In this paper, we use a variety of mathematical models to characterize the early phase of the COVID-19 pandemic in New Mexico. We use both empirical and mechanistic models based on differential equations to examine the dynamics of the pandemic in New Mexico and in carefully selected New Mexico counties. For the empirical model, we use the exponential growth model to compute and estimate the growth rate, basic reproduction number $ \mathcal{R}_0 $ and effective reproduction number $ \mathcal{R}_t $. In addition, we use the SIR model to estimate $ \mathcal{R}_0 $, using the new weekly COVID cases and also cumulative cases. We found that for the beginning of the early phase of the pandemic, the most populous counties had basic reproduction numbers greater than one. In addition, it was found that the transmission rates of some counties varied significantly during the early phase of the pandemic. Moreover, $ \mathcal{R}_0 $ dropped below one during some phases for some counties when using the SIR model. This suggests that non-pharmaceutical interventions had some impact on reducing the burden of the pandemic and that people's behavior changed during this early phase.
Citation: Annika Vestrand, Gilberto González-Parra. Mathematical models to characterize the early phase of the COVID-19 pandemic in New Mexico, USA[J]. Mathematical Biosciences and Engineering, 2025, 22(10): 2526-2558. doi: 10.3934/mbe.2025093
In this paper, we use a variety of mathematical models to characterize the early phase of the COVID-19 pandemic in New Mexico. We use both empirical and mechanistic models based on differential equations to examine the dynamics of the pandemic in New Mexico and in carefully selected New Mexico counties. For the empirical model, we use the exponential growth model to compute and estimate the growth rate, basic reproduction number $ \mathcal{R}_0 $ and effective reproduction number $ \mathcal{R}_t $. In addition, we use the SIR model to estimate $ \mathcal{R}_0 $, using the new weekly COVID cases and also cumulative cases. We found that for the beginning of the early phase of the pandemic, the most populous counties had basic reproduction numbers greater than one. In addition, it was found that the transmission rates of some counties varied significantly during the early phase of the pandemic. Moreover, $ \mathcal{R}_0 $ dropped below one during some phases for some counties when using the SIR model. This suggests that non-pharmaceutical interventions had some impact on reducing the burden of the pandemic and that people's behavior changed during this early phase.
| [1] | World Health Organization, WHO COVID-19 Dashboard, 2024. Available from: https://data.who.int/dashboards/covid19/deaths?n = c. |
| [2] | M. E. Gorris, C. D. Shelley, S. Y. D. Valle, C. A. Manore, A time-varying vulnerability index for COVID-19 in New Mexico, USA using generalized propensity scores, Health Policy OPEN, 2 (2021), 100052. https://pubmed.ncbi.nlm.nih.gov/34514375/ |
| [3] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
|
| [4] |
G. Chowell, C. Viboud, L. Simonsen, S. M. Moghadas, Characterizing the reproduction number of epidemics with early subexponential growth dynamics, J. R. Soc. Interface, 13 (2016), 20160659. https://doi.org/10.1098/rsif.2016.0659 doi: 10.1098/rsif.2016.0659
|
| [5] |
S. Duchene, L. Featherstone, M. Haritopoulou-Sinanidou, A. Rambaut, P. Lemey, G. Baele, Temporal signal and the phylodynamic threshold of sars-cov-2, Virus Evol., 6 (2020), veaa061. https://doi.org/10.1093/ve/veaa061 doi: 10.1093/ve/veaa061
|
| [6] | V. Thakur, S. Bhola, P. Thakur, S. K. S. Patel, S. Kulshrestha, R. K. Ratho, et al., Waves and variants of SARS-CoV-2: understanding the causes and effect of the COVID-19 catastrophe, Infection, 1–16. https://doi.org/10.1007/s15010-021-01734-2 |
| [7] |
K. W. Okamoto, V. Ong, R. Wallace, R. Wallace, L. F. Chaves, When might host heterogeneity drive the evolution of asymptomatic, pandemic coronaviruses?, Nonlinear Dyn., 111 (2023), 927–949. https://doi.org/10.1007/s11071-022-07548-7 doi: 10.1007/s11071-022-07548-7
|
| [8] | A. L. Barabási, Network science, Philos. Trans. R. Soc.: Math., Phys. Eng. Scie., 371 (2013), 20120375. https://doi.org/10.1098/rsta.2012.0375 |
| [9] |
S. Bugalia, J. P. Tripathi, H. Wang, Estimating the time-dependent effective reproduction number and vaccination rate for COVID-19 in the USA and India, Math. Biosci. Eng, 20 (2023), 4673–4689. https://doi.org/10.3934/mbe.2023216 doi: 10.3934/mbe.2023216
|
| [10] |
F. Córdova-Lepe, J. P. Gutiérrez-Jara, G. Chowell, Influence of the effective reproduction number on the SIR model with a dynamic transmission rate, Mathematics, 12 (2024), 1793. https://doi.org/10.3390/math12121793 doi: 10.3390/math12121793
|
| [11] |
D. Jorge, J. Oliveira, J. Miranda, R. Andrade, S. Pinho, Estimating the effective reproduction number for heterogeneous models using incidence data, R. Soc. Open Sci., 9 (2022), 220005. https://doi.org/10.1098/rsos.220005 doi: 10.1098/rsos.220005
|
| [12] |
S. Koyama, Estimating effective reproduction number revisited, Infect. Dis. Modell., 8 (2023), 1063–1078. https://doi.org/10.1016/j.idm.2023.08.006 doi: 10.1016/j.idm.2023.08.006
|
| [13] | E. P. D. Silva, A. M. Lima, Assessing the time evolution of COVID-19 effective reproduction number in Brazil, Anais da Academia Brasileira de Ciências, 96 (2024), e20221050. https://doi.org/10.1590/0001-3765202420221050 |
| [14] |
G. Chowell, C. Viboud, Is it growing exponentially fast?–impact of assuming exponential growth for characterizing and forecasting epidemics with initial near-exponential growth dynamics, Infect. Dis. Modell., 1 (2016), 71–78. https://doi.org/10.1016/j.idm.2016.07.004 doi: 10.1016/j.idm.2016.07.004
|
| [15] |
G. Chowell, L. Sattenspiel, S. Bansal, C. Viboud, Mathematical models to characterize early epidemic growth: A review, Phys. Life Rev., 18 (2016), 66–97. https://doi.org/10.1016/j.plrev.2016.07.005 doi: 10.1016/j.plrev.2016.07.005
|
| [16] | P. Yan, G. Chowell, Quantitative Methods for Investigating Infectious Disease Outbreaks, Springer, 2019. https://doi.org/10.1007/978-3-030-21923-9 |
| [17] |
A. Tariq, E. A. Undurraga, C. C. Laborde, K. Vogt-Geisse, R. Luo, R. Rothenberg, et al., Transmission dynamics and control of COVID-19 in Chile, March-October, 2020, PLoS Neglected Trop. Dis., 15 (2021), e0009070. https://doi.org/10.1371/journal.pntd.0009070 doi: 10.1371/journal.pntd.0009070
|
| [18] |
Y. Alimohamadi, M. Taghdir, M. Sepandi, Estimate of the basic reproduction number for COVID-19 a systematic review and meta-analysis, J. Prev. Med. Publ. Health, 53 (2020), 151. https://doi.org/10.3961/jpmph.20.076 doi: 10.3961/jpmph.20.076
|
| [19] |
G. Chowell, S. Dahal, A. Tariq, K. Roosa, J. M. Hyman, R. Luo, An ensemble n-sub-epidemic modeling framework for short-term forecasting epidemic trajectories: application to the COVID-19 pandemic in the USA, PLoS Comput. Biol., 18 (2022), e1010602. https://doi.org/10.1371/journal.pcbi.1010602 doi: 10.1371/journal.pcbi.1010602
|
| [20] |
G. Massonis, J. R. Banga, A. F. Villaverde, Structural identifiability and observability of compartmental models of the COVID-19 pandemic, Annu. Rev. Control, 51 (2021), 441–459. https://doi.org/10.1016/j.arcontrol.2020.12.001 doi: 10.1016/j.arcontrol.2020.12.001
|
| [21] |
G. González-Parra, M. Díaz-Rodríguez, A. J. Arenas, Mathematical modeling to study the impact of immigration on the dynamics of the COVID-19 pandemic: A case study for Venezuela, Spatial Spatio-temporal Epidemiol., 43 (2022), 100532. https://doi.org/10.1016/j.sste.2022.100532 doi: 10.1016/j.sste.2022.100532
|
| [22] |
S. S. Musa, S. Zhao, M. H. Wang, A. G. Habib, U. T. Mustapha, D. He, Estimation of exponential growth rate and basic reproduction number of the coronavirus disease 2019 (COVID-19) in Africa, Infect. Dis. Poverty, 9 (2020), 1–6. https://doi.org/10.1186/s40249-020-00718-y doi: 10.1186/s40249-020-00718-y
|
| [23] |
A. Mallela, J. Neumann, E. F. Miller, Y. Chen, R. G. Posner, Y. T. Lin, et al., Bayesian inference of state-level COVID-19 basic reproduction numbers across the United States, Viruses, 14 (2022), 157. https://doi.org/10.3390/v14010157 doi: 10.3390/v14010157
|
| [24] |
L. F. Chaves, L. A. Hurtado, M. R. Rojas, M. D. Friberg, R. M. Rodríguez, M. L. Avila-Aguero, COVID-19 basic reproduction number and assessment of initial suppression policies in Costa Rica, Math. Modell. Nat. Phenom., 15 (2020), 32. https://doi.org/10.1051/mmnp/2020019 doi: 10.1051/mmnp/2020019
|
| [25] |
S. Ravuri, E. Burnor, I. Routledge, N. M. Linton, M. Thakur, A. Boehm, et al., Estimating effective reproduction numbers using wastewater data from multiple sewersheds for SARS-CoV-2 in California counties, Epidemics, 50 (2025), 100803. https://doi.org/10.1016/j.epidem.2024.100803 doi: 10.1016/j.epidem.2024.100803
|
| [26] |
S. S. Nadim, I. Ghosh, J. Chattopadhyay, Short-term predictions and prevention strategies for COVID-19: a model-based study, Appl. Math. Comput., 404 (2021), 126251. https://doi.org/10.1016/j.amc.2021.126251 doi: 10.1016/j.amc.2021.126251
|
| [27] |
P. Shil, N. M. Atre, A. A. Patil, B. V. Tandale, P. Abraham, District-wise estimation of basic reproduction number (R0) for COVID-19 in India in the initial phase, Spatial Inf. Res., 30 (2022), 37–45. http://dx.doi.org/10.1007/s41324-021-00412-7 doi: 10.1007/s41324-021-00412-7
|
| [28] |
C. Y. Shen, Logistic growth modelling of COVID-19 proliferation in China and its international implications, Int. J. Infect. Dis., 96 (2020), 582–589. https://doi.org/10.1016/j.ijid.2020.04.085 doi: 10.1016/j.ijid.2020.04.085
|
| [29] |
S. Khajanchi, K. Sarkar, J. Mondal, K. S. Nisar, S. F. Abdelwahab, Mathematical modeling of the COVID-19 pandemic with intervention strategies, Results Phys., 25 (2021), 104285. https://doi.org/10.1016/j.rinp.2021.104285 doi: 10.1016/j.rinp.2021.104285
|
| [30] |
C. J. Silva, G. Cantin, C. Cruz, R. Fonseca-Pinto, R. Passadouro, E. S. Dos Santos, et al., Complex network model for COVID-19: human behavior, pseudo-periodic solutions and multiple epidemic waves, J. Math. Anal. Appl., 514 (2022), 125171. https://doi.org/10.1016/j.jmaa.2021.125171 doi: 10.1016/j.jmaa.2021.125171
|
| [31] |
F. Prinzi, C. Militello, N. Scichilone, S. Gaglio, S. Vitabile, Explainable machine-learning models for COVID-19 prognosis prediction using clinical, laboratory and radiomic features, IEEE Access, 11 (2023), 121492–121510. https://doi.org/10.1109/ACCESS.2023.3327808 doi: 10.1109/ACCESS.2023.3327808
|
| [32] |
D. Wang, C. Huang, S. Bao, T. Fan, Z. Sun, Y. Wang, et al., Study on the prognosis predictive model of COVID-19 patients based on CT radiomics, Sci. Rep., 11 (2021), 11591. https://doi.org/10.1016/j.epidem.2016.01.002 doi: 10.1016/j.epidem.2016.01.002
|
| [33] | J. H. U. C. for Systems Science and Engineering, Covid-19 data repository by the center for systems science and engineering (CSSE) at Johns Hopkins University. |
| [34] |
W. F. Denetclaw, Z. K. Otto, S. Christie, E. Allen, M. Cruz, K. A. Potter, et al., Diné Navajo resilience to the COVID-19 pandemic, PloS One, 17 (2022), e0272089. https://doi.org/10.1371/journal.pone.0272089 doi: 10.1371/journal.pone.0272089
|
| [35] | Office of the governor, Press releases from governor of New Mexico, USA, 2020. Available from: https://www.governor.state.nm.us/press-releases/. |
| [36] | T. Britton, Stochastic epidemic models: A survey, Math. Biosci,, 225 (2010), 24–35. https://doi.org/10.1016/j.mbs.2010.01.006 |
| [37] | C. Balsa, I. Lopes, T. Guarda, J. Rufino, Computational simulation of the COVID-19 epidemic with the SEIR stochastic model, Comput. Math. Organ. Theory, 1–19. https://doi.org/10.1007/s10588-021-09327-y |
| [38] |
D. Niño-Torres, A. Ríos-Gutiérrez, V. Arunachalam, C. Ohajunwa, P. Seshaiyer, Stochastic modeling, analysis, and simulation of the COVID-19 pandemic with explicit behavioral changes in Bogotá: A case study, Infect. Dis. Modell., 7 (2022), 199–211. https://doi.org/10.1016/j.idm.2021.12.008 doi: 10.1016/j.idm.2021.12.008
|
| [39] |
S. Ahmetolan, A. H. Bilge, A. Demirci, A. Peker-Dobie, O. Ergonul, What can we estimate from fatality and infectious case data using the susceptible-infected-removed (SIR) model? a case study of Covid-19 pandemic, Front. Med., 7 (2020), 556366. https://doi.org/10.3389/fmed.2020.556366 doi: 10.3389/fmed.2020.556366
|
| [40] |
A. de Miguel-Arribas, A. Aleta, Y. Moreno, Impact of vaccine hesitancy on secondary COVID-19 outbreaks in the US: an age-structured SIR model, BMC Infect. Dis., 22 (2022), 511. https://doi.org/10.1186/s12879-022-07486-0 doi: 10.1186/s12879-022-07486-0
|
| [41] |
P. Cumsille, Ó. Rojas-Díaz, P. M. de Espanés, P. Verdugo-Hernández, Forecasting COVID-19 chile' second outbreak by a generalized SIR model with constant time delays and a fitted positivity rate, Math. Comput. Simul., 193 (2022), 1–18. https://doi.org/10.1016/j.matcom.2021.09.016 doi: 10.1016/j.matcom.2021.09.016
|
| [42] |
I. Cooper, A. Mondal, C. G. Antonopoulos, A SIR model assumption for the spread of COVID-19 in different communities, Chaos, Solitons Fractals, 139 (2020), 110057. https://doi.org/10.1016/j.chaos.2020.110057 doi: 10.1016/j.chaos.2020.110057
|
| [43] |
C. Ma, X. Li, Z. Zhao, F. Liu, K. Zhang, A. Wu, et al., Understanding dynamics of pandemic models to support predictions of COVID-19 transmission: parameter sensitivity analysis of SIR-type models, IEEE J. Biomed. Health. Inf., 26 (2022), 2458–2468. https://doi.org/10.1109/jbhi.2022.3168825 doi: 10.1109/jbhi.2022.3168825
|
| [44] |
G. Chowell, H. Nishiura, L. M. Bettencourt, Comparative estimation of the reproduction number for pandemic influenza from daily case notification data, J. R. Soc. Interface, 4 (2007), 155–166. https://doi.org/10.1098/rsif.2006.0161 doi: 10.1098/rsif.2006.0161
|
| [45] |
Y. R. Liyanage, G. Chowell, G. Pogudin, N. Tuncer, Structural and practical identifiability of phenomenological growth models for epidemic forecasting, Viruses, 17 (2025), 496. https://doi.org/10.3390/v17040496 doi: 10.3390/v17040496
|
| [46] |
P. Yan, G. Chowell, Modeling sub-exponential epidemic growth dynamics through unobserved individual heterogeneity: a frailty model approach, Math. Biosci. Eng., 21 (2024), 7278–7296. https://doi.org/10.3934/mbe.2024321 doi: 10.3934/mbe.2024321
|
| [47] |
G. Chowell, Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts, Infect. Dis. Modell., 2 (2017), 379–398. https://doi.org/10.1016/j.idm.2017.08.001 doi: 10.1016/j.idm.2017.08.001
|
| [48] |
C. Viboud, L. Simonsen, G. Chowell, A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks, Epidemics, 15 (2016), 27–37. https://doi.org/10.1016/j.epidem.2016.01.002 doi: 10.1016/j.epidem.2016.01.002
|
| [49] |
J. Ma, J. Dushoff, B. M. Bolker, D. J. Earn, Estimating initial epidemic growth rates, Bull. Math. Biol., 76 (2014), 245–260. https://doi.org/10.1007/s11538-013-9918-2 doi: 10.1007/s11538-013-9918-2
|
| [50] | N. R. Draper, H. Smith, Applied Regression Analysis, John Wiley & Sons, 1998. https://doi.org/10.1002/9781118625590 |
| [51] |
P. Coletti, P. Libin, O. Petrof, L. Willem, S. Abrams, S. A. Herzog, et al., A data-driven metapopulation model for the Belgian COVID-19 epidemic: assessing the impact of lockdown and exit strategies, BMC Infect. Dis., 21 (2021), 1–12. https://doi.org/10.1186/s12879-021-06092-w doi: 10.1186/s12879-021-06092-w
|
| [52] |
G. González-Parra, A. J. Arenas, D. F. Aranda, L. Segovia, Modeling the epidemic waves of AH1N1/09 influenza around the world, Spatial Spatio-temporal Epidemiol., 2 (2011), 219–226. https://doi.org/10.1016/j.sste.2011.05.002 doi: 10.1016/j.sste.2011.05.002
|
| [53] | W. Pan, Q. Deng, J. Li, Z. Wang, W. Zhu, STSIR: a spatial temporal pandemic model with mobility data-A COVID-19 study, in 2021 International Joint Conference on Neural Networks (IJCNN), IEEE, 2021, 1–8. https://doi.org/10.1109/IJCNN52387.2021.9533596 |
| [54] |
A. Uzzoli, S. Z. Kovács, A. Fábián, B. Páger, T. Szabó, Spatial analysis of the Covid-19 pandemic in Hungary: Changing epidemic waves in time and space, Region, 8 (2021), 147–165. https://doi.org/10.18335/region.v8i2.343 doi: 10.18335/region.v8i2.343
|
| [55] | S. Chauhan, P. Rana, K. Chaudhary, T. Singh, Economic evaluation of two-strain covid-19 compartmental epidemic model with pharmaceutical and non-pharmaceutical interventions and spatio-temporal patterns, Results Control Optim., 100444. https://doi.org/10.1016/j.rico.2024.100444 |
| [56] |
Y. Li, H. Campbell, D. Kulkarni, A. Harpur, M. Nundy, X. Wang, et al., The temporal association of introducing and lifting non-pharmaceutical interventions with the time-varying reproduction number (R) of SARS-CoV-2: a modelling study across 131 countries, Lancet Infect. Dis., 21 (2021), 193–202. https://doi.org/10.1016/S1473-3099(20)30785-4 doi: 10.1016/S1473-3099(20)30785-4
|
| [57] |
F. Majid, A. M. Deshpande, S. Ramakrishnan, S. Ehrlich, M. Kumar, Analysis of epidemic spread dynamics using a PDE model and COVID-19 data from Hamilton County OH USA, IFAC-PapersOnLine, 54 (2021), 322–327. https://doi.org/10.1016/j.ifacol.2021.11.194 doi: 10.1016/j.ifacol.2021.11.194
|
| [58] |
G. Chowell, A. Bleichrodt, S. Dahal, A. Tariq, K. Roosa, J. M. Hyman, R. Luo, GrowthPredict: A toolbox and tutorial-based primer for fitting and forecasting growth trajectories using phenomenological growth models, Sci. Rep., 14 (2024), 1630. https://doi.org/10.1038/s41562-020-0884-z doi: 10.1038/s41562-020-0884-z
|
| [59] |
G. Meyerowitz-Katz, L. Merone, A systematic review and meta-analysis of published research data on COVID-19 infection fatality rates, Int. J. Infect. Dis., 101 (2020), 138–148. https://doi.org/10.1016/j.ijid.2020.09.1464 doi: 10.1016/j.ijid.2020.09.1464
|
| [60] | L. Wilson, SARS-CoV-2, COVID-19, infection fatality rate (IFR) implied by the serology, antibody, testing in New York City, in COVID-19, Infection Fatality Rate (IFR) Implied by the Serology, Antibody, Testing in New York City (November 6, 2023). |
| [61] |
P. Magal, G. Webb, The parameter identification problem for SIR epidemic models: identifying unreported cases, J. Math. Biol., 77 (2018), 1629–1648. https://doi.org/10.1007/s00285-017-1203-9 doi: 10.1007/s00285-017-1203-9
|
| [62] |
G. Luebben, G. González-Parra, B. Cervantes, Study of optimal vaccination strategies for early COVID-19 pandemic using an age-structured mathematical model: A case study of the USA, Math. Biosci. Eng., 20 (2023), 10828–10865. https://doi.org/10.3934/mbe.2023481 doi: 10.3934/mbe.2023481
|
| [63] |
X. Huo, J. Chen, S. Ruan, Estimating asymptomatic, undetected and total cases for the COVID-19 outbreak in Wuhan: a mathematical modeling study, BMC Infect. Dis., 21 (2021), 476. https://doi.org/10.1186/s12879-021-06078-8 doi: 10.1186/s12879-021-06078-8
|
| [64] |
H. S. Lima, U. Tupinambás, F. G. Guimarães, Estimating time-varying epidemiological parameters and underreporting of Covid-19 cases in Brazil using a mathematical model with fuzzy transitions between epidemic periods, PloS One, 19 (2024), e0305522. https://doi.org/10.1371/journal.pone.0305522 doi: 10.1371/journal.pone.0305522
|
| [65] |
D. Baud, X. Qi, K. Nielsen-Saines, D. Musso, L. Pomar, G. Favre, Real estimates of mortality following COVID-19 infection, Lancet Iinfect. Dis., 20 (2020), 773. https://doi.org/10.1016/s1473-3099(20)30195-x doi: 10.1016/s1473-3099(20)30195-x
|
| [66] |
E. Mahase, Covid-19: death rate is 0.66% and increases with age, study estimates, BMJ: British Med. J., 369 (2020), m1327. https://doi.org/10.1136/bmj.m1327 doi: 10.1136/bmj.m1327
|
| [67] |
S. Gounane, J. Bakkas, M. Hanine, G. S. Choi, I. Ashraf, Generalized logistic model with time-varying parameters to analyze COVID-19 outbreak data, AIMS Math., 9 (2024), 18589–18607. https://doi.org/10.3934/math.2024905 doi: 10.3934/math.2024905
|
| [68] |
G. González-Parra, C. L. Pérez, M. Llamazares, R.-J. Villanueva, J. Villegas-Villanueva, Challenges in the mathematical modeling of the spatial diffusion of SARS-CoV-2 in Chile, Math. Biosci. Eng., 22 (2025), 1680–1721. https://doi.org/10.3934/mbe.2025062 doi: 10.3934/mbe.2025062
|
| [69] |
Y. Kim, A. V. Barber, S. Lee, Modeling influenza transmission dynamics with media coverage data of the 2009 H1N1 outbreak in Korea, Plos One, 15 (2020), e0232580. https://doi.org/10.1371/journal.pone.0232580 doi: 10.1371/journal.pone.0232580
|
| [70] |
S. Lalwani, G. Sahni, B. Mewara, R. Kumar, Predicting optimal lockdown period with parametric approach using three-phase maturation SIRD model for COVID-19 pandemic, Chaos, Solitons Fractals, 138 (2020), 109939. https://doi.org/10.1016/j.chaos.2020.109939 doi: 10.1016/j.chaos.2020.109939
|
| [71] |
N. Parolini, L. Dede', P. F. Antonietti, G. Ardenghi, A. Manzoni, E. Miglio, SUIHTER: A new mathematical model for COVID-19. application to the analysis of the second epidemic outbreak in Italy, Proc. R. Soc. A, 477 (2021), 20210027. https://doi.org/10.1098/rspa.2021.0027 doi: 10.1098/rspa.2021.0027
|
| [72] |
H. Y. Shin, A multi-stage SEIR (D) model of the COVID-19 epidemic in Korea, Ann. Med., 53 (2021), 1160–1170. https://doi.org/10.1080/07853890.2021.1949490 doi: 10.1080/07853890.2021.1949490
|
| [73] |
T. Callaghan, J. A. Lueck, K. L. Trujillo, A. O. Ferdinand, Rural and urban differences in COVID-19 prevention behaviors, J. Rural Health, 37 (2021), 287–295. https://doi.org/10.1111/jrh.12556 doi: 10.1111/jrh.12556
|
| [74] | K. Cartwright, M. Gonya, L. Baca, A. Eakman, "We're Such a Small Community": A qualitative study of COVID-19 pandemic experiences in rural New Mexico, in Health and Health Care Inequities, Infectious Diseases and Social Factors, Emerald Publishing Limited, (2022), 41–57. http://dx.doi.org/10.1108/S0275-495920220000039003 |
| [75] |
D. F. Cuadros, A. J. Branscum, Z. Mukandavire, F. D. Miller, N. MacKinnon, Dynamics of the COVID-19 epidemic in urban and rural areas in the United States, Ann. Epidemiol., 59 (2021), 16–20. https://doi.org/10.1016/j.annepidem.2021.04.007 doi: 10.1016/j.annepidem.2021.04.007
|
| [76] |
H. N. Grome, R. Raman, B. D. Katz, M. M. Fill, T. F. Jones, W. Schaffner, et al., Disparities in COVID-19 mortality rates: implications for rural health policy and preparedness, J. Publ. Health Manage. Pract., 28 (2022), 478–485. https://doi.org/10.1097/phh.0000000000001507 doi: 10.1097/phh.0000000000001507
|
| [77] | A. Aminpour, Policy brief: Comparison and recommendations for state COVID-19 responses of New Mexico and Utah, Georgetown Sci. Res. J., 1 (2021), 63–69. |
| [78] | J. Hickman, COVID-19 and New Mexico daily newspaper coverage of Native American government elected leaders, Am. Indian Culture Res. J., 46. https://doi.org/10.17953/A3.1369 |
| [79] |
J. J. V. Bavel, K. Baicker, P. S. Boggio, V. Capraro, A. Cichocka, M. Cikara, et al., Using social and behavioural science to support COVID-19 pandemic response, Nat. Hum. Behav., 4 (2020), 460–471. https://doi.org/10.1038/s41562-020-0884-z doi: 10.1038/s41562-020-0884-z
|
| [80] |
G. Gonzalez-Parra, A. J. Arenas, Nonlinear dynamics of the introduction of a new SARS-CoV-2 variant with different infectiousness, Mathematics, 9 (2021), 1564. https://doi.org/10.3390/math9131564 doi: 10.3390/math9131564
|
| [81] |
T. Yue, B. Fan, Y. Zhao, J. P. Wilson, Z. Du, Q. Wang, et al., Dynamics of the COVID-19 basic reproduction numbers in different countries, Sci. Bull., 66 (2020), 229. https://doi.org/10.1016/j.scib.2020.10.008 doi: 10.1016/j.scib.2020.10.008
|
| [82] |
M. S. Aronna, R. Guglielmi, L. M. Moschen, Estimate of the rate of unreported COVID-19 cases during the first outbreak in Rio de Janeiro, Infecti. Dis. Modell., 7 (2022), 317–332. https://doi.org/10.1016/j.idm.2022.06.001 doi: 10.1016/j.idm.2022.06.001
|
| [83] |
M. Liu, J. Ning, Y. Du, J. Cao, D. Zhang, J. Wang, et al., Modelling the evolution trajectory of COVID-19 in Wuhan, China: experience and suggestions, Public health, 183 (2020), 76–80. https://doi.org/10.1016/j.puhe.2020.05.001 doi: 10.1016/j.puhe.2020.05.001
|
| [84] |
R. Abolpour, S. Siamak, M. Mohammadi, P. Moradi, M. Dehghani, Linear parameter varying model of COVID-19 pandemic exploiting basis functions, Biomed. Signal Process. Control, 70 (2021), 102999. https://doi.org/10.1016/j.bspc.2021.102999 doi: 10.1016/j.bspc.2021.102999
|
| [85] |
A. Hasan, H. Susanto, V. Tjahjono, R. Kusdiantara, E. Putri, N. Nuraini, et al., A new estimation method for COVID-19 time-varying reproduction number using active cases, Sci. Rep., 12 (2022), 6675. https://doi.org/10.1038/s41598-022-10723-w doi: 10.1038/s41598-022-10723-w
|
| [86] |
Y. Zelenkov, I. Reshettsov, Analysis of the COVID-19 pandemic using a compartmental model with time-varying parameters fitted by a genetic algorithm, Expert Syst. Appl., 224 (2023), 120034. https://doi.org/10.1016/j.eswa.2023.120034 doi: 10.1016/j.eswa.2023.120034
|
| [87] |
Y. Zhao, S. W. Wong, A comparative study of compartmental models for COVID-19 transmission in Ontario, Canada, Sci. Rep., 13 (2023), 15050. https://doi.org/10.1038/s41598-023-42043-y doi: 10.1038/s41598-023-42043-y
|
| [88] |
L. Zou, F. Ruan, M. Huang, L. Liang, H. Huang, Z. Hong, et al., SARS-CoV-2 viral load in upper respiratory specimens of infected patients, N. Engl. J. Med., 382 (2020), 1177–1179. https://doi.org/10.1056/NEJMc2001737 doi: 10.1056/NEJMc2001737
|
| [89] |
J. Demongeot, P. Magal, Data-driven mathematical modeling approaches for COVID-19: A survey, Phys. Life Rev., 50 (2024), 166–208. https://doi.org/10.1016/j.plrev.2024.08.004 doi: 10.1016/j.plrev.2024.08.004
|
| [90] |
Z. Liu, P. Magal, G. Webb, Predicting the number of reported and unreported cases for the COVID-19 epidemics in China, South Korea, Italy, France, Germany and United Kingdom, J. Theor. Biol., 509 (2021), 110501. https://doi.org/10.1016/j.jtbi.2020.110501 doi: 10.1016/j.jtbi.2020.110501
|
| [91] |
L. F. Chaves, M. D. Friberg, L. A. Hurtado, R. M. Rodríguez, D. O'Sullivan, L. R. Bergmann, Trade, uneven development and people in motion: Used territories and the initial spread of COVID-19 in Mesoamerica and the Caribbean, Socio-econ. Plann. Sci., 80 (2022), 101161. https://doi.org/10.1016/j.seps.2021.101161 doi: 10.1016/j.seps.2021.101161
|