Research article

Considering experimental frame rates and robust segmentation analysis of piecewise-linear microparticle trajectories

  • Published: 08 August 2025
  • The movement of intracellular cargo transported by molecular motors is commonly marked by switches between directed motion and stationary pauses. The predominant measure for assessing movement is effective diffusivity, which predicts the mean-squared displacement of particles over long timescales. In this work, we considered an alternative analysis regime that focused on shorter timescales and relied on automated segmentation of paths. Due to intrinsic uncertainty in changepoint analysis, we highlighted the importance of statistical summaries that were robust with respect to the performance of segmentation algorithms. In contrast to effective diffusivity, which averaged over multiple behaviors, we emphasized tools that highlighted the different motor-cargo states, with an eye toward identifying biophysical mechanisms that determined emergent whole-cell transport properties. By developing a Markov chain model for noisy, continuous, piecewise-linear microparticle movement, and associated mathematical analysis, we provided insight into a common question posed by experimentalists: how does the choice of observational frame rate affect what is inferred about transport properties?

    Citation: Keisha J. Cook, Nathan Rayens, Linh Do, Christine K. Payne, Scott A. McKinley. Considering experimental frame rates and robust segmentation analysis of piecewise-linear microparticle trajectories[J]. Mathematical Biosciences and Engineering, 2025, 22(10): 2595-2626. doi: 10.3934/mbe.2025095

    Related Papers:

  • The movement of intracellular cargo transported by molecular motors is commonly marked by switches between directed motion and stationary pauses. The predominant measure for assessing movement is effective diffusivity, which predicts the mean-squared displacement of particles over long timescales. In this work, we considered an alternative analysis regime that focused on shorter timescales and relied on automated segmentation of paths. Due to intrinsic uncertainty in changepoint analysis, we highlighted the importance of statistical summaries that were robust with respect to the performance of segmentation algorithms. In contrast to effective diffusivity, which averaged over multiple behaviors, we emphasized tools that highlighted the different motor-cargo states, with an eye toward identifying biophysical mechanisms that determined emergent whole-cell transport properties. By developing a Markov chain model for noisy, continuous, piecewise-linear microparticle movement, and associated mathematical analysis, we provided insight into a common question posed by experimentalists: how does the choice of observational frame rate affect what is inferred about transport properties?



    加载中


    [1] S. S. Mogre, A. I. Brown, E. F. Koslover, Getting around the cell: physical transport in the intracellular world, Phys. Biol., 17 (2020), 061003. https://doi.org/10.1088/1478-3975/aba5e5 doi: 10.1088/1478-3975/aba5e5
    [2] J. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, et al., TrackMate: An open and extensible platform for single-particle tracking, Methods, 115 (2017), 80–90. https://doi.org/10.1016/j.ymeth.2016.09.016 doi: 10.1016/j.ymeth.2016.09.016
    [3] S. Neumann, R. Chassefeyre, G. E. Campbell, S. E. Encalada, KymoAnalyzer: a software tool for the quantitative analysis of intracellular transport in neurons, Traffic, 18 (2017), 71–88. https://doi.org/10.1111/tra.12456 doi: 10.1111/tra.12456
    [4] K. Barlan, M. J. Rossow, V. I. Gelfand, The journey of the organelle: teamwork and regulation in intracellular transport, Curr. Opin. Cell Biol., 25 (2013), 483–488. https://doi.org/10.1016/j.ceb.2013.02.018 doi: 10.1016/j.ceb.2013.02.018
    [5] B. Grafstein, D. S. Forman, Intracellular transport in neurons, Physiol. Rev., 60 (1980), 1167–1283. https://doi.org/10.1152/physrev.1980.60.4.1167 doi: 10.1152/physrev.1980.60.4.1167
    [6] B. W. Guzik, L. S. B. Goldstein, Microtubule-dependent transport in neurons: steps towards an understanding of regulation, function and dysfunction, Curr. Opin. Cell Biol., 16 (2004), 443–450. https://doi.org/10.1016/j.ceb.2004.06.002 doi: 10.1016/j.ceb.2004.06.002
    [7] N. P. Staff, E. E. Benarroch, C. J. Klein, Neuronal intracellular transport and neurodegenerative disease, Neurology, 76 (2011), 1015–1020. https://doi.org/10.1212/WNL.0b013e31821103f7 doi: 10.1212/WNL.0b013e31821103f7
    [8] P. C. Bressloff, J. M. Newby, Stochastic models of intracellular transport, Rev. Mod. Phys., 85 (2013), 135–196. https://doi.org/10.1103/RevModPhys.85.135 doi: 10.1103/RevModPhys.85.135
    [9] J. Suh, M, Dawson, J. Hanes, Real-time multiple-particle tracking: applications to drug and gene delivery, Adv. Drug Delivery Rev., 57 (2005), 63–78. https://doi.org/10.1016/j.addr.2004.06.001 doi: 10.1016/j.addr.2004.06.001
    [10] Y. Lee, C. Phelps, T. Huang, B. Mostofian, L. Wu, Y. Zhang, et al., High-throughput, single-particle tracking reveals nested membrane domains that dictate KRasG12D diffusion and trafficking, eLife, (2019), e46393. https://doi.org/10.7554/eLife.46393
    [11] J. P. Caviston, E. L. F. Holzbaur, Microtubule motors at the intersection of trafficking and transport, Trends Cell Biol., 16 (2006), 530–537. https://doi.org/10.1016/j.tcb.2006.08.002 doi: 10.1016/j.tcb.2006.08.002
    [12] S. Klumpp, R. Lipowsky, Cooperative cargo transport by several molecular motors, PNAS, 102 (2005), 17284–17289. https://doi.org/10.1073/pnas.0507363102 doi: 10.1073/pnas.0507363102
    [13] M. J. I. Müller, S. Klumpp, R. Lipowsky, Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors, PNAS, 105 (2008), 4609–4614. https://doi.org/10.1073/pnas.0706825105 doi: 10.1073/pnas.0706825105
    [14] M. J. I. Müller, S. Klumpp, R. Lipowsky, Bidirectional transport by molecular motors: Enhanced processivity and response to external forces, Biophys. J., 98 (2010), 2610–2618. https://doi.org/10.1016/j.bpj.2010.02.037 doi: 10.1016/j.bpj.2010.02.037
    [15] Q. Ba, G. Raghavan, K. Kiselyov, G. Yang, Whole-cell scale dynamic organization of lysosomes revealed by spatial statistical analysis, Cell Rep., 23 (2018), 3591–3606. https://doi.org/10.1016/j.celrep.2018.05.079 doi: 10.1016/j.celrep.2018.05.079
    [16] Š. Bálint, I. V. Vilanova, Á. S. Álvarez, M. Lakadamyali, Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections, PNAS, 110 (2013), 3375–3380. https://doi.org/10.1073/pnas.1219206110 doi: 10.1073/pnas.1219206110
    [17] M. L. M. Jongsma, I. Berlin, R. H. M. Wijdeven, L. Janssen, G. M. C. Janssen, M. A. Garstka, et al., An ER-associated pathway defines endosomal architecture for controlled cargo transport, Cell, 166 (2016), 152–166. https://doi.org/10.1016/j.cell.2016.05.078 doi: 10.1016/j.cell.2016.05.078
    [18] S. Karki, E. L. F. Holzbaur, Cytoplasmic dynein and dynactin in cell division and intracellular transport, Curr. Opin. Cell Biol., 11 (1999), 45–53. https://doi.org/10.1016/S0955-0674(99)80006-4 doi: 10.1016/S0955-0674(99)80006-4
    [19] R. D. Vale, Intracellular transport using microtubule-based motors, Annu. Rev. Cell Biol., 3 (1987), 347–378.
    [20] R. D. Vale, R. A. Milligan, The way things move: Looking under the hood of molecular motor proteins, Science, 288 (2000), 88. https://doi.org/10.1126/science.288.5463.88 doi: 10.1126/science.288.5463.88
    [21] M. A. Jensen, Q. Feng, W. O. Hancock, S. A. McKinley, A change point analysis protocol for comparing intracellular transport by different molecular motor combinations, Math. Biosci. Eng., 18 (2021), 8962–8996. https://doi.org/10.3934/mbe.2021442 doi: 10.3934/mbe.2021442
    [22] D. Barry, J. A. Hartigan, A Bayesian analysis for change point problems, J. Am. Stat. Assoc., 88 (1993), 309–319. https://doi.org/10.1080/01621459.1993.10594323 doi: 10.1080/01621459.1993.10594323
    [23] R. Das, C. W. Cairo, D. Coombs, A hidden Markov model for single particle tracks quantifies dynamic interactions between LFA-1 and the actin cytoskeleton, PLoS Comput. Biol., 5 (2009), 1–16. https://doi.org/10.1371/journal.pcbi.1000556 doi: 10.1371/journal.pcbi.1000556
    [24] C. Erdman, J. W. Emerson, bcp: an R package for performing a Bayesian analysis of change point problems, J. Stat. Software, 23 (2008), 1–13. https://doi.org/10.18637/jss.v023.i03 doi: 10.18637/jss.v023.i03
    [25] S. Yin, N. Song, H. Yang, Detection of velocity and diffusion coefficient change points in single-particle trajectories, Biophys. J., 115 (2018), 217–229. https://doi.org/10.1016/j.bpj.2017.11.008 doi: 10.1016/j.bpj.2017.11.008
    [26] J. D. Karslake, E. D. Donarski, S. A. Shelby, L. M. Demey, V. J. DiRita, S. L. Veatch, et al., SMAUG: Analyzing single-molecule tracks with nonparametric Bayesian statistics, Methods, 193 (2021), 16–26. https://doi.org/10.1016/j.ymeth.2020.03.008 doi: 10.1016/j.ymeth.2020.03.008
    [27] Z. Chen, L. Geffroy, J. S. Biteen, NOBIAS: Analyzing anomalous diffusion in single-molecule tracks with nonparametric Bayesian inference, Front. Bioinf., 1 (2021), 742073. https://doi.org/10.3389/fbinf.2021.742073 doi: 10.3389/fbinf.2021.742073
    [28] F. Persson, M. Lindén, C. Unoson, J. Elf, Extracting intracellular diffusive states and transition rates from single-molecule tracking data, Nat. Methods, 10 (2013), 265–269. https://doi.org/10.1038/nmeth.2367 doi: 10.1038/nmeth.2367
    [29] X. Michalet, Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., 82 (2010), 041914. https://doi.org/10.1103/PhysRevE.82.041914 doi: 10.1103/PhysRevE.82.041914
    [30] E. Kepten, A. Weron, G. Sikora, K. Burnecki, Y. Garini, Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments, PLoS One, 10 (2015), 1–10. https://doi.org/10.1371/journal.pone.0117722 doi: 10.1371/journal.pone.0117722
    [31] N. Monnier, S. M. Guo, M. Mori, J. He, P. Lénárt, M. Bathe, Bayesian approach to MSD-based analysis of particle motion in live cells, Biophys. J., 103 (2012), 616–626. https://doi.org/10.1016/j.bpj.2012.06.029 doi: 10.1016/j.bpj.2012.06.029
    [32] N. Monnier, Z. Barry, H. Y. Park, K. C. Su, Z. Katz, B. P. English, et al., Inferring transient particle transport dynamics in live cells, Nat. Methods, 12 (2015), 838–840. https://doi.org/10.1038/nmeth.3483 doi: 10.1038/nmeth.3483
    [33] M. J. Saxton, K. Jacobson, Single-particle tracking: applications to membrane dynamics, Annu. Rev. Biophys., 26 (1997), 373–399. https://doi.org/10.1146/annurev.biophys.26.1.373 doi: 10.1146/annurev.biophys.26.1.373
    [34] C. Manzo, M. F. Garcia-Parajo, A review of progress in single particle tracking: from methods to biophysical insights, Rep. Prog. Phys., 78 (2015), 124601. https://doi.org/10.1088/0034-4885/78/12/124601 doi: 10.1088/0034-4885/78/12/124601
    [35] H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, et al., Single particle tracking: from theory to biophysical applications, Chem. Rev., 117 (2017), 7331–7376. https://doi.org/10.1021/acs.chemrev.6b00815 doi: 10.1021/acs.chemrev.6b00815
    [36] I. M. Sokolov, Models of anomalous diffusion in crowded environments, Soft Matter, 8 (2012), 9043–9052. https://doi.org/10.1039/C2SM25701G doi: 10.1039/C2SM25701G
    [37] H. Qian, M. P. Sheetz, E. L. Elson, Single particle tracking. Analysis of diffusion and flow in two-dimensional systems, Biophys. J., 60 (1991), 910–921. https://doi.org/10.1016/S0006-3495(91)82125-7 doi: 10.1016/S0006-3495(91)82125-7
    [38] N. Ruthardt, D. C. Lamb, C. Bräuchle, Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles, Mol. Ther., 19 (2011), 1199–1211. https://doi.org/10.1038/mt.2011.102 doi: 10.1038/mt.2011.102
    [39] L. Gao, A. Garcia-Uribe, Y. Liu, C. Li, L. V. Wang, Photobleaching imprinting microscopy: seeing clearer and deeper, J. Cell Sci., 127 (2014), 288–294. https://doi.org/10.1242/jcs.142943 doi: 10.1242/jcs.142943
    [40] R. Diekmann, M. Kahnwald, A. Schoenit, J. Deschamps, U. Matti, J. Ries, Optimizing imaging speed and excitation intensity for single-molecule localization microscopy, Nat. Methods, 17 (2020), 909–912. https://doi.org/10.1038/s41592-020-0918-5 doi: 10.1038/s41592-020-0918-5
    [41] M. Lelek, M. T. Gyparaki, G. Beliu, F. Schueder, J. Griffié, S. Manley, Single-molecule localization microscopy, Nat. Rev. Methods Primers, 1 (2021), 39. https://doi.org/10.1038/s43586-021-00038-x doi: 10.1038/s43586-021-00038-x
    [42] P. Fearnhead, D. Grose, Cpop: detecting changes in piecewise-linear signals, J. Stat. Software, 109 (2024), 1–30. https://doi.org/10.18637/jss.v109.i07 doi: 10.18637/jss.v109.i07
    [43] Q. Feng, K. J. Mickolajczyk, G. Y. Chen, W. O. Hancock, Motor reattachment kinetics play a dominant role in multimotor-driven cargo transport, Biophys. J., 114 (2018), 400–409. https://doi.org/10.1016/j.bpj.2017.11.016 doi: 10.1016/j.bpj.2017.11.016
    [44] K. J. Mickolajczyk, E. Geyer, T. Kim, L. Rice, W. O. Hancock, Direct observation of individual tubulin dimers binding to growing microtubules, Biophys. J., 116 (2019), 156a-157a. https://doi.org/10.1016/j.bpj.2018.11.867 doi: 10.1016/j.bpj.2018.11.867
    [45] Y. Y. Wang, K. L. Nunn, D. Harit, S. A. McKinley, S. K. Lai, Minimizing biases associated with tracking analysis of submicron particles in heterogeneous biological fluids, J. Controlled Release, 220 (2015), 37–43. https://doi.org/10.1016/j.jconrel.2015.10.021 doi: 10.1016/j.jconrel.2015.10.021
    [46] A. S. Hansen, M. Woringer, J. B. Grimm, L. D. Lavis, R. Tjian, X. Darzacq, Robust model-based analysis of single-particle tracking experiments with Spot-On, eLife, 7 (2018), e33125. https://doi.org/10.7554/eLife.33125 doi: 10.7554/eLife.33125
    [47] D. Bandyopadhyay, A. Cyphersmith, J. A. Zapata, Y. J. Kim, C. K. Payne, Lysosome transport as a function of lysosome diameter, PLoS One, 9 (2014), e86847. https://doi.org/10.1371/journal.pone.0086847 doi: 10.1371/journal.pone.0086847
    [48] N. T. Rayens, K. J. Cook, S. A. McKinley, C. K. Payne, Transport of lysosomes decreases in the perinuclear region: Insights from changepoint analysis, Biophys. J., 121 (2022), 1205–1218. https://doi.org/10.1016/j.bpj.2022.02.032 doi: 10.1016/j.bpj.2022.02.032
    [49] N. T. Rayens, K. J. Cook, S. A. McKinley, C. K. Payne, Palmitate-mediated disruption of the endoplasmic reticulum decreases intracellular vesicle motility, Biophys. J., 122 (2023), 1355–1363. https://doi.org/10.1016/j.bpj.2023.03.001 doi: 10.1016/j.bpj.2023.03.001
    [50] M. Röding, M. Guo, D. A. Weitz, M. Rudemo, A. Särkkä, Identifying directional persistence in intracellular particle motion using Hidden Markov Models, Math. Biosci., 248 (2014), 140–145. https://doi.org/10.1016/j.mbs.2013.12.008 doi: 10.1016/j.mbs.2013.12.008
    [51] C. Svensson, K. Reglinski, W. Schliebs, R. Erdmann, C. Eggeling, M. T. Figge, Quantitative analysis of peroxisome tracks using a Hidden Markov Model, Sci. Rep., 13 (2023), 19694. https://doi.org/10.1038/s41598-023-46812-7 doi: 10.1038/s41598-023-46812-7
    [52] L. Do, S. A. McKinley, CPLASS Segmentation Algorithm, Avilable from: https://github.com/Ldo3/CPLASS.
    [53] S. E. Encalada, L. Szpankowski, C. Xia, L. S. B. Goldstein, Stable kinesin and dynein assemblies drive the axonal transport of mammalian prion protein vesicles, Cell, 114 (2011), 551–565. https://doi.org/10.1016/j.cell.2011.01.021 doi: 10.1016/j.cell.2011.01.021
    [54] H. A. Schroeder, J. Newby, A. Schaefer, B. Subramani, A. Tubbs, M. G. Forest, et al., LPS-binding IgG arrests actively motile Salmonella Typhimurium in gastrointestinal mucus, Mucosal Immunol., 13 (2020), 814–823. https://doi.org/10.1038/s41385-020-0267-9 doi: 10.1038/s41385-020-0267-9
    [55] M. Ciocanel, J. Fricks, P. R. Kramer, S. A. McKinley, Renewal reward perspective on linear switching diffusion systems in models of intracellular transport, Bull. Math. Biol., 82 (2020), 126. https://doi.org/10.1007/s11538-020-00797-w doi: 10.1007/s11538-020-00797-w
    [56] S. Walcott, D. M. Warshaw, Modeling myosin Va liposome transport through actin filament networks reveals a percolation threshold that modulates transport properties, Mol. Biol. Cell, 33 (2022), ar18. https://doi.org/10.1091/mbc.E21-08-0389 doi: 10.1091/mbc.E21-08-0389
    [57] R. Serfozo, Basics of Applied Stochastic Processes, Springer Science & Business Media, 2009.
    [58] G. A. Pavliotis, Stochastic Processes and Their Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations, Springer New York, NY, 2014. https://doi.org/10.1007/978-1-4939-1323-7
    [59] E. A. Brooks, Probabilistic methods for a linear reaction-hyperbolic system with constant coefficients, Ann. Appl. Probab., 9 (1999), 719–731. https://doi.org/10.1214/aoap/1029962811 doi: 10.1214/aoap/1029962811
    [60] J. Hughes, W. O. Hancock, J. Fricks, A matrix computational approach to kinesin neck linker extension, J. Theor. Biol., 269 (2011), 181–194. https://doi.org/10.1016/j.jtbi.2010.10.005 doi: 10.1016/j.jtbi.2010.10.005
    [61] A. Krishnan, B. I. Epureanu, Renewal-reward process formulation of motor protein dynamics, Bull. Math. Biol., 73 (2011), 2452–2482. https://doi.org/10.1007/s11538-011-9632-x doi: 10.1007/s11538-011-9632-x
    [62] L. Popovic, S. A. McKinley, M. C. Reed, A stochastic compartmental model for fast axonal transport, SIAM J. Appl. Math., 71 (2011), 1531–1556. https://doi.org/10.1137/090775385 doi: 10.1137/090775385
    [63] S. S. Wijeratne, S. A. Fiorenza, A. E. Neary, M. D. Betterton, Motor guidance by long-range communication on the microtubule highway, PNAS, 119 (2022), e2120193119. https://doi.org/10.1073/pnas.2120193119 doi: 10.1073/pnas.2120193119
    [64] T. Kaneko, K. Furuta, K. Oiwa, H. Shintaku, H. Kotera, R. Yokokawa, Different motilities of microtubules driven by kinesin-1 and kinesin-14 motors patterned on nanopillars, Sci. Adv., 6 (2020), 106063. https://doi.org/10.1126/sciadv.aax7413 doi: 10.1126/sciadv.aax7413
    [65] W. X. Chew, G. Henkin, F. Nédélec, T. Surrey, Effects of microtubule length and crowding on active microtubule network organization, iScience, 26 (2023), 106063. https://doi.org/10.1016/j.isci.2023.106063 doi: 10.1016/j.isci.2023.106063
    [66] X. Guo, D. Ta, K. Xu, Frame rate effects and their compensation on super-resolution microvessel imaging using ultrasound localization microscopy, Ultrasonics, 132 (2023), 107009. https://doi.org/10.1016/j.ultras.2023.107009 doi: 10.1016/j.ultras.2023.107009
    [67] S. Manley, J. M. Gillette, J. Lippincott-Schwartz, Chapter Five - Single-particle tracking photoactivated localization microscopy for mapping single-molecule dynamics, in Methods in Enzymology, Academic Press, 475 (2010), 109–120. https://doi.org/10.1016/S0076-6879(10)75005-9
    [68] H. D. MacGillavry, T. A. Blanpied, Single-molecule tracking photoactivated localization microscopy to map nano-scale structure and dynamics in living spines, Curr. Protocol. Neurosci., 65 (2013), 2–20. https://doi.org/10.1002/0471142301.ns0220s65 doi: 10.1002/0471142301.ns0220s65
    [69] A. V. Kashchuk, O. Perederiy, C. Caldini, L. Gardini, A. M. Negriyko, et al., Particle localization using local gradients and its application to nanometer stabilization of a microscope, ACS Nano, 17 (2023), 1344–1354. https://doi.org/10.1364/OE.16.014561 doi: 10.1364/OE.16.014561
    [70] M. V. Ciocanel, J. A. Kreiling, J. A. Gagnon, K. L. Mowry, B. Sandstede, Analysis of active transport by fluorescence recovery after photobleaching, Biophys. J., 112 (2017), 1714–1725. https://doi.org/10.1016/j.bpj.2017.02.042 doi: 10.1016/j.bpj.2017.02.042
    [71] J. Hughes, W. O. Hancock, J. Fricks, Kinesins with extended neck linkers: a chemomechanical model for variable-length stepping, Bull. Math. Biol., 74 (2012), 1066–1097. https://doi.org/10.1007/s11538-011-9697-6 doi: 10.1007/s11538-011-9697-6
    [72] A. Dupont, D. C. Lamb, Nanoscale three-dimensional single particle tracking, Nanoscale, 3 (2011), 4532–4541. https://doi.org/10.1039/C1NR10989H doi: 10.1039/C1NR10989H
    [73] Z. Ye, X. Wang, L. Xiao, Single-particle tracking with scattering-based optical microscopy, Anal. Chem., 91 (2019), 15327–15334. https://doi.org/10.1039/C8SC01828F doi: 10.1039/C8SC01828F
    [74] A. J. Berglund, Statistics of camera-based single-particle tracking, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., 82 (2010), 011917.
    [75] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J. D. Watson, et al., Molecular Biology of the Cell, Garland New York, 1994.
    [76] D. Han, N. Korabel, R. Chen, M. Johnston, A. Gavrilova, V. J. Allan, et al., Deciphering anomalous heterogeneous intracellular transport with neural networks, eLife, 9 (2020), e52224. https://doi.org/10.7554/eLife.52224 doi: 10.7554/eLife.52224
    [77] J. J. Blum, M. C. Reed, A model for slow axonal transport and its application to neurofilamentous neuropathies, Cell Motil., 12 (1989), 53–65. https://doi.org/10.1002/cm.970120107 doi: 10.1002/cm.970120107
    [78] A. Mogilner, T. C. Elston, H. Wang, G. Oster, Molecular motors: Theory, in Computational Cell Biology, (2002), 320–353. https://doi.org/10.1007/978-0-387-22459-6_12
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(733) PDF downloads(65) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog