Research article Special Issues

The Stochastic Gause Predator-Prey model: Noise-induced extinctions and invariance

  • Received: 22 April 2025 Revised: 04 June 2025 Accepted: 18 June 2025 Published: 26 June 2025
  • We consider the Gause predator-prey with general bounded or sub‑linear functional responses, – which includes those of Holling types Ⅰ–Ⅳ. – and multiplicative Gaussian noise. In contrast to previous studies, the prey in our model follows logistic dynamics while the predator's population is solely regulated by consumption of the prey. To ensure well-posedeness, we derive explicit Lyapunov‐type criteria ensuring global positivity and moment boundedness of solutions. We find conditions for noise‑induced extinctions, proving that stochasticity can drive either population to collapse even when the deterministic analogue predicts stable coexistence. In the case when the predator becomes extinct, we establish a limiting distribution for the predator's population. Last, for functional responses of Holling type Ⅰ, we provide sufficient conditions on the intensity of the noise for the existence and uniqueness of a stationary distribution.

    Citation: Andrés Sanchéz, Leon A. Valencia, Jorge M. Ramirez Osorio. The Stochastic Gause Predator-Prey model: Noise-induced extinctions and invariance[J]. Mathematical Biosciences and Engineering, 2025, 22(8): 1999-2019. doi: 10.3934/mbe.2025073

    Related Papers:

  • We consider the Gause predator-prey with general bounded or sub‑linear functional responses, – which includes those of Holling types Ⅰ–Ⅳ. – and multiplicative Gaussian noise. In contrast to previous studies, the prey in our model follows logistic dynamics while the predator's population is solely regulated by consumption of the prey. To ensure well-posedeness, we derive explicit Lyapunov‐type criteria ensuring global positivity and moment boundedness of solutions. We find conditions for noise‑induced extinctions, proving that stochasticity can drive either population to collapse even when the deterministic analogue predicts stable coexistence. In the case when the predator becomes extinct, we establish a limiting distribution for the predator's population. Last, for functional responses of Holling type Ⅰ, we provide sufficient conditions on the intensity of the noise for the existence and uniqueness of a stationary distribution.



    加载中


    [1] M. Turelli, Random environments and stochastic calculus, Theor. Popul. Biol., 12 (1977), 140–178. https://doi.org/10.1016/0040-5809(77)90018-6 doi: 10.1016/0040-5809(77)90018-6
    [2] R. Lande, S. Engen, B.-E. Saether, Stochastic Population Dynamics in Ecology and Conservation, Oxford University Press, 2003. https://doi.org/10.1093/0195131479.001.0001
    [3] J. D. Murray, Continuous population models for single species, in: Mathematical Biology: I. An Introduction, Interdisciplinary Applied Mathematics, 3rd, Springer, New York, 17 (2002), 1–43. https://doi.org/10.1007/b98868
    [4] B. Oksendal, Stochastic Differential Equations: An Introduction with Applications, Springer Science & Business Media, Berlin, 2013.
    [5] R. Khasminskii, Stochastic Stability of Differential Equations, 2nd, Springer, Berlin, 2012. https://doi.org/10.1007/978-3-642-23280-0
    [6] X. Mao, Stochastic Differential Equations and Applications, Elsevier, Amsterdam, 2007.
    [7] X. Mao, Stationary distribution of stochastic population systems, Syst. Control Lett., 60 (2011), 398–405. https://doi.org/10.1016/j.sysconle.2011.02.001 doi: 10.1016/j.sysconle.2011.02.001
    [8] D. Zhou, M. Liu, Z. Liu, Persistence and extinction of a stochastic predator–prey model with modified leslie–gower and holling-type ii schemes, Adv. Differ. Equa., 2020 (2020), 179. https://doi.org/10.1186/s13662-020-02642-9 doi: 10.1186/s13662-020-02642-9
    [9] Q. Liu, L. Zu, D. Jiang, Dynamics of stochastic predator–prey models with holling ii functional response, Commun. Nonlinear Sci. Numer. Simul., 37 (2016), 62–76. https://doi.org/10.1016/j.cnsns.2016.01.013 doi: 10.1016/j.cnsns.2016.01.013
    [10] M. Liu, K. Wang, Q. Wu, Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle, Bull. Math. Biol., 73 (2011), 1969–2012. https://doi.org/10.1007/s11538-011-9637-4 doi: 10.1007/s11538-011-9637-4
    [11] V. Křivan, On the gause predator–prey model with a refuge: A fresh look at the history, J. Theor. Biol., 274 (2011), 67–73. https://doi.org/10.1016/j.jtbi.2010.11.036 doi: 10.1016/j.jtbi.2010.11.036
    [12] M. Kot, Elements of Mathematical Ecology, Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511608520
    [13] Y. Enatsu, J. Roy, M. Banerjee, Hunting cooperation in a prey–predator model with maturation delay, J. Biol. Dyn., 18 (2024), 2332279. https://doi.org/10.1080/17513758.2024.2332279 doi: 10.1080/17513758.2024.2332279
    [14] V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926), 558–560. https://doi.org/10.1038/118558a0. doi: 10.1038/118558a0
    [15] F. Brauer, C. Castillo-Chavez, Z. Feng, Mathematical Models in Population Biology and Epidemiology, Texts in Applied Mathematics, Springer, New York, 40 (2012). https://doi.org/10.1007/978-1-4614-1686-9
    [16] H. Roozen, Equilibrium and extinction in stochastic population dynamics, Bull. Math. Biol., 49 (1987), 671–696. https://doi.org/10.1007/BF02481767 doi: 10.1007/BF02481767
    [17] X. Mao, G. Marion, E. Renshaw, Environmental brownian noise suppresses explosions in population dynamics, Stoch. Process. Appl., 97 (2002), 95–110. https://doi.org/10.1016/S0304-4149(01)00149-5 doi: 10.1016/S0304-4149(01)00149-5
    [18] A. T. Bharucha-Reid, Elements of the Theory of Markov Processes and their Applications, Courier Corporation, 1997.
    [19] S. P. Meyn, R. L. Tweedie, Stability of markovian processes iii: Foster–lyapunov criteria for continuous-time processes, Adv. Appl. Probab., 25 (1993), 518–548. https://doi.org/10.2307/1427580. doi: 10.2307/1427580
    [20] D. Xu, M. Liu, X. Xu, Analysis of a stochastic predator–prey system with modified leslie–gower and holling-type iv schemes, Phys. A Stat. Mech. Appl., 537 (2020), 122761. https://doi.org/10.1016/j.physa.2019.122761 doi: 10.1016/j.physa.2019.122761
    [21] Y. Pei, B. Liu, H. Qi, Extinction and stationary distribution of stochastic predator-prey model with group defense behavior, Math. Biosci. Eng., 19 (2022), 13062–13078. https://doi.org/10.3934/mbe.2022650 doi: 10.3934/mbe.2022650
    [22] S. Li, S. Guo, Permanence of a stochastic prey–predator model with a general functional response, Math. Comput. Simul., 187 (2021), 308–336. https://doi.org/10.1016/j.matcom.2021.04.002 doi: 10.1016/j.matcom.2021.04.002
    [23] A. L. Nevai, R. A. Van Gorder, Effect of resource subsidies on predator–prey population dynamics: A mathematical model, J. Biol. Dyn., 6 (2012), 891–922. https://doi.org/10.1080/17513758.2012.677485 doi: 10.1080/17513758.2012.677485
    [24] C. Geiß, R. Manthey, Comparison theorems for stochastic differential equations in finite and infinite dimensions, Stoch. Process. Appl., 53 (1994), 23–35. https://doi.org/10.1016/0304-4149(94)90055-8 doi: 10.1016/0304-4149(94)90055-8
    [25] F. C. Klebaner, Introduction to Stochastic Calculus with Applications, 2nd, Imperial College Press, London, 2005.
    [26] W. Horsthemke, R. Lefever, Noise-induced transitions, in: Noise in Nonlinear Dynamical Systems (F. Moss, P. V. E. McClintock eds), Cambridge University Press, 2 (1989), 179–219. https://doi.org/10.1007/978-3-642-70196-2_23
    [27] I. Bashkirtseva, L. Ryashko, Noise-induced extinction in bazykin-berezovskaya population model, Eur. Phys. J. B, 89 (2016), 1–8. https://doi.org/10.1140/epjb/e2016-70043-1 doi: 10.1140/epjb/e2016-70043-1
    [28] I. Bashkirtseva, T. Perevalova, L. Ryashko, A stochastic hierarchical population system: Excitement, extinction and transition to chaos, Int. J. Bifurcat. Chaos, 31 (2021), 2130043. https://doi.org/10.1142/S0218127421300437 doi: 10.1142/S0218127421300437
    [29] J. A. Vucetich, T. A. Waite, L. Qvarnemark, S. Ibargüen, Population variability and extinction risk, Conserv. Biol., 14 (2000), 1704–1714. https://doi.org/10.1046/j.1523-1739.2000.99477.x doi: 10.1046/j.1523-1739.2000.99477.x
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(675) PDF downloads(49) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog