In this article, we focused on the study of codimension-one Hopf bifurcations and the associated Lyapunov stability coefficients in the context of general two-dimensional reaction-diffusion systems defined on a finite fixed-length segment. Algebraic expressions for the first Lyapunov coefficients are provided for the infinite-dimensional system subject to Neumann boundary conditions. As an application, a diffusive predator-prey system modeling competing populations with a Holling type-II functional response for the predator was analyzed and studied under Neumann boundary conditions. Our main goal is to perform a detailed, local stability analysis of the proposed model, showing the existence of multiple spatially homogeneous and non-homogeneous periodic orbits, arising from the occurrence of a codimension-one Hopf bifurcation.
Citation: Jocirei D. Ferreira, Wilmer L. Molina, Jhon J. Perez, Aida P. González. Stability and bifurcation analysis in predator-prey system involving Holling type-II functional response[J]. Mathematical Biosciences and Engineering, 2025, 22(10): 2559-2594. doi: 10.3934/mbe.2025094
In this article, we focused on the study of codimension-one Hopf bifurcations and the associated Lyapunov stability coefficients in the context of general two-dimensional reaction-diffusion systems defined on a finite fixed-length segment. Algebraic expressions for the first Lyapunov coefficients are provided for the infinite-dimensional system subject to Neumann boundary conditions. As an application, a diffusive predator-prey system modeling competing populations with a Holling type-II functional response for the predator was analyzed and studied under Neumann boundary conditions. Our main goal is to perform a detailed, local stability analysis of the proposed model, showing the existence of multiple spatially homogeneous and non-homogeneous periodic orbits, arising from the occurrence of a codimension-one Hopf bifurcation.
| [1] | W. W. Murdoch, C. J. Briggs, R. M. Nisbet, Consumer-Resource Dynamics, Princeton University Press, 2003. |
| [2] | R. S. Cantrell, C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley, 2004. |
| [3] | G. Sun, J. Zhang, L. Song, Z. Jin, B. Li, Pattern formation of a spatial predator–prey system, Appl. Math. Comput., 218, (2012), 11151–11162. https://doi.org/10.1016/j.amc.2012.04.071 |
| [4] | A. Okubo, Diffusion and Ecological Problems: Mathematical Models, Springer-Verlag, Berlin, 1981. https://doi.org/10.1007/BF02851862 |
| [5] | D. Tilman, P. Kareiva, Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions (MPB-30), Princeton University Press, USA, 1997. |
| [6] | J. Sotomayor, L. F. Mello, D. C. Braga, Lyaponuv coefficients for degenerate Hopf bifurcations, preprint, arXiv: 0709.3949. |
| [7] | D. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and Application of Hopf Bifurcation, SIAM Rev., 24 (1982). https://doi.org/10.1137/1024123 |
| [8] | F. Yi, J. Wei, J. Shi, Bifurcation and spatitemporal patterns in a homogeneous diffusive predator-prey system, J. Differ. Equations, 246, (2009), 1944–1977. https://doi.org/10.1016/j.jde.2008.10.024 |
| [9] |
J. D. Ferreira, A. González, W. Molina, Lyapunov coefficients for degenerate Hopf bifurcations and an application in a model of competing populations, J. Math. Anal. Appl., 455 (2017), 1–51. https://doi.org/10.1016/j.jmaa.2017.05.040 doi: 10.1016/j.jmaa.2017.05.040
|
| [10] |
J. Y. Wakano, K. Ikeda, T. Miki, M. Mimura, Effective dispersal rate is a function of habitat size and corridor shape: Mechanistic formulation of a two-patch compartment model for spatially continuous systems, Oikos, 120 (2011), 1712–1720. https://doi.org/10.1111/j.1600-0706.2011.19074.x doi: 10.1111/j.1600-0706.2011.19074.x
|
| [11] |
M. Cavani, M. Farkas, Bifurcations in a predator-prey model with memory and diffusion II: Turing bifurcation, Acta Math. Hungar, 63 (1994), 375–393. https://doi.org/10.1007/BF01874463 doi: 10.1007/BF01874463
|
| [12] | M. Cristofol, L. Roques, Biological invasions: Deriving the regions at risk from partial measurements Math. Biosci., 215 (2008), 158–166. https://doi.org/10.1016/j.mbs.2008.07.004 |
| [13] |
P. A. Hancock, H. C. J. Godfray Modeling the spread of Wolbachia in spatially heterogeneous environments, J. R. Soc. Interface, 76 (2012), 3045–3054. https://doi.org/10.1098/rsif.2012.0253 doi: 10.1098/rsif.2012.0253
|
| [14] |
M. Farkas, Zip bifurcation in a competition model, Nonlinear Anal. Theory Methods Appl., 8 (1984), 1295–1309. https://doi.org/10.1016/0362-546X(84)90017-8 doi: 10.1016/0362-546X(84)90017-8
|
| [15] | M. Farkas, Periodic Motions, Springer-Verlag, New York, 1994. |
| [16] |
J. D. Ferreira, L. A. F. de Oliveira, Zip bifurcation in a competitive system with diffusion, Differ. Equations Dyn. Syst., 17 (2009), 37–53. https://doi.org/10.1007/s12591-009-0003-0 doi: 10.1007/s12591-009-0003-0
|
| [17] | M. Farkas, J. D. Ferreira, Zip bifurcation in a reaction-diffusion system, Differ. Equations Dyn. Syst., 15 (2007), 169–183. |
| [18] |
I. Szántó, Velcro bifurcation in competition models with generalized Holling functional response, Appl. Math., 6 (2005), 185–195. https://doi.org/10.18514/MMN.2005.115 doi: 10.18514/MMN.2005.115
|
| [19] |
W. Ko, K. Ryu A qualitative study on general Gause-type predator-prey models with constant diffusion rates, J. Math. Anal. Appl., 344 (2008), 217–230. https://doi.org/10.1016/j.jmaa.2008.03.006 doi: 10.1016/j.jmaa.2008.03.006
|
| [20] | J. Smoller, Shock waves and Reaction-Diffusion Equations, 2nd Edition, Springer-Verlag, New York, 1994. |
| [21] | Y. A. Kuznetsov, Elements of applied Bifurcation theory, Springer-Verlag, 1998. |
| [22] | A. Bazykin, A. Khibnik, B. Krauskopf, Nonlinear Dynamics of Interacting Ppopulations, World Scientific, 1998. https://doi.org/10.1142/2284 |
| [23] |
H. Li, Y. Takeuchi, Dynamics of the density dependent predator-prey system with Bedinton-DeAngelis functional response, J. Math. Anal. Appl., 374 (2011), 644–654. https://doi.org/10.1016/j.jmaa.2010.08.029 doi: 10.1016/j.jmaa.2010.08.029
|
| [24] |
S. Abbas, M. Banerjee, N. Hungerbuhler, Existence, uniqueness and stability analysis of allelopathic stimulatory phytoplankton model, J. Math. Anal. Appl., 367 (2010), 249–259. https://doi.org/10.1016/j.jmaa.2010.01.024 doi: 10.1016/j.jmaa.2010.01.024
|
| [25] |
S. Abbas, M. Sen, M. Banerjee, Almost periodic solution of a non-autonomous model of phytoplankton allelopathy, Nonlinear Dyn., 67 (2012), 203–214. https://doi.org/10.1007/s11071-011-9972-y doi: 10.1007/s11071-011-9972-y
|
| [26] |
E. Sáez, E. Stange, I. Szántó, Simultaneous zip bifurcation and limit cycles in three dimensional competition models, SIAM J. Appl. Dyn. Syst., 5 (2006), 1–11. https://doi.org/10.1137/040613998 doi: 10.1137/040613998
|
| [27] | J. D. Ferreira, L. A. F. de Oliveira, Hopf and zip bifurcation in a specific (n+1)-dimensional competitive system, Mat. Enseñanza Univ., 15, (2008), 35–41. |