 20 $
    $ 2020/3/28 $ Yorkshire and The Humber $ 1 $ $ 207 $ $ 23 $ $ 23 $
    $ 2020/3/29 $ Yorkshire and The Humber $ 1 $ $ 228 $ $ 29 $ $ 29 $
    $ \vdots $ $\vdots$ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    $ 2021/1/6 $ Yorkshire and The Humber $ 1 $ $ 2287 $ $ 36 $ $ 39 $
    $ 2021/1/7 $ Yorkshire and The Humber $ 1 $ $ 1508 $ $ 31 $ $ 36 $
    $ 2021/1/8 $ Yorkshire and The Humber $ 1 $ $ 281 $ $ 18 $ $ 20 $
    $ 2020/3/27 $ East of England $ 2 $ $ 244 $ $ 40 $ $ 40 $
    $ 2020/3/28 $ East of England $ 2 $ $ 183 $ $ 37 $ $ 37 $
    $ 2020/3/29 $ East of England $ 2 $ $ 208 $ $ 49 $ $ 49 $
    $ \vdots $ $\vdots$ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    $ 2021/1/6 $ East of England $ 2 $ $ 4621 $ $ 89 $ $ 90 $
    $ 2021/1/7 $ East of England $ 2 $ $ 3527 $ $ 79 $ $ 85 $
    $ 2021/1/8 $ East of England $ 2 $ $ 394 $ $ 20 $ $ 22 $
    $ \vdots $ $\vdots$ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    $ 2020/3/27 $ London $ 8 $ $ 817 $ $ 126 $ $ 126 $
    $ 2020/3/28 $ London $ 8 $ $ 577 $ $ 120 $ $ 120 $
    $ 2020/3/29 $ London $ 8 $ $ 597 $ $ 141 $ $ 142 $
    $ \vdots $ $\vdots$ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    $ 2021/1/6 $ London $ 8 $ $ 8985 $ $ 110 $ $ 122 $
    $ 2021/1/7 $ London $ 8 $ $ 5906 $ $ 106 $ $ 110 $
    $ 2021/1/8 $ London $ 8 $ $ 912 $ $ 40 $ $ 43 $
    $ 2020/3/27 $ West Midlands $ 9 $ $ 279 $ $ 54 $ $ 54 $
    $ 2020/3/28 $ West Midlands $ 9 $ $ 323 $ $ 71 $ $ 71 $
    $ 2020/3/29 $ West Midlands $ 9 $ $ 366 $ $ 71 $ $ 71 $
    $ \vdots $ $\vdots$ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    $ 2021/1/6 $ West Midlands $ 9 $ $ 4758 $ $ 71 $ $ 78 $
    $ 2021/1/7 $ West Midlands $ 9 $ $ 2232 $ $ 64 $ $ 69 $
    $ 2021/1/8 $ West Midlands $ 9 $ $ 271 $ $ 20 $ $ 24 $

     | Show Table
    DownLoad: CSV

    3. Compute the 287 first-order difference of the 288 time-series data, according to the 9 regions and 3 metrics. This will reveal the accelerated spreading trend of B.1.1.7. Let us call them difference data. Then the data are further extracted by regions and we name them difference datum vectors. The results are presented in Appendix B: difference datum vectors.

    4. Split each 287 difference datum vector into 41 sub-vectors - each of which contains 7 elements (or daily data). Let us use $ \{\vec{R}_{ij}^k\} $ to denote the $ j $'th 7-day sub-vector for region $ i $, where $ k\in \{ 1, 2, 3\} $ ($ k = 1 $ to denote "cases", $ k = 2 $ to denote "28-day deaths", and $ k = 3 $ to denote "60-day deaths"), $ 1\leq i\leq 9 $ and $ 1\leq j\leq 41 $. For example $ \vec{R}_{11}^1 = (54, 21, 57, 34, -22, -55, 51) $.

    5. Specify the 3-valued features (7-element vectors), which is described in section 2.2, as our potential feature database. For 7-day period, there are $ 3^7-1 = 2186 $ three-valued features. The one being excluded is the zero vector. The resulting feature database goes as follows ($ \vec{f}_i $ stands for $ i $'th feature):

    $ \vec{f}_1 = (-1, 1, 1, -1, -1, -1, -1); \vec{f}_2 = (0, 1, -1, -1, -1, -1, -1) $;

    $ \vec{f}_3 = (1, -1, -1, -1, -1, -1, -1); \vec{f}_4 = (-1, 0, -1, -1, -1, -1, -1) $; $ \cdots $; $ \vec{f}_{2183} = (1, 0, 1, 1, 1, 1, 1) $; $ \vec{f}_{2184} = (-1, 1, 1, 1, 1, 1, 1) $; $ \vec{f}_{2185} = (0, 1, 1, 1, 1, 1, 1) $; $ \vec{f}_{2186} = (1, 1, 1, 1, 1, 1, 1). $ Let us use $ FDB $ to denote the 3-valued feature database, i.e., $ FDB = \{\vec{f}_1, \vec{f}_2, \cdots, \vec{f}_{2186}\} $.

    6. Calculate the distance tensor product (DTP) which is defined in Definition 2.1, where each element is defined by

    $ DTP_{i,j,h}^k: = RejDist(\vec{R}_{ij}^k,\vec{f}_h), $

    where $ 1\leq i\leq 9; 1\leq j\leq 41; 1\leq h\leq 2186, $ and $ k\in\{1, 2, 3\} $. The generated DTP could be regarded as three (regarding $ k $) three-dimensional matrices (regarding $ i, j, h $). The results are presented in Table 2.

    Table 2.  Distance tensor product matrices $ DTP_{i, j, h}^k $.
    $ \vec{f}_1 $ $ \vec{f}_2 $ $ \cdots $ $ \vec{f}_{2185} $ $ \vec{f}_{2186} $ $ \cdots $ $ $ $ \vec{f}_1 $ $ \vec{f}_2 $ $ \cdots $ $ \vec{f}_{2185} $ $ \vec{f}_{2186} $
    $ R^1_{11} $ $ 47.96 $ $ 48.41 $ $ \cdots $ $ 48.41 $ $ 47.96 $ $ \cdots $ $ R^1_{1, 41} $ $ 10.26 $ $ 10.58 $ $ \cdots $ $ 10.58 $ $ 10.26 $
    $ R^1_{21} $ $ 78.79 $ $ 79.71 $ $ \cdots $ $ 79.71 $ $ 78.79 $ $ \cdots $ $ R^1_{2, 41} $ $ 10.80 $ $ 10.59 $ $ \cdots $ $ 10.59 $ $ 10.80 $
    $ R^1_{31} $ $ 38.25 $ $ 38.71 $ $ \cdots $ $ 38.71 $ $ 38.25 $ $ \cdots $ $ R^1_{3, 41} $ $ 12.09 $ $ 12.26 $ $ \cdots $ $ 12.26 $ $ 12.09 $
    $ R^1_{41} $ $ 77.42 $ $ 77.75 $ $ \cdots $ $ 77.75 $ $ 77.42 $ $ \cdots $ $ R^1_{4, 41} $ $ 11.24 $ $ 10.81 $ $ \cdots $ $ 10.81 $ $ 11.24 $
    $ R^1_{51} $ $ 90.03 $ $ 91.10 $ $ \cdots $ $ 91.10 $ $ 90.03 $ $ \cdots $ $ R^1_{5, 41} $ $ 14.21 $ $ 14.30 $ $ \cdots $ $ 14.30 $ $ 14.21 $
    $ R^1_{61} $ $ 54.87 $ $ 55.26 $ $ \cdots $ $ 55.26 $ $ 54.87 $ $ \cdots $ $ R^1_{6, 41} $ $ 11.79 $ $ 11.96 $ $ \cdots $ $ 11.96 $ $ 11.79 $
    $ R^1_{71} $ $ 52.00 $ $ 52.60 $ $ \cdots $ $ 52.60 $ $ 52.00 $ $ \cdots $ $ R^1_{7, 41} $ $ 8.92 $ $ 8.94 $ $ \cdots $ $ 8.94 $ $ 8.92 $
    $ R^1_{81} $ $ 105.40 $ $ 106.39 $ $ \cdots $ $ 106.39 $ $ 105.40 $ $ \cdots $ $ R^1_{8, 41} $ $ 19.67 $ $ 19.45 $ $ \cdots $ $ 19.45 $ $ 19.67 $
    $ R^1_{91} $ $ 70.33 $ $ 71.01 $ $ \cdots $ $ 71.01 $ $ 70.33 $ $ \cdots $ $ R^1_{9, 41} $ $ 11.00 $ $ 10.26 $ $ \cdots $ $ 10.26 $ $ 11.00 $
    $ R^2_{11} $ $ 3.45 $ $ 3.82 $ $ \cdots $ $ 3.82 $ $ 3.45 $ $ \cdots $ $ R^2_{1, 41} $ $ 2.84 $ $ 3.39 $ $ \cdots $ $ 3.39 $ $ 2.84 $
    $ R^2_{21} $ $ 7.61 $ $ 7.93 $ $ \cdots $ $ 7.93 $ $ 7.61 $ $ \cdots $ $ R^2_{2, 41} $ $ 5.14 $ $ 5.40 $ $ \cdots $ $ 5.40 $ $ 5.14 $
    $ R^2_{31} $ $ 3.54 $ $ 3.65 $ $ \cdots $ $ 3.65 $ $ 3.54 $ $ \cdots $ $ R^2_{3, 41} $ $ 5.16 $ $ 5.29 $ $ \cdots $ $ 5.29 $ $ 5.16 $
    $ R^2_{41} $ $ 6.95 $ $ 7.05 $ $ \cdots $ $ 7.05 $ $ 6.95 $ $ \cdots $ $ R^2_{4, 41} $ $ 6.08 $ $ 5.91 $ $ \cdots $ $ 5.91 $ $ 6.08 $
    $ R^2_{51} $ $ 9.49 $ $ 9.64 $ $ \cdots $ $ 9.64 $ $ 9.49 $ $ \cdots $ $ R^2_{5, 41} $ $ 5.32 $ $ 5.32 $ $ \cdots $ $ 5.32 $ $ 5.32 $
    $ R^2_{61} $ $ 4.95 $ $ 5.01 $ $ \cdots $ $ 5.01 $ $ 4.95 $ $ \cdots $ $ R^2_{6, 41} $ $ 3.60 $ $ 3.91 $ $ \cdots $ $ 3.91 $ $ 3.60 $
    $ R^2_{71} $ $ 5.07 $ $ 5.11 $ $ \cdots $ $ 5.11 $ $ 5.07 $ $ \cdots $ $ R^2_{7, 41} $ $ 3.39 $ $ 3.37 $ $ \cdots $ $ 3.37 $ $ 3.39 $
    $ R^2_{81} $ $ 8.45 $ $ 8.71 $ $ \cdots $ $ 8.71 $ $ 8.45 $ $ \cdots $ $ R^2_{8, 41} $ $ 5.48 $ $ 5.13 $ $ \cdots $ $ 5.13 $ $ 5.48 $
    $ R^2_{91} $ $ 6.97 $ $ 7.06 $ $ \cdots $ $ 7.06 $ $ 6.97 $ $ \cdots $ $ R^2_{9, 41} $ $ 6.61 $ $ 6.07 $ $ \cdots $ $ 6.07 $ $ 6.61 $
    $ R^3_{11} $ $ 4.72 $ $ 4.91 $ $ \cdots $ $ 4.91 $ $ 4.72 $ $ \cdots $ $ R^3_{1, 41} $ $ 2.84 $ $ 3.39 $ $ \cdots $ $ 3.39 $ $ 2.84 $
    $ R^3_{21} $ $ 7.96 $ $ 8.25 $ $ \cdots $ $ 8.25 $ $ 7.96 $ $ \cdots $ $ R^3_{2, 41} $ $ 5.14 $ $ 5.40 $ $ \cdots $ $ 5.40 $ $ 5.14 $
    $ R^3_{31} $ $ 3.86 $ $ 3.99 $ $ \cdots $ $ 3.99 $ $ 3.86 $ $ \cdots $ $ R^3_{3, 41} $ $ 5.16 $ $ 5.29 $ $ \cdots $ $ 5.29 $ $ 5.16 $
    $ R^3_{41} $ $ 7.18 $ $ 7.35 $ $ \cdots $ $ 7.35 $ $ 7.18 $ $ \cdots $ $ R^3_{4, 41} $ $ 6.08 $ $ 5.91 $ $ \cdots $ $ 5.91 $ $ 6.08 $
    $ R^3_{51} $ $ 9.88 $ $ 10.05 $ $ \cdots $ $ 10.05 $ $ 9.88 $ $ \cdots $ $ R^3_{5, 41} $ $ 5.32 $ $ 5.32 $ $ \cdots $ $ 5.32 $ $ 5.32 $
    $ R^3_{61} $ $ 4.98 $ $ 5.05 $ $ \cdots $ $ 5.05 $ $ 4.98 $ $ \cdots $ $ R^3_{6, 41} $ $ 3.47 $ $ 3.78 $ $ \cdots $ $ 3.78 $ $ 3.47 $
    $ R^3_{71} $ $ 5.14 $ $ 5.20 $ $ \cdots $ $ 5.20 $ $ 5.14 $ $ \cdots $ $ R^3_{7, 41} $ $ 3.39 $ $ 3.37 $ $ \cdots $ $ 3.37 $ $ 3.39 $
    $ R^3_{81} $ $ 8.46 $ $ 8.75 $ $ \cdots $ $ 8.75 $ $ 8.46 $ $ \cdots $ $ R^3_{8, 41} $ $ 5.52 $ $ 5.18 $ $ \cdots $ $ 5.18 $ $ 5.52 $
    $ R^3_{91} $ $ 7.23 $ $ 7.32 $ $ \cdots $ $ 7.32 $ $ 7.23 $ $ \cdots $ $ R^3_{9, 41} $ $ 6.61 $ $ 6.07 $ $ \cdots $ $ 6.07 $ $ 6.61 $

     | Show Table
    DownLoad: CSV

    7. Compute $ DTP_{j, h}^k = \sum\limits_{i = 1}^{9}DTP_{i, j, h}^k, $ for all $ 1\leq j\leq 41 $ and $ 1\leq h\leq 2186 $. The results are shown in Table 3.

    Table 3.  $ DTP_{j, h}^1 $ (top block), $ DTP_{j, h}^2 $ (middle block), $ DTP_{j, h}^3 $ (bottom block).
    sub-vectors $ h=1 $ $ h=2 $ $ h=3 $ $ \cdots $ $ h=2184 $ $ h=2185 $ $ h=2186 $
    $ j=1 $ 615.04 620.94 616.95 $ \cdots $ 616.95 620.94 615.04
    $ j=2 $ 17.57 605.54 589.53 $ \cdots $ 589.53 605.54 617.57
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \cdots $ $ \vdots $ $ \vdots $ $ \vdots $
    $ j=40 $ 122.02 122.34 121.67 $ \cdots $ 121.67 122.34 122.02
    $ j=41 $ 109.98 109.15 109.18 $ \cdots $ 109.18 109.15 109.98
    $ j=1 $ 56.47 57.97 56.70 $ \cdots $ 56.70 57.97 56.47
    $ j=2 $ 45.67 45.53 45.15 $ \cdots $ 45.15 45.53 45.67
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \cdots $ $ \vdots $ $ \vdots $ $ \vdots $
    $ j=40 $ 57.48 57.57 56.99 $ \cdots $ 56.99 57.57 57.48
    $ j=41 $ 43.63 43.80 44.03 $ \cdots $ 44.03 43.80 43.63
    $ j=1 $ 59.39 60.87 59.59 $ \cdots $ 59.59 60.87 59.39
    $ j=2 $ 48.22 48.15 47.86 $ \cdots $ 47.86 48.15 48.22
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \cdots $ $ \vdots $ $ \vdots $ $ \vdots $
    $ j=40 $ 57.52 57.60 57.02 $ \cdots $ 57.02 57.60 57.52
    $ j=41 $ 43.54 43.72 43.96 $ \cdots $ 43.96 43.72 43.54

     | Show Table
    DownLoad: CSV

    8. Compute $ max^k_j = max\{DTP_{j, h}^k:1\leq h\leq 2186\}, min^k_j = min\{DTP_{j, h}^k:1\leq h\leq 2186\}, argmax^k_j: = argmax\{DTP_{j, h}^k:1\leq h\leq 2186\}, argmin^k_j: = argmin\{DTP_{j, h}^k:1\leq h\leq 2186\} $ for all $ 1\leq j\leq 41 $. The results are shown in Table 4. Meanwhile, plot $ \{min^k_j:1\leq j\leq 41\} $ and $ \{max^k_j:1\leq j\leq 41\} $ for $ k\in\{1, 2, 3\} $ as presented in Figure 1.

    Table 4.  Min/max rejection distances and features: cases (top block), 28-day deaths (middle block) and 60-day deaths (bottom block).
    batch $ j=1 $ $ j=2 $ $ j=3 $ $ \cdots $ $ j=39 $ $ j=40 $ $ j=41 $
    $ min^1_j $ 348.79 382.57 303.97 $ \cdots $ 94.98 99.11 97.85
    $ argmin^1_j $ $ \vec{f}_{324} $ $ \vec{f}_{342} $ $ \vec{f}_{685} $ $ \cdots $ $ \vec{f}_{452} $ $ \vec{f}_{445} $ $ \vec{f}_{1013} $
    $ max^1_j $ 621.16 620.42 477.92 $ \cdots $ 112.05 122.57 114.38
    $ argmax^1_j $ $ \vec{f}_{496} $ $ \vec{f}_{112} $ $ \vec{f}_{536} $ $ \cdots $ $ \vec{f}_{65} $ $ \vec{f}_{342} $ $ \vec{f}_{578} $
    $ min^2_j $ 44.07 40.88 40.74 $ \cdots $ 47.60 51.45 41.48
    $ argmin^2_j $ $ \vec{f}_{1093} $ $ \vec{f}_{1046} $ $ \vec{f}_{302} $ $ \cdots $ $ \vec{f}_{1092} $ $ \vec{f}_{585} $ $ \vec{f}_{814} $
    $ max^2_j $ 58.10 45.98 45.87 $ \cdots $ 54.89 57.74 47.76
    $ argmax^2_j $ $ \vec{f}_{974} $ $ \vec{f}_{998} $ $ \vec{f}_{732} $ $ \cdots $ $ \vec{f}_{851} $ $ \vec{f}_{41} $ $ \vec{f}_{224} $
    $ min^3_j $ 47.13 41.33 42.91 $ \cdots $ 47.41 51.45 41.40
    $ argmin^3_j $ $ \vec{f}_{1093} $ $ \vec{f}_{1046} $ $ \vec{f}_{660} $ $ \cdots $ $ \vec{f}_{1092} $ $ \vec{f}_{585} $ $ \vec{f}_{814} $
    $ max^3_j $ 60.88 48.36 47.07 $ \cdots $ 54.90 57.77 47.72
    $ argmax^3_j $ $ \vec{f}_{974} $ $ \vec{f}_{730} $ $ \vec{f}_{732} $ $ \cdots $ $ \vec{f}_{851} $ $ \vec{f}_{731} $ $ \vec{f}_{224} $

     | Show Table
    DownLoad: CSV
    Figure 1.  Min/max rejection distances between datum vectors and featured vectors for new cases (left), 28-day deaths (middle) and 60-day deaths (right).

    9. Compute $ \{cos(argmin^k_v, argmin^k_{v+1}):1\leq v\leq 40 \} $ and $ \{cos(argmax^k_v, argmax^k_{v+1}):1\leq v\leq 40 \} $ for $ k\in\{1, 2, 3\} $, i.e., the similarity indexes (cosine values) between the extracted minimal (or maximal) features to yield a dynamical trend of the representative features. The results are presented in Figures 24.

    Figure 2.  Minimal and maximal raw and difference trends without London.
    Figure 3.  Minimal and maximal raw and difference trends with London.
    Figure 4.  Minimal and maximal raw and difference trends for combined 9 regions, follow up.

    In this article, we explore the trend of underlying features of the COVID-19 new cases, 28-day deaths and 60-day deaths to reveal whether the new mutant variants of COVID-19 in the UK have caused fundamental features, which are based on 3-valued featured vectors. The results are presented in two parts: preliminary study and follow-up study.

    It covers the period from 27th, March, 2020 to 8th, January, 2021. The onset of the mutant variant spreads mainly in London. By comparing the dynamical trend of time-series of COVID-19 with London and without London, we shall see the role of B1.1.7 in the preliminary stage.

    1. From Figure 1, we observe that the maximal and minimal rejection distance go almost together – an indication that the features chosen are qualified to capture their B.1.1.7's dynamical behaviours. Furthermore, no matter in the new cases, 28-day death, or 60-day deaths, when the time mutant variant takes place (around the tail of the three graphs), the diluting features are reverted in comparison to previous intervals. This indicates the new mutant variant changes the usual course of the collective viruses. In some sense, at this stage, it has not yet created a lead role in the pandemic, but it did affect the course of the development.

    2. From the left-hand sides of Figures 24, the raw data for the minimal similarities almost reach 1, while the maximal similarities are pretty random. This indicates the optimal features are representative of the behaviour of B.1.1.7.

    3. From the right-hand side of graphs in Figures 2 and 3, there is no obvious shift in the features when comparing the eight regions (without London) and the 9 regions (with London). This preliminary indication shows there is no clear feature from B.1.1.7 in terms of leading the pandemic. Since in the very beginning, the mutant variant is located mainly in London [18]. If there is no clear feature change between the two situations, it shows the variant is still gaining momentum and not yet to produce a leading feature. This might also provide a good indication that the vaccines for other COVID-19 viruses should be working for this mutant variant.

    From Figure 4, we observe that feature similarities fluctuates around 0. This indicates the leading features are pretty independent of each other. In some sense, the underlying behaviour of B.1.1.7 is versatile and less predictable. Combining the preliminary results and the follow-up ones, we shall reach a conclusion that B.1.1.7 has no clear feature and might be very easy in adopting new environments.

    In this study, we devise 3-valued features to track the dynamical behaviours of SARS-CoV-2 VOC 202012/01. There features serve as the feature database for matching. By preliminary study and follow-up research, our study shows there is no clear leading features for B1.1.7. It also indicates that the virus is hard to pin down its properties and is versatile and hard to predict. The advantages for this study on the features are

    a. It is a complete set features and serve as a matching database;

    b. It could couple with machine learning and big data analysis to train and locate the features;

    c. It could server as the pilot study to understand the potential features of the virus.

    There are also some disadvantages:

    a. As the length of each datum vector increases, the complexity of computation also exponentially increases;

    b. It is hard to practically link the 3-valued features with real natural or scientific properties.

    As for the future research, we could apply machine learning techniques on searching and selecting the optimal datum dimension. We could even lift the 3-valued features by adding more features into the candidate featured vectors. We could also associate the 3-valued features with other variables to yield a meaning interpretation of the extracted optimal features or associate them with randomness of genetic codes [17]. Another issue is whether a virus contains a leading feature would increase the severity of death rate of COVID-19 [18].

    This work is supported by the Humanities and Social Science Research Planning Fund Project under the Ministry of Education of China (Grant No. 20XJAGAT001).

    No potential conflict of interest was reported by the authors.

    Appendix A: Time-series raw data for 9 regions and 3 metrics

    Appendix B: Difference datum vectors

    (1) Difference datum vector for cases: (the length of each $ R^k_i $ is 287)

    ● $ R^1_1 = (54, 21, 57, 34, \cdots, -742, -386, -779, -1227) $

    ● $ R^1_2 = (-61, 25, 92, 22, \cdots, -2407, -2193, -1094, -3133) $

    ● $ \vdots $

    ● $ R^1_8 = (-240, 20, 271, 66, \cdots, -3310, -4615, -3079, -4994) $

    ● $ R^1_9 = (44, 43, 65, -18, \cdots, -1429, -871, -2526, -1961) $

    (2) Difference datum vector for 28-day death:

    ● $ R^2_1 = (3, 6, 1, 7, \cdots, -3, 2, -5, -13) $

    ● $ R^2_2 = (-3, 12, 0, 24, \cdots, -2, -9, -10, -59) $

    ● $ \vdots $

    ● $ R^2_8 = (-6, 21, 10, 27, \cdots, -4, -25, -4, -66) $

    ● $ R^2_9 = (17, 0, 4, 17, \cdots, 0, 6, -7, -44) $

    (3) Difference datum vector for 60-day death:

    ● $ R^3_1 = (3, 6, 1, 7, \cdots, -7, 1, -3, -16) $

    ● $ R^3_2 = (-3, 12, 0, 24, \cdots, -5, -12, -5, -63) $

    ● $ \vdots $

    ● $ R^3_8 = (-6, 22, 9, 27, \cdots, -4, -20, -12, -67) $

    ● $ R^3_9 = (17, 0, 4, 17, \cdots, -7, 6, -9, -45) $

    Appendix C: Distance tensor product matrices $ DTP_{i, j, h}^k $

    Appendix D: List of $ DTP_{j, h}^k $

    Appendix E: Optimal rejection distances and features

    [1] Venook AP (2017) Right-sided vs left-sided colorectal cancer. Clin Adv Hematol Oncol 15: 22–24.
    [2] Venook AP, Niedzwiecki D, Innocenti F, et al. (2016) Impact of primary (1o) tumor location on overall survival (OS) and progression-free survival (PFS) in patients (pts) with metastatic colorectal cancer (mCRC): Analysis of CALGB/SWOG 80405 (Alliance). J Clin Oncol 34 (suppl; abstr 3504). Available from: http://meetinglibrary.asco.org/content/161936-176.
    [3] Meguid RA, Slidell MB, Wolfgang CL, et al. (2008) Is There a Difference in Survival Between Right-Versus Left-Sided Colon Cancers? Ann Surg Oncol 15: 2388–2394. doi: 10.1245/s10434-008-0015-y
    [4] Benedix F, Kube R, Meyer F, et al. (2010) Comparison of 17,641 patients with right- and left-sided colon cancer: Differences in epidemiology, perioperative course, histology, and survival. Dis Colon Rectum 53: 57–64. doi: 10.1007/DCR.0b013e3181c703a4
    [5] Price TJ, Beeke C, Ullah S, et al. (2015) Does the primary site of colorectal cancer impact outcomes for patients with metastatic disease? Cancer 121: 830–835. doi: 10.1002/cncr.29129
    [6] Petrelli F, Tomasello G, Borgo K, et al. (2017) Prognostic survival associated with left-sided vs right-sided colon cancer a systematic review and meta-analysis. JAMA Oncol 3: 211–219. doi: 10.1001/jamaoncol.2016.4227
    [7] O'Dwyer PJ, Manola J, Valone FH, et al. (2001) Fluorouracil modulation in colorectal cancer: Lack of improvement with N-phosphonoacetyl-l-aspartic acid or oral leucovorin or interferon, but enhanced therapeutic index with weekly 24-hour infusion schedule- an Eastern Cooperative Oncology Group/Cancer and Leukemia Group B study. J Clin Oncol 19: 2413–2421. doi: 10.1200/JCO.2001.19.9.2413
    [8] Bufill JA (1990) Colorectal cancer: Evidence for distinct genetic categories based on proximal or distal tumor location. Ann Int Med 113: 779–788. doi: 10.7326/0003-4819-113-10-779
    [9] Iacopetta B (2002) Are there two sides to colorectal cancer? Int J Cancer 101: 403–408. doi: 10.1002/ijc.10635
    [10] Gervaz P, Bucher P, Morel P (2004) Two colons-two cancers: Paradigm shift and clinical implications. J Surg Oncol 88: 261–266. doi: 10.1002/jso.20156
    [11] Bae JM, Kim JH, Cho NY, et al. (2013) Prognostic implication of the CpG island methylator phenotype in colorectal cancers depends on tumour location. Br J Cancer 109: 1004–1012. doi: 10.1038/bjc.2013.430
    [12] Yamauchi M, Morikawa T, Kuchiba A, et al. (2012) Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. Gut 61: 847–854. doi: 10.1136/gutjnl-2011-300865
    [13] Toyota M, Ahuja N, Ohe-Toyota M, et al. (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 96: 8681–8686. doi: 10.1073/pnas.96.15.8681
    [14] Weisenberger DJ, Siegmund KD, Campan M, et al. (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38: 787–793. doi: 10.1038/ng1834
    [15] Roepman P, Schlicker A, Taberner J, et al. (2013) Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transition. Int J Cancer 134: 552–562.
    [16] Marisa L, de Reynies A, Duval A, et al. (2013) Gene expression classification of colon cancer into molecular subtypes: Characterization, validation, and prognostic value. PLoS Med 10: e1001453. doi: 10.1371/journal.pmed.1001453
    [17] Guinney J, Dienstmann R, Xang X, et al. (2016) The consensus molecular subtypes of colorectal cancer. Nat Med 21: 1350–1356.
    [18] De SEMF, Wang X, Jasen M, et al. (2013) Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med 19: 614–618. doi: 10.1038/nm.3174
    [19] Perez-Villamil B, Romera-Lopez A, Hernandez-Prieto S, et al. (2012) Colon cancer molecular subtypes identified by expression profiling and associated to stroma, mucinous type and different clinical behavior. BMC Cancer 12: 1–13. doi: 10.1186/1471-2407-12-1
    [20] Sadanandam A, Lyssiotis CA, Homicsko K, et al. (2013) A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med 19: 619–625. doi: 10.1038/nm.3175
    [21] Loree JM, Pereira AA, Lam M, el al. (2018) Classifying colorectal cancer by tumor location rather than sidedness highlights a continuum in mutation profiles and Consensus Molecular Subtypes. Clin Cancer Res 24: 1062–1072. doi: 10.1158/1078-0432.CCR-17-2484
    [22] Yothers H, O'Connell MJ, Allegra CJ, et al. (2011) Oxaliplatin as adjuvant therapy for colon cancer: Updated results of NSABP C-07 trial, including survival and subset analyses. J Clin Oncol 29: 3768–3774. doi: 10.1200/JCO.2011.36.4539
    [23] Kim SR, Song N, Yothers G, et al. (2018) Tumor sidedness and intrinsic subtypes in patients with stage II/III colon cancer: Analysis of NSABP C-07 (NRG Oncology). Br J Cancer 118: 629–633. doi: 10.1038/bjc.2017.448
    [24] Song N, Poguegeile KL, Gavin PG, et al. (2017) Clinical Outcome from oxaliplatin treatment in stage II/III colon cancer according to intrinsic subtypes: Secondary analysis of NSABP C-07/NRG Oncology Randomized Clinical Trial. JAMA Oncol 2: 1162–1169.
    [25] Lenz HJ, Ou FZ, Venook AP, et al. (2017) Impact of consensus molecular subtyping (CMS) on overall survival (OS) and progression free survival (PFS) in patients (pts) with metastatic colorectal cancer (mCRC): Analysis of CALGB/SWOG 80405 (Alliance). J Clin Oncol 35: 3511–3511.
    [26] Elsaleh H, Joseph D, Grieu F, et al. (2000) Association of tumour site and sex with survival benefit from adjuvant chemotherapy in colorectal cancer. Lancet 355: 1745–1750. doi: 10.1016/S0140-6736(00)02261-3
    [27] Sinicrope FA, Foster NR, Thibodeau SN, et al. (2011) DNA mismatch repair status and colon cancer recurrence and survival in clinical trials of 5-fluorouracil-based adjuvant therapy. J Natl Cancer Inst 103: 863–875. doi: 10.1093/jnci/djr153
    [28] Sinicrope FA, Foster NR, Thibodeau SN, et al. (2013) Prognostic impact of deficient DNA mismatch repair in patients with stage III colon cancer from a randomized trial of FOLFOX-based adjuvant chemotherapy. J Clin Oncol 31: 3664–3672. doi: 10.1200/JCO.2013.48.9591
    [29] Hutchins G, Southward K, Handley K, et al. (2011) Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J Clin Oncol 29: 1261–1270. doi: 10.1200/JCO.2010.30.1366
    [30] Venook AP, Ou F, Lenz H, et al. (2017) Primary (1°) tumor location as an independent prognostic marker from molecular features for overall survival (OS) in patients (pts) with metastatic colorectal cancer (mCRC): Analysis of CALGB/SWOG 80405 (Alliance). J Clin Oncol 35: 3503
    [31] Einem JCV, Heinemann V, Weikersthal LFV, et al. (2014) Left-sided primary tumors are associated with favorable prognosis in patients with KRAS codon 12/13 wild-type metastatic colorectal cancer treated with cetuximab plus chemotherapy: An analysis of the AIO KRK-0104 trial. J Cancer Res Clin Oncol 140: 1607–1614. doi: 10.1007/s00432-014-1678-3
    [32] Heinemann V, von Weikersthal LF, Decker T, et al. (2014) FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): A randomised, open-label, phase 3 trial. Lancet Oncol 15: 1065–1075. doi: 10.1016/S1470-2045(14)70330-4
    [33] Schwartzberg LS, Rivera F, Karthaus M, et al. (2014) PEAK: A randomized, multicenter phase II study of panitumumab plus modified fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) or bevacizumab plus mFOLFOX6 in patients with previously untreated, unresectable, wild-type KRAS exon 2 metastatic colorectal. J Clin Oncol 32: 2240–2247. doi: 10.1200/JCO.2013.53.2473
    [34] Arnold D, Lueza B, Douillard JY, et al. (2017) Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann Oncol 28: 1713–1729. doi: 10.1093/annonc/mdx175
    [35] Holch JW, Ricard I, Stintzing S, et al. (2017) The relevance of primary tumour location in patients with metastatic colorectal cancer: A meta-analysis of first-line clinical trials. Eur J Cancer 70: 87–98. doi: 10.1016/j.ejca.2016.10.007
    [36] Modest DP, Stintzing S, Weikersthal LFV, et al. (2017) Exploring the effect of primary tumor sidedness on therapeutic efficacy across treatment lines in patients with metastatic colorectal cancer: Analysis of FIRE-3 (AIOKRK0306). Oncotarget 8: 105749–105760.
    [37] Jonker DJ, O'Callaghan CJ, Karapetis C, et al. (2007) Cetuximab for the treatment of colorectal cancer. N Engl J Med 357: 2040–2048. doi: 10.1056/NEJMoa071834
    [38] Brulé SY, Jonker DJ, Karapetis CS, et al. (2015) Location of colon cancer (right-sided versus left-sided) as a prognostic factor and a predictor of benefit from cetuximab in NCIC CO.17. Eur J Cancer 51: 1405–1414. doi: 10.1016/j.ejca.2015.03.015
    [39] Hurwitz H, Fehrenbacher L, Novotny W, et al. (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335–2342. doi: 10.1056/NEJMoa032691
    [40] Saltz LB, Clarke S, Diaz-Rubio E, et al. (2008) Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: A randomized phase III study. J Clin Oncol 26: 2013–2019. doi: 10.1200/JCO.2007.14.9930
    [41] Loupakis F, Yang D, Yau L, et al. (2015) Primary tumor location as a prognostic factor in metastatic colorectal cancer. J Natl Cancer Inst 107: 1–9.
    [42] Tebbutt NC, Wilson K, Gebski V, et al. (2010) Capecitabine, bevacizumab, and mitomycin in first-line treatment of metastatic colorectal cancer: Results of the Australasian Gastrointestinal Trials Group randomized phase III MAX study. J Clin Oncol 28: 3191–3198. doi: 10.1200/JCO.2009.27.7723
    [43] Price TJ, Buizen L, Hardingham J (2014) Molecular subgroups from the AGITG MAX trial; right or left primary site of colorectal cancer and outcomes for metastatic colorectal cancer (mCRC). Ann Oncol 25: iv167–iv209.
    [44] Wirapati P, Pomella V, Vandenbosch B, et al. (2017) Velour trial biomarkers update: Impact of RAS, BRAF, and sidedness on aflibercept activity. J Clin Oncol 35: 3538. doi: 10.1200/JCO.2017.73.2784
    [45] Ishikawa T, Fujita T, Suzuki Y, et al. (2003) Tumor-specific immunological recognition of frameshift-mutated peptides in colon cancer with microsatellite instability. Cancer Res 63: 5564–5572.
    [46] Le DT (2015) PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 372: 2509–2520. doi: 10.1056/NEJMoa1500596
    [47] Le DT, Durham JN, Smith KN, et al. (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357: 409–413. doi: 10.1126/science.aan6733
    [48] Dupré A, Malik HZ, Jones RP, et al. (2018) Influence of the primary tumour location in patients undergoing surgery for colorectal liver metastases. Eur J Surg Oncol 44: 80–86. doi: 10.1016/j.ejso.2017.10.218
    [49] Lee H, Choi DW, Cho YB, et al. (2014) Recurrence pattern depends on the location of colon cancer in the patients with synchronous colorectal liver metastasis. Ann Surg Oncol 21: 1641–1646. doi: 10.1245/s10434-013-3477-5
    [50] Cho JH, Hamaji M, Allen MS, et al. (2014) The prognosis of pulmonary metastasectomy depends on the location of the primary colorectal cancer. Ann Thorac Surg 98: 1231–1237. doi: 10.1016/j.athoracsur.2014.05.023
    [51] van Hazel G, Heinemann V, Sharma N, et al. (2017) Impact of primary tumour location on survival for 1st line SIRT. Ann Oncol 28: 152.
    [52] Sharma RA, Wasan HS, van Hazel GA, et al. (2017) Overall survival analysis of the FOXFIRE prospective randomized studies of first-line selective internal radiotherapy (SIRT) in patients with liver metastases from colorectal cancer. J Clin Oncol 35: 3507–3507.
    [53] Wasan HS, Sharma RA, Heinemann V, et al. (2017) LBA26FOXFIRE-SIRFLOX-FOXFIRE global prospective randomised studies of first-line selective internal radiotherapy (SIRT) in patients with liver metastases from colorectal cancer: KRAS mutation and tumour site analysis. Ann Oncol 28: v605–v649.
  • This article has been cited by:

    1. Ray-Ming Chen, The Similarities and Distances of Growth Rates Related to COVID-19 Between Different Countries Based on Spectral Analysis, 2021, 9, 2296-2565, 10.3389/fpubh.2021.695141
    2. Ray-Ming Chen, Analysing deaths and confirmed cases of COVID-19 pandemic by analytical approaches, 2022, 231, 1951-6355, 3603, 10.1140/epjs/s11734-022-00535-4
    3. Ray-Ming Chen, Extracted features of national and continental daily biweekly growth rates of confirmed COVID-19 cases and deaths via Fourier analysis, 2021, 18, 1551-0018, 6216, 10.3934/mbe.2021311
    4. Juan Ma, Shaojuan Ma, Xinyu Bai, Jinhua Ran, Ergodic stationary distribution of stochastic virus mutation model with time delay, 2023, 8, 2473-6988, 21371, 10.3934/math.20231089
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6896) PDF downloads(1610) Cited by(2)

Figures and Tables

Figures(1)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog