
Water scarcity is a critical issue in agriculture, and the development of reliable methods for determining soil water content is crucial for effective water management. This study proposes a novel, theoretical, non-physiological indicator of soil water content obtained by applying the next-generation matrix method, which reflects the water-soil-crop dynamics and identifies the minimum viable value of soil water content for crop growth. The development of this indicator is based on a two-dimensional, nonlinear dynamic that considers two different irrigation scenarios: the first scenario involves constant irrigation, and the second scenario irrigates in regular periods by assuming each irrigation as an impulse in the system. The analysis considers the study of the local stability of the system by incorporating parameters involved in the water-soil-crop dynamics. We established a criterion for identifying the minimum viable value of soil water content for crop growth over time. Finally, the model was calibrated and validated using data from an independent field study on apple orchards and a tomato crop obtained from a previous field study. Our results suggest the advantages of using this theoretical approach in modeling the plants' conditions under water scarcity as the first step before an empirical model. The proposed indicator has some limitations, suggesting the need for future studies that consider other factors that affect soil water content.
Citation: Edwin Duque-Marín, Alejandro Rojas-Palma, Marcos Carrasco-Benavides. A soil water indicator for a dynamic model of crop and soil water interaction[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 13881-13899. doi: 10.3934/mbe.2023618
[1] | Weike Zhou, Aili Wang, Fan Xia, Yanni Xiao, Sanyi Tang . Effects of media reporting on mitigating spread of COVID-19 in the early phase of the outbreak. Mathematical Biosciences and Engineering, 2020, 17(3): 2693-2707. doi: 10.3934/mbe.2020147 |
[2] | Hamdy M. Youssef, Najat A. Alghamdi, Magdy A. Ezzat, Alaa A. El-Bary, Ahmed M. Shawky . A new dynamical modeling SEIR with global analysis applied to the real data of spreading COVID-19 in Saudi Arabia. Mathematical Biosciences and Engineering, 2020, 17(6): 7018-7044. doi: 10.3934/mbe.2020362 |
[3] | Haonan Zhong, Wendi Wang . Mathematical analysis for COVID-19 resurgence in the contaminated environment. Mathematical Biosciences and Engineering, 2020, 17(6): 6909-6927. doi: 10.3934/mbe.2020357 |
[4] | Fang Wang, Lianying Cao, Xiaoji Song . Mathematical modeling of mutated COVID-19 transmission with quarantine, isolation and vaccination. Mathematical Biosciences and Engineering, 2022, 19(8): 8035-8056. doi: 10.3934/mbe.2022376 |
[5] | Pannathon Kreabkhontho, Watchara Teparos, Thitiya Theparod . Potential for eliminating COVID-19 in Thailand through third-dose vaccination: A modeling approach. Mathematical Biosciences and Engineering, 2024, 21(8): 6807-6828. doi: 10.3934/mbe.2024298 |
[6] | Lin Feng, Ziren Chen, Harold A. Lay Jr., Khaled Furati, Abdul Khaliq . Data driven time-varying SEIR-LSTM/GRU algorithms to track the spread of COVID-19. Mathematical Biosciences and Engineering, 2022, 19(9): 8935-8962. doi: 10.3934/mbe.2022415 |
[7] | Yujie Sheng, Jing-An Cui, Songbai Guo . The modeling and analysis of the COVID-19 pandemic with vaccination and isolation: a case study of Italy. Mathematical Biosciences and Engineering, 2023, 20(3): 5966-5992. doi: 10.3934/mbe.2023258 |
[8] | Ahmed Alshehri, Saif Ullah . A numerical study of COVID-19 epidemic model with vaccination and diffusion. Mathematical Biosciences and Engineering, 2023, 20(3): 4643-4672. doi: 10.3934/mbe.2023215 |
[9] | Dipo Aldila, Meksianis Z. Ndii, Brenda M. Samiadji . Optimal control on COVID-19 eradication program in Indonesia under the effect of community awareness. Mathematical Biosciences and Engineering, 2020, 17(6): 6355-6389. doi: 10.3934/mbe.2020335 |
[10] | Tianfang Hou, Guijie Lan, Sanling Yuan, Tonghua Zhang . Threshold dynamics of a stochastic SIHR epidemic model of COVID-19 with general population-size dependent contact rate. Mathematical Biosciences and Engineering, 2022, 19(4): 4217-4236. doi: 10.3934/mbe.2022195 |
Water scarcity is a critical issue in agriculture, and the development of reliable methods for determining soil water content is crucial for effective water management. This study proposes a novel, theoretical, non-physiological indicator of soil water content obtained by applying the next-generation matrix method, which reflects the water-soil-crop dynamics and identifies the minimum viable value of soil water content for crop growth. The development of this indicator is based on a two-dimensional, nonlinear dynamic that considers two different irrigation scenarios: the first scenario involves constant irrigation, and the second scenario irrigates in regular periods by assuming each irrigation as an impulse in the system. The analysis considers the study of the local stability of the system by incorporating parameters involved in the water-soil-crop dynamics. We established a criterion for identifying the minimum viable value of soil water content for crop growth over time. Finally, the model was calibrated and validated using data from an independent field study on apple orchards and a tomato crop obtained from a previous field study. Our results suggest the advantages of using this theoretical approach in modeling the plants' conditions under water scarcity as the first step before an empirical model. The proposed indicator has some limitations, suggesting the need for future studies that consider other factors that affect soil water content.
Population dynamics has always been an important research object of biomathematics. Various groups often have complex interspecific relationships, such as predation, competition, parasitism and mutualism [1]. Predation behavior, as a widespread interspecies relationship, has been widely studied. Lotka and Volterra were the first to propose a predator-prey system to describe the widespread interspecies relationship of predation [2]. Holling further proposed three functional responses of predators to describe the energy transfer between predators and prey [3]. These three functional responses have been applied and perfected by many scientists [4]. In 1991, Hastings and Powell proposed a food chain system with chaotic dynamics and studied the dynamics of the model [5]. In recent years, many mathematicians have also studied the development and improvement of Hastings-Powell food chain models [6,7,8,9].
Fractional calculus is a generalization of traditional calculus, and its order can be composed of integers, fractions or complex numbers[10]. Fractional calculus can better describe some systems or processes with memory and hereditary properties, and it has been widely used in many fields, such as physics, secure communication, system control, neural networks, and chaos[11,12]. The method of solving the fractional model has also been widely studied[13,14]. In [15], the Caputo fractional derivative operator is used instead of the integer first derivative to establish an effective numerical method for solving the dynamics of the reaction-diffusion model based on a new implicit finite difference scheme. In [16], a numerical approximation for the Caputo-Fabrizio derivative is used to study the dynamic complexity of a predator-prey system with a Holling-type functional response. In [17], a new fractional chaotic system described by the Caputo fractional derivative is presented, and how to use the bifurcation diagram of this chaotic system to detect chaotic regions is analyzed. In [18], the generalization of Lyapunov's direct method applying Bihari's and Bellman-Gronwall's inequalities to Caputo-type fractional-order nonlinear systems is proposed. In [19], the Fourier spectral method is introduced to explore the dynamic richness of two-dimensional and three-dimensional fractional reaction-diffusion equations. In [20], the spatial pattern formation of the predator-prey model with different functional responses was studied. [21] studied the numerical solution of the space-time fractional reaction-diffusion problem that simulates the dynamic and complex phenomena of abnormal diffusion.
Since most biological mathematical models have long-term memory, fractional differential equations can more accurately and reliably describe the actual dynamic process [1,22]. [23] proposed fractional predator-prey models and fractional rabies models and studied their equilibrium points, stability and numerical solutions. In [24], the authors studied the stability of a fractional-order system by the Lyapunov direct method, which substantially developed techniques to study the stability of fractional-order population models. In [9], the authors extended the Hastings-Powell food chain system to fractional order and analyzed its dynamic behavior.
As an important research object of biological mathematics and control theory, population model control has received extensive research and development in recent years [25,26,27]. In [28], the authors conducted random detection and contacted tracking on the HIV/AIDS epidemic model and used the Adams-type predictor-corrector method to perform fractional optimal control of the model, which significantly reduced the number of AIDS patients and HIV-infected patients. In [29], the authors applied the time-delay feedback controller to the fractional-order competitive Internet model to solve the bifurcation control problem of this model. In [30], the author considered the influence of additional predators on the Hastings-Powell food chain model and studied the control of chaos in this model.
Biological models are widely studied by scientists, but many classic models study food chain models composed of herbivores and carnivores, and omnivores are rarely considered. In fact, omnivores are widespread in nature and play an important role in the food chain. In this article, the existence of omnivores is fully considered, and a food chain model in which herbivores, omnivores and carnivores coexist is studied. Based on these works, this paper proposes a fractional food chain model with a Holling type-II functional response. The main contributions of this paper are as follows. First, this paper proves the existence and uniqueness of the solution and the nonnegativity and boundedness of the solution. Second, the equilibrium point of the model is calculated, and the local stability of the equilibrium point is proven. Third, a controller is designed to prove the global asymptotic stability of the system by using the Lyapunov method.
This paper is organized as follows. In Section 2, the definitions and lemmas are given, and the food chain model is established. In Section 3, the existence, uniqueness, nonnegativity and boundedness are proven, and the local stability of the equilibrium point of the model is studied. The global stability of the model is studied through the controller. In Section 4, numerical simulations are performed to verify the theoretical results. The conclusion of this article is given in Section 5.
In this section, some basic knowledge about fractional equations and the theorems and lemmas used in this paper are given, and the fractional food chain system is introduced.
Definition 1. [10]. The Caputo fractional derivative of order α of a function f, R+→R, is defined by
Dαtf(t)=1Γ(n−α)∫t0fn(τ)(t−τ)α+1−ndτ,(n−1<α<n), n∈Z+, |
where Γ(⋅) is the Gamma function. When 0<α<1,
Dαtf(t)=1Γ(1−α)∫t0f′(τ)(t−τ)αdτ. |
Definition 2. [31]. When the order a>0, for a function f:(0,∞)→R, the Riemann-Liouville representation of the fractional integral operator is defined by
RLD−atf(t)=RLIatf(t)=1Γ(a)∫t0(t−τ)a−1f(τ)dτ,t>0, |
RLI0tg(t)=g(t), |
where a>0 and Γ(⋅) is the Gamma function.
Lemma 1. (Generalized Gronwall inequality) [32]. Assume that m≥0, γ>0, and a(t) are nonnegative, locally integrable, and nondecreasing functions defined on 0≤t≤T(T≤∞). In addition, h(t) is a nonnegative, locally integrable function defined in 0≤t≤T and satisfies
h(t)≤a(t)+m∫t0(t−s)γ−1h(t)ds, |
then,
h(t)=a(t)Eγ(mΓ(γ)tγ), |
where the Mittag-Leffler function Eγ(z)=∞∑k=0zkΓ(kγ+1).
Lemma 2. [10]. Consider the fractional-order system
{Dαtx(t)=f(t,x(t)),x(0)=x0, | (2.1) |
where f(t,x(t)) defined in R+×Rn→Rn and α∈(0,1].
The local asymptotic stability of the equilibrium point of this system can be derived from |arg(λi)|>απ2, where λi are the eigenvalues of the Jacobian matrix at the equilibrium points.
Lemma 3. [24]. Consider the system
{Dαtx(t)=f(t,x(t)),x(0)=xt0, | (2.2) |
where α∈(0,1], f:[t0,∞)×Ω→Rn, and Ω∈Rn; if f(t,x) satisfies the local Lipschitz condition about x on [t0,∞)×Ω, then there exists a unique solution of (2.2).
Lemma 4. [33]. The function x(t)∈R+ is continuous and derivable; then, for any t≥t0
Dαt[x(t)−x∗−x∗lnx(t)x∗]≤(1−x∗x(t))Dαtx(t),x∗∈R+,∀α∈(0,1). |
There are a variety of complex biological relationships in nature. Predation is the most important biological relationship, and it has received attention from and been studied by many scientists. In [5], the author proposed a three-species food chain model. The model consists of one prey ˆX and two predators ˆY and ˆZ. The top predator ˆZ feeds on the secondary predator ˆY, and the secondary predator ˆY feeds on the prey ˆX. This is the famous Hastings-Powell model:
{dˆXdT=ˆRˆX(1−ˆXˆK)−^C1^A1ˆXˆY^B1+ˆX,dˆYdT=^A1ˆXˆY^B1+ˆX−^A2ˆYˆZ^B2+ˆY−^D1ˆY,dˆZdT=^C2^A2ˆYˆZ^B2+ˆY−^D2ˆZ, | (2.3) |
where ˆR and ˆK represent the intrinsic growth rates and environmental carrying capacity, respectively. For i=1,2, parameters^Ai, ^Bi, ^Ci and ^Di are the predation coefficients, half-saturation constant, food conversion coefficients and death rates.
The Hastings-Powell model considers a food chain composed of herbivores, small carnivores and large carnivores but does not consider the existence of omnivores. We consider a food chain consisting of small herbivores X, medium omnivores Y and large carnivores Z. Among them, omnivores Y prey on herbivores X, and carnivores Z prey on omnivores Y. They all respond according to Holling II type. This system can be expressed mathematically as
{dXdT=R1X(1−XK1)−C1A1XYB1+X,dYdT=R2Y(1−YK2)+A1XYB1+X−A2YZB2+Y,dZdT=C2A2YZB2+Y−DZ, | (2.4) |
where X, Y and Z represent the densities of the prey population, primary predator population and top-predator population, respectively. For i=1,2, parameters Ri, Ki, Ai, Bi and Ci are the intrinsic growth rates, environmental carrying capacity, predation coefficients, half-saturation constant and food conversion coefficients, respectively. The parameter D is the death rates for Z.
Then, we obtain the following dimensionless version of the food chain model:
{dxdt=r1x(1−xK1)−a1xy1+b1x,dydt=r2y(1−yK2)+a1xy1+b1x−a2yz1+b2y,dzdt=a2yz1+b2y−dz, | (2.5) |
the independent variables x, y and z are dimensionless population variables; t represents a dimensionless time variable; and ai, bi(i=1,2) and d are positive.
Research results show that using fractional derivatives to model real-life biological problems is more accurate than classical derivatives[15]. To better analyze the dynamics between these three populations, we studied the following fractional-order Hastings-Powell System food chain model:
{Dαtx=r1x(1−xK1)−a1xy1+b1x,Dαty=r2y(1−yK2)+a1xy1+b1x−a2yz1+b2y,Dαtz=a2yz1+b2y−dz, | (2.6) |
where α∈(0,1) is the fractional order.
Theorem 1. The fractional-order Hastings-Powell System food chain model (2.6) has a unique solution.
Proof: We will study the existence and uniqueness of the system (2.6) in [0,T]×Ω, where Ω={(x,y,z)∈R3:0≤x,y,z≤H}. Let S=(x,y,z), ˉS=(ˉx,ˉy,ˉz), F(S)=(F1(S),F2(S),F3(S)) and
{F1(S)=Dαtx=r1x(1−xK1)−a1xy1+b1x,F2(S)=Dαty=r2y(1−yK2)+a1xy1+b1x−a2yz1+b2y,F3(S)=Dαtz=a2yz1+b2y−dz, | (3.1) |
For any S,ˉS∈Ω, it follows from (3.1) that
‖F(S)−F(ˉS)‖=|F1(S)−F1(ˉS)|+|F2(S)−F2(ˉS)|+|F3(S)−F3(ˉS)|=|r1x(1−xK1)−a1xy1+b1x−(r1ˉx(1−ˉxK1)−a1ˉxˉy1+b1ˉx)|+|r2y(1−yK2)+a1xy1+b1x−a2yz1+b2y−(r2ˉy(1−ˉyK2)+a1ˉxˉy1+b1ˉx−a2ˉyˉz1+b2ˉy)|+|a2yz1+b2y−dz−(a2ˉyˉz1+b2ˉy−dˉz)|≤r1|x(1−xK1)−ˉx(1−ˉxK1)|+r2|y(1−yK2)−ˉy(1−ˉyK2)|+2a1|xy1+b1x−ˉxˉy1+b1ˉx|+2a2|yz1+b2y−ˉyˉz1+b2ˉy|+d|z−ˉz|≤r1|x−ˉx|+r2|y−ˉy|+r1K1|x2−ˉx2|+r2K2|y2−ˉy2|+d|z−ˉz|+|xy−ˉxˉy+b1ˉxxy−b1ˉxxˉy(1+b1x)(1+b1ˉx)|+|yz−ˉyˉz+b2ˉyyz−b2ˉyyˉz(1+b2y)(1+b2ˉy)|≤r1|x−ˉx|+r2|y−ˉy|+r1K1|(x+ˉx)(x−ˉx)|+r2K2|(y+ˉy)(y−ˉy)|+d|z−ˉz|+|xy−ˉxˉy+b1xˉx(y−ˉy)|+|yz−ˉyˉz+b2yˉy(z−ˉz)|≤r1|x−ˉx|+r2|y−ˉy|+r1MK1|(x−ˉx)|+r2MK2|(y−ˉy)|+d|z−ˉz|+|xy−xˉy+xˉy−ˉxˉy|+b1|xˉx||y−ˉy|+|yz−yˉz+yˉz−ˉyˉz|+b2|yˉy||z−ˉz|≤(r1+r1MK1)|x−ˉx|+(r2+r2MK2)|y−ˉy|+d|z−ˉz|+M|y−ˉy|+M|x−ˉx|+b1M2|y−ˉy|+M|z−ˉz|+M|y−ˉy|+b2M2|z−ˉz|=(r1+r1MK1+M)|x−ˉx|+(r2+r2MK2+2M+b1M2)|y−ˉy|+(d+M+b2M2)|z−ˉz|≤L‖S−ˉS‖. |
where L=max{r1+r1MK1+M,r2+r2MK2+2M+b1M2,d+M+b2M2}, Based on Lemma 3, F(S) satisfies the Lipschitz condition with respect to S in Ω. According to the Banach fixed point theorem in [34], system (2.6) has a unique solution in Ω.
Theorem 2. Set A={x,y,z)∈R3:0<x+y+z<K1(r1+v)24r1v+K2(r2+v)24r2v} as a positively invariant set of system (2.6), and the solutions are bounded.
Proof: let g(t)≜g(x(t),y(t),z(t))=x(t)+y(t)+z(t),
Dαtg(t)+vg(t)=(r1+v)x(t)−r1K1x2(t)+(r2+v)y(t)−r2K2y2(t)−(d−v)z(t)=−r1K1(x(t)−K1(r1+v)2r1)2−r2K2(y(t)−K2(r2+v)2r2)2−(d−v)z(t)+K1(r1+v)24r1+K2(r2+v)24r2, |
let
u=K1(r1+v)24r1+K2(r2+v)24r2,v=d. |
According to the positive knowledge of all parameters and the nonnegativity of the solutions,
Dαtg(t)+vg(t)≤u, |
we obtain
g(t)≤uv+[g(0)−uv]Eα(−vtα), |
Since Eα(−vtα)≥0, when g(0)≤uv, limt→∞supg(t)≤uv. According to the nonnegativity of the system (2.6), g(t)≥0(∀t≥0); hence, A={x,y,z)∈R3:0<x+y+z<K1(r1+v)24r1v+K2(r2+v)24r2v} is a positively invariant set of system (2.6), and the solutions are bounded.
Let
{r1x(1−xK1)−a1xy1+b1x=0,r2y(1−yK2)+a1xy1+b1x−a2yz1+b2y=0,a2yz1+b2y−dz=0, |
Then, the equilibrium points are E0=(0,0,0), E1=(K1,0,0), E2=(0,K2,0) and E∗=(x∗,y∗,z∗), where
x∗=b1K1−12b1+√b21K21r21+2b1K1r21−4a1b1K1r1y∗+y2∗2b1r1,y∗=da2−b2d,z∗=a1x∗(b2y∗+1)a2(b1x∗+1)−r2(b2y∗+1)(y∗−K2)a2K2. |
For system (2.6), the Jacobian matrix at the equilibrium point (x′,y′,z′) is
J(x′,y′,z′)=[r1−2r1x′K1−a1de1e23−e50e4r1+e5−a2z′e2−2dr2K2e1+a2b2dz′e1e22−d0e21z′a20], |
where e1=a2−b2d, e2=b2de1+1, e3=1+b1x′, e4=2r1x′K1+a1de1e23, e5=a1x′e3.
Theorem 3.3. For system (2.6), the equilibrium points E0 and E1 are saddle points.
Proof: The Jacobian matrices evaluated at E0 and E1 are
J(0,0,0)=[r1000r2000−d],J(K1,0,0)=[−r1−a1K1b1K1+100r2+a1K1b1K1+1000−d], |
According to Lemma 2, when the eigenvalues are all real numbers and all negative, the equilibrium points are locally asymptotically stable.
The eigenvalues of J(E0) are λ01=r1, λ02=r2 and λ03=−d. The eigenvalues of J(E1) are λ11=−r1, λ12=r2+a1K1b1K1+1 and λ13=−d.
Then, we have λ01,λ02>0, λ03,λ11<0, and λ13<0, so the equilibrium points E0 and E1 are saddle points.
Theorem 4. For system (2.6), if r1<a1K2 and a2K2(b2K2+1)<d, then the equilibrium point E2=(0,K2,0) is locally asymptotically stable.
Proof: The Jacobian matrix evaluated at E2 is
J(0,K2,0)=[r1−a1K200a1K2−r2−a2K2b2K2+100a2K2b2K2+1−d], |
The eigenvalues of J(E2) are λ1=r1−a1K2, λ2=−r2 and λ3=a2K2b2K2+1−d.
Therefore, if r1<a1K2 and a2K2(b2K2+1)<d, the equilibrium point E2 is locally asymptotically stable.
The characteristic equation of equilibrium points E∗=(x∗,y∗,z∗) is given as
P(λ)=λ3+Aλ2+Bλ+C=0, | (3.2) |
where
A=2f4−2r1−e5+f2z∗+f1de23+f5−f2b2dz∗e1e2,
B=(B1+B2),
B1=e4e5+e5r1+r21−2r1f4−f2r1z∗−2e5f4+e21dz∗a2−f6e5−f6r1−2r1f5,
B2=2e23f1f5+2f2f4z∗+a1f3e23z∗+4dr2f4e1k1+r1f7−f1f7de3−2f4f7,
C=dz∗(a1dK1e23−e1K1r1+2e1r1x∗)f1K1,
where f1=a1e1, f2=a2e2, f3=f2de1, f4=r1x∗K1, f5=r2de1K2, f6=a1de23e1, f7=b2f3z∗e2.
For Eq. (3.2), define the discriminant as
D(P)=18ABC+(AB)2−4CA2−4B3−27C2, |
With reference to the results of [35] and [36], we obtain the following fractional Routh-Hurwitz conditions:
1. If D(P)>0, A>0, C>0, and AB−C>0, E∗ is locally asymptotically stable.
2. If D(P)<0 and A≥0, B≥0, and C>0, when α<23, E∗ is locally asymptotically stable.
3. If D(P)<0, A>0, B>0, and AB=C, then for all α∈(0,1), E∗ is locally asymptotically stable.
Theorem 5. If D(P)<0, C>0 and AB≠C, then α∗∈(0,1) exists; when α∈(0,α∗), E∗ is locally asymptotically stable; when α∈(α∗,1), E∗ is unstable. The system diverges at the critical value E∗.
Proof: If D(P)<0, then the eigenvalues of Eq. (3.2) have one real root λ1=a and two complex conjugate roots λ2,3=b±ci. Then, Eq. (3.2) can be written as
P(λ)=(λ−a)[λ−(b+ci)][λ−(b−ci)]=0, | (3.3) |
where A=−a−2b, B=b2+c2+2ab, C=−a(b2+c2), c>0, a,b,c∈R.
From C>0, then a<0, and then |arg(λ1)|=π>απ2.
From AB≠C, then −a2b+b(b2+c2)≠−2ab2 ⟹ −2b[(a+b)2+c2]≠0 ⟹ b≠0 and (a+b)2+c2≠0.
Thus, we can obtain |arg(λ2,3)|=|arctan(cb)|=arctan|cb|∈(0,π2).
Then, α∗∈(0,1) exists; when α∈(0,α∗), απ2<arctan|cb|, according to Lemma 2, E∗ is locally asymptotically stable, and when α∈(α∗,1), απ2>arctan|cb|, E∗ is unstable.
To study the asymptotic stability of system (2.6), three controllers will be added. The controller is proposed as follows: μ1=m1x(x−x∗), μ2=m2y(y−y∗), and μ3=m3z(z−z∗). where m1, m2 and m3 represent negative feedback gains, which are defined as real numbers. Clearly, if mi=0(i=1,2,3) or x=x∗(y=y∗,z=z∗), then μi=0(i=1,2,3), so it will not change the equilibrium point of system (2.6).
Controllers added into system (2.6) as follows
{Dαtx=r1x(1−xK1)−a1xy1+b1x−m1x(x−x∗),Dαty=r2y(1−yK2)+a1xy1+b1x−a2yz1+b2y−m2y(y−y∗),Dαtz=a2yz1+b2y−dz−m3z(z−z∗), | (3.4) |
One gives a Lyapunov function as:
V(x,y,z)=x−x∗−x∗lnxx∗+y−y∗−y∗lnyy∗+z−z∗−z∗lnzz∗. |
then,
DαtV≤x−x∗xDαx+y−y∗yDαy+z−z∗zDαz=(x−x∗)(r1−r1xK1−a1y1+b1x)−m1(x−x∗)2+(y−y∗)(r2−r2yK2+a1x1+b1x−a2z1+b2y)−m2(y−y∗)2+(z−z∗)(a2y1+b2y−d)−m3(z−z∗)2. |
Consider E∗ to be the equilibrium point:
{r1−r1x∗K1−a1y∗1+b1x∗=0,r2−r2y∗K2+a1x∗1+b1x∗−a2z∗1+b2y∗=0,a2y∗1+b2y∗−d=0, |
According to Lemma 4, we can obtain
DαtV≤(x−x∗)(r1x∗K1+a1y∗1+b1x∗−r1xK1−a1y1+b1x)−m1(x−x∗)2+(y−y∗)(r2y∗K2−a1x∗1+b1x∗+a2z∗1+b2y∗−r2yK2+a1x1+b1x−a2z1+b2y)−m2(y−y∗)2+(z−z∗)(a2y1+b2y−a2y∗1+b2y∗)−m3(z−z∗)2=a1(x−x∗)(y∗1+b1x∗−y1+b1x)+a1(y−y∗)(x1+b1x−x∗1+b1x∗)+a2(y−y∗)(z∗1+b2y∗−z1+b2y)+a2(z−z∗)(y1+b2y−y∗1+b2y∗)−(m1+r1K1)(x−x∗)2−(m2+r2K2)(y−y∗)2−m3(z−z∗)2=a1(x−x∗)(y∗1+b1x∗−y∗1+b1x+y∗1+b1x−y1+b1x)+a1(y−y∗)(x1+b1x−x∗1+b1x+x∗1+b1x−x∗1+b1x∗)+a2(y−y∗)(z∗1+b2y∗−z∗1+b2y+z∗1+b2y−z1+b2y)+a2(z−z∗)(y1+b2y−y∗1+b2y+y∗1+b2y−y∗1+b2y∗)−(m1+r1K1)(x−x∗)2−(m2+r2K2)(y−y∗)2−m3(z−z∗)2=a1(x−x∗)(b1y∗(x−x∗)(1+b1x∗)(1+b1x)+y∗−y1+b1x)+a1(y−y∗)(x−x∗1+b1x+b1x∗(x∗−x)(1+b1x∗)(1+b1x))+a2(y−y∗)(b2z∗(y−y∗)(1+b2y∗)(1+b2y)+z∗−z1+b2y)+a2(z−z∗)(y−y∗1+b2y+b2y∗(y∗−y)(1+b2y∗)(1+b2y))−(m1+r1K1)(x−x∗)2−(m2+r2K2)(y−y∗)2−m3(z−z∗)2≤a1b1y∗1+b1x∗(x−x∗)2+a2b2z∗1+b2y∗(y−y∗)2+a1b1x∗1+b1x∗(x−x∗)(y∗−y)+a2b2y∗1+b2y∗(y−y∗)(z∗−z)−(m1+r1K1)(x−x∗)2−(m2+r2K2)(y−y∗)2−m3(z−z∗)2≤a1b1x∗2(1+b1x∗)((x−x∗)2+(y−y∗)2)+a2b2y∗2(1+b2y∗)((y−y∗)2+(z−z∗)2)+(a1b1y∗1+b1x∗−m1−r1K1)(x−x∗)2+(a2b2z∗1+b2y∗−m2−r2K2)(y−y∗)2−m3(z−z∗)2=(a1b1(2y∗+x∗)2(1+b1x∗)−m1−r1K1)(x−x∗)2+(a2b2y∗2(1+b2y∗)−m3)(z−z∗)2+(a2b2(2z∗+y∗)2(1+b2y∗)+a1b1x∗2(1+b1x∗)−m2−r2K2)(y−y∗)2. |
When m1≥a1b1(2y∗+x∗)2(1+b1x∗)−r1K1, m2≥a2b2(2z∗+y∗)2(1+b2y∗)+a1b1x∗2(1+b1x∗)−r2K2, and m3≥a2b2y∗2(1+b2y∗), it follows that DαV≤0. We can show that the equilibrium point E∗ is uniformly asymptotically stable.
In this section, we use the Adams-Bashforth-Molton predictor-corrector algorithm numerical simulation. This method is described in detail in [37] and [38].
Example 1. In system (2.6), let r1=1, r2=0.6, K1=50, K2=10, a1=1, a2=0.6, b1=5, b_{2} = 0.01 and d = 0.5 . System (2.6) has a positive equilibrium point E_{*} = (49.8479, 0.8403, 1.2597) . According to Theorem 3.5, when \alpha = 1 , \alpha = 0.9 , \alpha = 0.8 , and E_{*} is locally asymptotically stable, it can be seen from Figure 1 that the order \alpha will affect the speed at which the system converges to the equilibrium point. The relevant results are shown in Figure 1.
Example 2. In system (2.6), let r_{1} = 1 , r_{2} = 0.6 , K_{1} = 50 , K_{2} = 30 , a_{1} = 1 , a_{2} = 0.6 , b_{1} = 5 , b_{2} = 0.2 and d = 0.2 . System (2.6) has a positive equilibrium point E_{*} = (49.9382, 0.3571, 1.4158) . It follows from Theorem 3.5 that system (2.6) has a bifurcation at \alpha_{*} . When \alpha = 0.95 and \alpha = 0.8 , E_{*} is locally asymptotically stable, and when \alpha = 0.98 , E_{*} is unstable. The relevant results are shown in Figure 2.
Example 3. To verify the sensitivity of the system (2.6) to initial conditions and other parameters, according to the method in [39], apply the positive Euler format to transform the differential model into the following discrete form:
\begin{equation} \left\{ \begin{array}{ll} x_{t+1} = x_{t}+\delta(r_{1}x_{t}(1-\frac{x_{t}}{K_{1}})-\frac{a_{1}x_{t}y_{t}}{1+b_{1}x_{t}}), \\ y_{t+1} = y_{t}+\delta(r_{2}y_{t}(1-\frac{y_{t}}{K_{2}})+\frac{a_{1}x_{t}y_{t}}{1+b_{1}x_{t}}-\frac{a_{2}y_{t}z_{t}}{1+b_{2}y_{t}}), \\ z_{t+1} = z_{t}+\delta(\frac{a_{2}y_{t}z_{t}}{1+b_{2}y_{t}}-dz_{t}), \end{array} \right. \end{equation} | (4.1) |
where \delta is the time step size. We use the parameters of Example 1 to study Lyapunov exponents. Figure 3 shows that system (2.6) is in a stable state and is less sensitive to initial conditions.
This paper studies a new fractional-order food chain model with a Holling type-II functional response. First, the existence, uniqueness, nonnegativity and boundedness of the solution of the model are discussed. Second, the local stability of each equilibrium point is discussed. Third, controllers \mu_{1} = m_{1}x(x-x_{*}) , \mu_{2} = m_{2}y(y-y_{*}) and \mu_{3} = m_{3}z(z-z_{*}) are proposed and added to the system. Using the Lyapunov method, sufficient conditions for the positive equilibrium point to reach the global uniformly asymptotically stable state are obtained. Finally, we use numerical simulations to verify the theoretical results.
This work was supported by the Shandong University of Science and Technology Research Fund (2018 TDJH101).
The author declares no conflicts of interest in this paper.
[1] | P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H. O. Pörtner, D. C.Roberts, et al., IPCC, 2019: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, World Meteorological Organization: Geneva, Switzerland, 2019. |
[2] | P. Ahmad, M. R. Wani, Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment, Springer, New York, 2013. |
[3] |
J. C. Valverde-Otárola, D. Arias, Efectos del estrés hídrico en crecimiento y desarrollo fisiológico de Gliricidia sepium (Jacq.) Kunth ex Walp, Colombia forestal, 23 (2020), 20–34. https://doi.org/10.14483/2256201x.14786 doi: 10.14483/2256201x.14786
![]() |
[4] |
E. Duque-Marín, A. Rojas-Palma, M. Carrasco-Benavides, Mathematical modeling of fruit trees' growth under scarce watering, J. Phys. Conf. Ser., 2046 (2021), 012017. https://doi.org/10.1088/1742-6596/2046/1/012017 doi: 10.1088/1742-6596/2046/1/012017
![]() |
[5] |
Q. Shan, Z. Wang, H. Ling, G. Zhang, J. Yan, F. Han, Unreasonable human disturbance shifts the positive effect of climate change on tree-ring growth of Malus sieversii in the origin area of world cultivated apples, J. Clean. Prod., 287 (2021), 125008. https://doi.org/10.1016/j.jclepro.2020.125008 doi: 10.1016/j.jclepro.2020.125008
![]() |
[6] |
M. Lévesque, R. Siegwolf, M. Saurer, B. Eilmann, A. Rigling, Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions, New Phytol., 203 (2014), 94–109. https://doi.org/10.1111/nph.12772 doi: 10.1111/nph.12772
![]() |
[7] |
R. Ogaya, A. Barbeta, C. Başnou, J. Peñuelas, Satellite data as indicators of tree biomass growth and forest dieback in a Mediterranean holm oak forest, Ann. Forest Sci., 72 (2015), 135–144. https://doi.org/10.1007/s13595-014-0408-y doi: 10.1007/s13595-014-0408-y
![]() |
[8] |
G. Arbat, J. Puig-Bargués, J. Barragán, J. Bonany, F. Ramírez de Cartagena, Monitoring soil water status for micro-irrigation management versus modelling approach, Biosyst. Eng., 100 (2008), 286–296. https://doi.org/10.1016/j.biosystemseng.2008.02.008 doi: 10.1016/j.biosystemseng.2008.02.008
![]() |
[9] |
A. Fares, A. K. Alva, Evaluation of capacitance probes for optimal irrigation of citrus through soil moisture monitoring in an entisol profile, Irrig. Sci., 19 (2000), 57–64. https://doi.org/10.1007/s002710050001 doi: 10.1007/s002710050001
![]() |
[10] | A. Fernandes-Silva, M. Oliveira, T. A. Paço, I. Ferreira, Deficit irrigation in Mediterranean fruit trees and grapevines: Water stress indicators and crop responses, in Irrigation in Agroecosystems, IntechOpen, 2019. http://dx.doi.org/10.5772/intechopen.80365 |
[11] |
H. E. Igbadun, A. A. Ramalan, E. Oiganji, Effects of regulated deficit irrigation and mulch on yield, water use and crop water productivity of onion in Samaru, Nigeria, Agr. Water Manage., 109 (2012), 162–169. https://doi.org/10.1016/j.agwat.2012.03.006 doi: 10.1016/j.agwat.2012.03.006
![]() |
[12] |
M. S. Hashem, T. Z. El-Abedin, H. M. Al-Ghobari, Assessing effects of deficit irrigation techniques on water productivity of tomato for subsurface drip irrigation system, Int. J. Agric. Biol. Eng., 11 (2018), 156–167. 10.25165/j.ijabe.20181104.3846 doi: 10.25165/j.ijabe.20181104.3846
![]() |
[13] |
V. Blanco, E. Torres-Sánchez, P. J. Blaya-Ros, A. Pérez-Pastor, R. Domingo, Vegetative and reproductive response of 'Prime Giant' sweet cherry trees to regulated deficit irrigation, Sci. Hortic., 249 (2019), 478–489. https://doi.org/10.1016/j.scienta.2019.02.016 doi: 10.1016/j.scienta.2019.02.016
![]() |
[14] |
M. Liu, Z. Wang, L. Mu, R. Xu, H. Yang, Effect of regulated deficit irrigation on alfalfa performance under two irrigation systems in the inland arid area of midwestern China, Agric. Water Manage., 248 (2021), 106764. https://doi.org/10.1016/j.agwat.2021.106764 doi: 10.1016/j.agwat.2021.106764
![]() |
[15] |
J. Lopez-Jimenez, A. Vande Wouwer, N. Quijano, Dynamic modeling of crop–soil systems to design monitoring and automatic irrigation processes: A review with worked examples, Water, 14 (2022), 889. https://doi.org/10.3390/w14060889 doi: 10.3390/w14060889
![]() |
[16] | J. H. Thornley, I. R. Johnson, Plant and crop modelling, Clarendon Press, Oxford, 1990. |
[17] | J. Prieto-Méndez, O. A. Acevedo-Sandoval, M. A. Méndez-Marzo, Indicadores e índices de calidad de los suelos (ICS) cebaderos del sur del estado de Hidalgo, México, Agronomía mesoamericana, 24 (2013), 83–91. |
[18] | X. Chone, C. van Leeuwen, D. Dubourdieu, J. P. Gaudillère, Stem water potential is a sensitive indicator of grapevine water status, Ann. Bot., 87 (2001), 477–483. |
[19] |
N. Livellara, E. Saavedra, F. Salgado, Plant based indicators for irrigation scheduling in young cherry trees, Agric. Water Manage., 98 (2011), 684–690. https://doi.org/10.1016/j.agwat.2010.11.005 doi: 10.1016/j.agwat.2010.11.005
![]() |
[20] |
H. McCutchan, K. A. Shackel, Stem-water potential as a sensitive indicator of water stress in prune trees (Prunus domestica L. cv. French), J. Am. Soc. Hortic. Sci., 117 (1992), 607–611. https://doi.org/10.21273/JASHS.117.4.607 doi: 10.21273/JASHS.117.4.607
![]() |
[21] |
J. Marsal, G. Lopez, J. del Campo, M. Mata, A. Arbones, J. Girona, Postharvest regulated deficit irrigation in 'Summit'sweet cherry: fruit yield and quality in the following season, Irrig. Sci., 28 (2010), 181–189. https://doi.org/10.1007/s00271-009-0174-z doi: 10.1007/s00271-009-0174-z
![]() |
[22] |
V. Blanco, R. Domingo, A. Pérez-Pastor, P. J. Blaya-Ros, R. Torres-Sánchez, Soil and plant water indicators for deficit irrigation management of field-grown sweet cherry trees, Agric. Water Manage., 208 (2018), 83–94. https://doi.org/10.1016/j.agwat.2018.05.021 doi: 10.1016/j.agwat.2018.05.021
![]() |
[23] |
J. E. Fernández, M. V. Cuevas, Irrigation scheduling from stem diameter variations: A review, Agric Forest. Meteorol., 150 (2010), 135–151. https://doi.org/10.1016/j.agrformet.2009.11.006 doi: 10.1016/j.agrformet.2009.11.006
![]() |
[24] |
M. Carrasco-Benavides, J. Antunez-Quilobrán, A. Baffico-Hernández, C. Ávila-Sánchez, S. Ávila-Sánchez, S. Espinoza, et al., Performance assessment of thermal infrared cameras of different resolutions to estimate tree water status from two cherry cultivars: An alternative to midday stem water potential and stomatal conductance, Sensors, 20 (2020), 3596. https://doi.org/10.3390/s20123596 doi: 10.3390/s20123596
![]() |
[25] |
O. Diekmann, J. A. P. Heesterbeek, J. A. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
![]() |
[26] |
P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
![]() |
[27] |
P. D. Harrington, M. A. Lewis, A next-generation approach to calculate source–sink dynamics in marine metapopulations, Bull. Math. Biol., 82 (2020), 1–44. https://doi.org/10.1007/s11538-019-00674-1 doi: 10.1007/s11538-019-00674-1
![]() |
[28] |
A. Hurford, D. Cownden, T. Day, Next-generation tools for evolutionary invasion analyses, J. R. Soc. Interface, 7 (2010), 561–571. https://doi.org/10.1098/rsif.2009.0448 doi: 10.1098/rsif.2009.0448
![]() |
[29] |
S. Tang, Y. Xiao, R. A. Cheke, Dynamical analysis of plant disease models with cultural control strategies and economic thresholds, Math. Comput. Simul., 80 (2010), 849–921. https://doi.org/10.1016/j.matcom.2009.10.004 doi: 10.1016/j.matcom.2009.10.004
![]() |
[30] |
S. Gao, S. Luo, S. Yan, X. Meng, Dynamical behavior of a novel impulsive switching model for HLB with seasonal fluctuations, Complexity, 2018 (2018). https://doi.org/10.1155/2018/2953623 doi: 10.1155/2018/2953623
![]() |
[31] |
R. A. Taylor, E. A. Mordecai, C. A. Gilligan, J. R. Rohr, L. R. Johnson, Mathematical models are a powerful method to understand and control the spread of Huanglongbing, PeerJ, 4 (2016). https://doi.org/10.7717/peerj.2642 doi: 10.7717/peerj.2642
![]() |
[32] |
S. Gao, L. Xia, Y. Liu, D. Xie, A plant virus disease model with periodic environment and pulse roguing, Stud. Appl. Math., 136 (2016), 357–381. https://doi.org/10.1111/sapm.12109 doi: 10.1111/sapm.12109
![]() |
[33] |
D. S. Degefa, O. D. Makinde, D. T. Temesgen, Modeling potato virus Y disease dynamics in a mixed-cropping system, Int. J. Modell. Simul. 42 (2022), 370–387. https://doi.org/10.1080/02286203.2021.1919818 doi: 10.1080/02286203.2021.1919818
![]() |
[34] | H. T. Alemneh, O. D. Makinde, D. M. Theuri, Mathematical modelling of msv pathogen inter- action with pest invasion on maize plant, Glob. J. Pure Appl. Math., 15 (2019), 55–79. |
[35] |
F. Ewert, R. P. Rötter, M. Bindi, H. Webber, M. Trnka, K. C. Kersebaum, et al., Crop modelling for integrated assessment of risk to food production from climate change, Environ. Modell. Softw., 72 (2015), 287–303. https://doi.org/10.1016/j.envsoft.2014.12.003 doi: 10.1016/j.envsoft.2014.12.003
![]() |
[36] |
J. L. Monteith, The quest for balance in crop modeling, Agron. J., 88 (1996), 695–697. https://doi.org/10.2134/agronj1996.00021962008800050003x doi: 10.2134/agronj1996.00021962008800050003x
![]() |
[37] |
P. Steduto, T. C. Hsiao, D. Raes, E. Fereres, AquaCrop-The FAO crop model to simulate yield response to water: I. Concepts and underlying principles, Agron. J., 101 (2009), 426–437. https://doi.org/10.2134/agronj2008.0139s doi: 10.2134/agronj2008.0139s
![]() |
[38] |
B. A. Keating, P. J. Thorburn, Modelling crops and cropping systems-Evolving purpose, practice and prospects, Eur. J. Agron., 100 (2018), 163–176. https://doi.org/10.1016/j.eja.2018.04.007 doi: 10.1016/j.eja.2018.04.007
![]() |
[39] | G. Fischer, J. O. Orduz-Rogríguez, Ecofisiología en frutales, En: Fischer, Bogotá, 2012. |
[40] | L. Edelstein-Keshet, Mathematical models in biology, Society for Industrial and Applied Mathematics, 2005. |
[41] |
E. Duque-Marín, A. Rojas-Palma, M. Carrasco-Benavides, Simulations of an impulsive model for the growth of fruit trees, J. Phys. Conf. Ser., 2153 (2022), 012018. https://doi.org/10.1088/1742-6596/2153/1/012018 doi: 10.1088/1742-6596/2153/1/012018
![]() |
[42] | S. G. Hristova, D. D. Bainov, Bounded solutions of systems of differential equations with impulses, Ann. Pol. Math., 48 (1988), 191–206. |
[43] |
Y. Yang, Y. Xiao, Threshold dynamics for compartmental epidemic models with impulses, Nonlinear Anal. Real. World Appl., 13 (2012), 224–234. https://doi.org/10.1016/j.nonrwa.2011.07.028 doi: 10.1016/j.nonrwa.2011.07.028
![]() |
[44] |
S. K. Ooi, N. Cooley, I. Mareels, G. Dunn, K. Dassanayake, K. Saleem, Automation of on-farm irrigation: horticultural case study, IFAC Proc. Vol., 43 (2010), 256–261. https://doi.org/10.3182/20101206-3-JP-3009.00045 doi: 10.3182/20101206-3-JP-3009.00045
![]() |
[45] |
P. Filippucci, A. Tarpanelli, C. Massari, A. Serafini, V. Strati, M. Alberi, et al., Soil moisture as a potential variable for tracking and quantifying irrigation: A case study with proximal gamma-ray spectroscopy data, Adv. Water Resour., 136 (2020), 103502. https://doi.org/10.1016/j.advwatres.2019.103502 doi: 10.1016/j.advwatres.2019.103502
![]() |
[46] |
D. C. Harris, Nonlinear least-squares curve fitting with Microsoft Excel Solver, J. Chem. Educ., 75 (1998), 119. https://doi.org/10.1021/ed075p119 doi: 10.1021/ed075p119
![]() |
[47] | D. G. Mayer, D. G. Butler, Statistical validatio, Ecol. Modell., 68 (1993), 21–32. |
[48] |
C. J. Willmott, On the validation of models, Phys. Geogr., 2 (1981), 184–194. https://doi.org/10.1080/02723646.1981.10642213 doi: 10.1080/02723646.1981.10642213
![]() |
[49] |
C. J. Willmott, S. M. Robeson, K. J. Matsuura, A refined index of model performance, Int. J. Climatol, 32 (2012), 2088–2094. https://doi.org/10.1002/joc.2419 doi: 10.1002/joc.2419
![]() |
[50] | I. Lawrence, K. Lin, A concordance correlation coefficient to evaluate reproducibility, Biomet. Rics., (1989), 255–268. |
[51] | R. R. Jiliberto, Deja a la estructura hablar: Modelización y análisis de sistemas naturales, sociales y socioecológicos, Ediciones UM, 2020. |
[52] |
S. M. Lane, Mathematical models: A sketch for the philosophy of mathematics, Am. Math. Mon., 88 (1981), 462–472. https://doi.org/10.1080/00029890.1981.11995299 doi: 10.1080/00029890.1981.11995299
![]() |
[53] | J. Franklin, Philosophy and mathematical modelling. Teaching Mathematics and its Applications: An International Journal of the IMA, 2 (1983), 118–119. |
[54] |
S. M. Blower, H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example, Int. Stat. Rev., 62 (1994), 229–243. https://doi.org/10.2307/1403510 doi: 10.2307/1403510
![]() |
[55] | M. Martcheva, An introduction to mathematical epidemiology, Springer, New York, 2015. |
1. | Jinghui Lin, Meifang Li, Shijie Chen, Lihong Weng, Zhiyong He, Efficacy and Safety of First-Generation EGFR-TKIs Combined with Chemotherapy for Treatment-Naïve Advanced Non-Small-Cell Lung Cancer Patients Harboring Sensitive EGFR Mutations: A Single-Center, Open-Label, Single-Arm, Phase II Clinical Trial, 2021, Volume 14, 1178-7031, 2557, 10.2147/JIR.S313056 | |
2. | Shizhe Li, He Zhang, Ting Chen, Xiaowen Zhang, Guanning Shang, Current treatment and novel insights regarding ROS1‐targeted therapy in malignant tumors, 2024, 13, 2045-7634, 10.1002/cam4.7201 | |
3. | Hakan Şat Bozcuk, Leyla Sert, Muhammet Ali Kaplan, Ali Murat Tatlı, Mustafa Karaca, Harun Muğlu, Ahmet Bilici, Bilge Şah Kılıçtaş, Mehmet Artaç, Pınar Erel, Perran Fulden Yumuk, Burak Bilgin, Mehmet Ali Nahit Şendur, Saadettin Kılıçkap, Hakan Taban, Sevinç Ballı, Ahmet Demirkazık, Fatma Akdağ, İlhan Hacıbekiroğlu, Halil Göksel Güzel, Murat Koçer, Pınar Gürsoy, Bahadır Köylü, Fatih Selçukbiricik, Gökhan Karakaya, Mustafa Serkan Alemdar, Enhancing Treatment Decisions for Advanced Non-Small Cell Lung Cancer with Epidermal Growth Factor Receptor Mutations: A Reinforcement Learning Approach, 2025, 17, 2072-6694, 233, 10.3390/cancers17020233 | |
4. | Pakorn Prakaikietikul, Pattraporn Tajarenmuang, Phumiphat Losuriya, Natee Ina, Thanika Ketpueak, Thanat Kanthawang, Mirosława Püsküllüoğlu, Non-cancerous CT findings as predictors of survival outcome in advanced non-small cell lung cancer patients treated with first-generation EGFR-TKIs, 2025, 20, 1932-6203, e0313577, 10.1371/journal.pone.0313577 | |
5. | Die Zhang, Jumei Zhao, Yue Yang, Qiangfang Dai, Ning Zhang, Zhikuan Mi, Qianqian Hu, Xiaolong Liu, Fourth-generation EGFR-TKI to overcome C797S mutation: past, present, and future, 2025, 40, 1475-6366, 10.1080/14756366.2025.2481392 |