Citation: Cheonshik Kim, Dongkyoo Shin, Ching-Nung Yang. High capacity data hiding with absolute moment block truncation coding image based on interpolation[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 160-178. doi: 10.3934/mbe.2020009
[1] | Tahir Khan, Fathalla A. Rihan, Muhammad Ibrahim, Shuo Li, Atif M. Alamri, Salman A. AlQahtani . Modeling different infectious phases of hepatitis B with generalized saturated incidence: An analysis and control. Mathematical Biosciences and Engineering, 2024, 21(4): 5207-5226. doi: 10.3934/mbe.2024230 |
[2] | Xichao Duan, Sanling Yuan, Kaifa Wang . Dynamics of a diffusive age-structured HBV model with saturating incidence. Mathematical Biosciences and Engineering, 2016, 13(5): 935-968. doi: 10.3934/mbe.2016024 |
[3] | Kaushik Dehingia, Anusmita Das, Evren Hincal, Kamyar Hosseini, Sayed M. El Din . Within-host delay differential model for SARS-CoV-2 kinetics with saturated antiviral responses. Mathematical Biosciences and Engineering, 2023, 20(11): 20025-20049. doi: 10.3934/mbe.2023887 |
[4] | Balázs Csutak, Gábor Szederkényi . Robust control and data reconstruction for nonlinear epidemiological models using feedback linearization and state estimation. Mathematical Biosciences and Engineering, 2025, 22(1): 109-137. doi: 10.3934/mbe.2025006 |
[5] | Yoichi Enatsu, Yukihiko Nakata . Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences and Engineering, 2014, 11(4): 785-805. doi: 10.3934/mbe.2014.11.785 |
[6] | Mengya Huang, Anji Yang, Sanling Yuan, Tonghua Zhang . Stochastic sensitivity analysis and feedback control of noise-induced transitions in a predator-prey model with anti-predator behavior. Mathematical Biosciences and Engineering, 2023, 20(2): 4219-4242. doi: 10.3934/mbe.2023197 |
[7] | Zhenzhen Shi, Huidong Cheng, Yu Liu, Yanhui Wang . Optimization of an integrated feedback control for a pest management predator-prey model. Mathematical Biosciences and Engineering, 2019, 16(6): 7963-7981. doi: 10.3934/mbe.2019401 |
[8] | Jiying Ma, Shasha Ma . Dynamics of a stochastic hepatitis B virus transmission model with media coverage and a case study of China. Mathematical Biosciences and Engineering, 2023, 20(2): 3070-3098. doi: 10.3934/mbe.2023145 |
[9] | Guirong Jiang, Qishao Lu, Linping Peng . Impulsive Ecological Control Of A Stage-Structured Pest Management System. Mathematical Biosciences and Engineering, 2005, 2(2): 329-344. doi: 10.3934/mbe.2005.2.329 |
[10] | Pan Yang, Jianwen Feng, Xinchu Fu . Cluster collective behaviors via feedback pinning control induced by epidemic spread in a patchy population with dispersal. Mathematical Biosciences and Engineering, 2020, 17(5): 4718-4746. doi: 10.3934/mbe.2020259 |
[1] | W. Bender, D. Gruhl, N. Morimoto, et al., Techniques for data hiding, IBM Syst. J., 35 (1996), 313-336. |
[2] | C. N. Yang, S. C. Hsu and C. Kim, Improving stego image quality in image interpolation based data hiding, Comput. Stand. Interfaces, 50 (2017), 209-215. |
[3] | C. Kim, D. Shin, C. N. Yang, et al., Improving capacity of Hamming (n,k)+1 stego-code by using optimized Hamming+k, Digital Signal Process., 78 (2018), 284-293. |
[4] | Y. Q. Shi, X. Li, X. Zhang, et al., Reversible data hiding: Advances in the past two decades, IEEE Access, 4 (2016), 3210-3237. |
[5] | F. Huang, X. Qu, H. J. Kim, et al., Reversible Data Hiding in JPEG Images, IEEE Trans. Circuits Syst. Video Technol., 26 (2016), 1610-1621. |
[6] | J. Mielikainen, LSB matching revisited, IEEE Signal Proc. Let., 13 (2006), 285-287. |
[7] | C. K. Chan and L. M. Cheng, Hiding data in images by simple LSB substitution, Pattern Recognit., 37 (2004), 469-474. |
[8] | C. C. Chang, C. C. Lin, C. S. Tseng, et al., Reversible hiding in DCT-based compressed images, Inf. Sci., 177 (2007), 2768-2786. |
[9] | C. C. Chang, T. S. Chen and L. Z. Chung, A steganographic method based upon JPEG and quantization table modification, Inf. Sci., 141 (2002), 123-138. |
[10] | C. Bergman and J. Davidson, Unitary embedding for data hiding with the SVD, Proceedings Volume 5681, Security, Steganography, and Watermarking of Multimedia Contents VⅡ, (2005). Available from: https://doi.org/10.1117/12.587796. |
[11] | E. Delp and O. Mitchell, Image compression using block truncation coding, IEEE Trans. Commun., 27 (1979), 1335-1342. |
[12] |
W. Hong, T. S. Chen and C. W. Shiu, Lossless steganography for AMBTC compressed images, 2008 Congress on Image and Signal Processing, 2 (2008), 13-17. Available from: https://ieeexplore.ieee.org/document/4566259. doi: 10.1109/CISP.2008.638
![]() |
[13] | J. C. Chuang and C. C. Chang, Using a simple and fast image compression algorithm to hide secret information, Int. J. Comput. Appl., 28 (2006), 329-333. |
[14] |
J. Chen, W. Hong, T. S. Chen, et al., Steganography for BTC compressed images using no distortion technique, Imaging Sci. J., 58 (2010), 177-185. doi: 10.1179/136821910X12651933390629
![]() |
[15] | W. Hong, J. Chen, T. S. Chen, et al., Steganography for block truncation coding compressed images using hybrid embedding scheme, Int. J. Innov. Comput. Inf. Control, 7 (2011), 733-743. |
[16] | D. Ou and W. Sun, High payload image steganography with minimum distortion based on absolute moment block truncation coding, Multimed. Tools Appl., 74 (2015), 9117-9139. |
[17] | J. Bai and C. C. Chang, A high payload steganographic scheme for compressed images with hamming code, Int. J. Netw. Secur., 18 (2016), 1122-1129. |
[18] | Y. H. Huang, C. C. Chang and Y. H. Chen, Hybrid secret hiding schemes based on absolute moment block truncation coding, Multimedia Tools Appl., 76 (2017), 6159-6174. |
[19] | W. Hong, Efficient data hiding based on block truncation coding using pixel pair matching technique, Symmetry, 10 (2018), 1-8. |
[20] | W. Hong, and T. S. Chen, A novel data embedding method using adaptive pixel pair matching, IEEE Trans. Inf. Forensics Secur., 7 (2012), 176-184. |
[21] | K. H. Jung and K. Y. Yoo, Data hiding method using image interpolation, Comput. Stand. Interfaces, 31 (2009), 465-470. |
[22] | Z. Wang, A. C. Bovik, H. R. Sheikh, et al., Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612. |
1. | Qingyi Zhu, Pingfan Xiang, Xuhang Luo, Chenquan Gan, Mamoun Alazab, Dynamical Behavior of Hybrid Propagation of Computer Viruses, 2022, 2022, 1939-0122, 1, 10.1155/2022/2576685 | |
2. | 秀秀 王, Impulsive State Feedback Control Model of Predator Population with Constant Release Rate in Polluted Water, 2022, 11, 2324-7991, 7302, 10.12677/AAM.2022.1110775 | |
3. | Tieying Wang, Microbial insecticide model and homoclinic bifurcation of impulsive control system, 2021, 14, 1793-5245, 2150043, 10.1142/S1793524521500431 | |
4. | Wenjie Li, Jinchen Ji, Lihong Huang, Global dynamics analysis of a water hyacinth fish ecological system under impulsive control, 2022, 359, 00160032, 10628, 10.1016/j.jfranklin.2022.09.030 | |
5. | 烁烁 王, Study on the Second Model of State Feedback Impulsive Model of Red Squirrel Protection, 2021, 10, 2324-7991, 3640, 10.12677/AAM.2021.1011385 | |
6. | Qingyi Zhu, Pingfan Xiang, Kefei Cheng, Chenquan Gan, Lu-Xing Yang, Hybrid Propagation and Control of Network Viruses on Scale-Free Networks, 2022, 1556-5068, 10.2139/ssrn.4012957 | |
7. | Qingyi Zhu, Pingfan Xiang, Kefei Cheng, Chenquan Gan, Lu-Xing Yang, Hybrid Propagation and Control of Network Viruses on Scale-Free Networks, 2023, 49, 1017-060X, 10.1007/s41980-023-00834-z |