Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

The within-host viral kinetics of SARS-CoV-2

1 School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049, China
2 School of Sciences, Xi’an University of Technology, Xi’an, 710048, China
3 Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA

Special Issues: Modeling the Biological, Epidemiological, Immunological, Molecular, Virological Aspects of COVID-19

In this work, we use a within-host viral dynamic model to describe the SARS-CoV-2 kinetics in the host. Chest radiograph score data are used to estimate the parameters of that model. Our result shows that the basic reproductive number of SARS-CoV-2 in host growth is around 3.79. Using the same method we also estimate the basic reproductive number of MERS virus is 8.16 which is higher than SARS-CoV-2. The PRCC method is used to analyze the sensitivities of model parameters. Moreover, the drug effects on virus growth and immunity effect of patients are also implemented to analyze the model.
  Figure/Table
  Supplementary
  Article Metrics

Keywords SARS-CoV-2; MERS; differential equation model; basic reproductive number

Citation: Chentong Li, Jinhu Xu, Jiawei Liu, Yicang Zhou. The within-host viral kinetics of SARS-CoV-2. Mathematical Biosciences and Engineering, 2020, 17(4): 2853-2861. doi: 10.3934/mbe.2020159

References

  • 1. J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-ncov outbreak originating in wuhan, china: a modelling study, Lancet, 2020.
  • 2. S. F. Ahmed, A. A. Quadeer, M. R. McKay, Preliminary identification of potential vaccine targets for the covid-19 coronavirus (sars-cov-2) based on sars-cov immunological studies, Viruses, 12 (2020), 254.
  • 3. H. W. Elsland, Y. Wang, Report 5: Phylogenetic analysis of sars-cov-2.
  • 4. W. Shang, Y. Yang, Y. Rao, X. Rao, The outbreak of sars-cov-2 pneumonia calls for viral vaccines, npj Vaccines, 5 (2020), 1-3.
  • 5. F. Pan, T. Ye, P. Sun, S. Gui, B. Liang, L. Li, et al., Time course of lung changes on chest ct during recovery from 2019 novel coronavirus (covid-19) pneumonia, Radiology, (2020), 200370.
  • 6. WHO, Coronavirus disease (covid-19) outbreak, 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
  • 7. M. Oh, W. B. Park, P. G. Choe, S. Choi, J. Kim, J. Chae, et al., Viral load kinetics of mers coronavirus infection, N. Engl. J. Med., 375 (2016), 1303-1305.
  • 8. T. Liu, J. Hu, M. Kang, L. Lin, H. Zhong, J. Xiao, et al., Transmission dynamics of 2019 novel coronavirus (2019-ncov), 2020.
  • 9. Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, et al., Early transmission dynamics in wuhan, china, of novel coronavirus-infected pneumonia, N. Engl. J. Med., 2020.
  • 10. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team, The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (covid-19) in china, Chin. J. Epidemiol., 41 (2020), 145-151.
  • 11. S. Bonhoeffer, R. M. May, G. M. Shaw, M. A. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA, 94 (1997), 6971-6976.
  • 12. H. Miao, X. Xia, A. S. Perelson, H. Wu, On identifiability of nonlinear ode models and applications in viral dynamics, SIAM Rev., 53 (2011), 3-39.
  • 13. H. Y. Lee, D. J. Topham, S. Y. Park, J. Hollenbaugh, J. Treanor, T. R Mosmann, et al., Simulation and prediction of the adaptive immune response to influenza a virus infection, J. Virol., 83 (2009), 7151-7165.
  • 14. O. Dieckmann, J. P. Heesterbeek, Mathematical epidemiology of infectious diseases, 2000.
  • 15. W. Wang, X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Differ. Equ., 20 (2008), 699-717.
  • 16. NCBI, The innate and adaptive immune systems, 2010. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279396/#_i2255_theadaptiveimmunesys_.
  • 17. H. Miao, J. A. Hollenbaugh, M. S. Zand, J. Holden-Wiltse, T. R. Mosmann, A. S. Perelson, et al., Quantifying the early immune response and adaptive immune response kinetics in mice infected with influenza a virus, J. Virol., 84 (2010), 6687-6698.
  • 18. G. Kampf, D. Todt, S. Pfaender, E. Steinmann, Persistence of coronaviruses on inanimate surfaces and its inactivation with biocidal agents, J. Hosp. Infect., 2020.
  • 19. S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178-196.
  • 20. H. Lu, Drug treatment options for the 2019-new coronavirus (2019-ncov), BioSci. Trends, 14 (2020), 69-71.
  • 21. S. DebRoy, B. M. Bolker, M. Martcheva, Bistability and long-term cure in a within-host model of hepatitis c, J. Biol. Syst., 19 (2011), 533-550.

 

This article has been cited by

  • 1. Chunxiang Ma, Hu Zhang, COVID-19, a far cry from the influenza, Precision Clinical Medicine, 2020, 10.1093/pcmedi/pbaa015

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved