Citation: Cheonshik Kim, Dongkyoo Shin, Ching-Nung Yang. High capacity data hiding with absolute moment block truncation coding image based on interpolation[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 160-178. doi: 10.3934/mbe.2020009
[1] | Hamdy M. Youssef, Najat A. Alghamdi, Magdy A. Ezzat, Alaa A. El-Bary, Ahmed M. Shawky . A new dynamical modeling SEIR with global analysis applied to the real data of spreading COVID-19 in Saudi Arabia. Mathematical Biosciences and Engineering, 2020, 17(6): 7018-7044. doi: 10.3934/mbe.2020362 |
[2] | Ayako Suzuki, Hiroshi Nishiura . Transmission dynamics of varicella before, during and after the COVID-19 pandemic in Japan: a modelling study. Mathematical Biosciences and Engineering, 2022, 19(6): 5998-6012. doi: 10.3934/mbe.2022280 |
[3] | Anthony Morciglio, R. K. P. Zia, James M. Hyman, Yi Jiang . Understanding the oscillations of an epidemic due to vaccine hesitancy. Mathematical Biosciences and Engineering, 2024, 21(8): 6829-6846. doi: 10.3934/mbe.2024299 |
[4] | Adil Yousif, Awad Ali . The impact of intervention strategies and prevention measurements for controlling COVID-19 outbreak in Saudi Arabia. Mathematical Biosciences and Engineering, 2020, 17(6): 8123-8137. doi: 10.3934/mbe.2020412 |
[5] | Avinash Shankaranarayanan, Hsiu-Chuan Wei . Mathematical modeling of SARS-nCoV-2 virus in Tamil Nadu, South India. Mathematical Biosciences and Engineering, 2022, 19(11): 11324-11344. doi: 10.3934/mbe.2022527 |
[6] | Tao Chen, Zhiming Li, Ge Zhang . Analysis of a COVID-19 model with media coverage and limited resources. Mathematical Biosciences and Engineering, 2024, 21(4): 5283-5307. doi: 10.3934/mbe.2024233 |
[7] | Gilberto González-Parra, Cristina-Luisovna Pérez, Marcos Llamazares, Rafael-J. Villanueva, Jesus Villegas-Villanueva . Challenges in the mathematical modeling of the spatial diffusion of SARS-CoV-2 in Chile. Mathematical Biosciences and Engineering, 2025, 22(7): 1680-1721. doi: 10.3934/mbe.2025062 |
[8] | Sarafa A. Iyaniwura, Musa Rabiu, Jummy F. David, Jude D. Kong . Assessing the impact of adherence to Non-pharmaceutical interventions and indirect transmission on the dynamics of COVID-19: a mathematical modelling study. Mathematical Biosciences and Engineering, 2021, 18(6): 8905-8932. doi: 10.3934/mbe.2021439 |
[9] | Antonios Armaou, Bryce Katch, Lucia Russo, Constantinos Siettos . Designing social distancing policies for the COVID-19 pandemic: A probabilistic model predictive control approach. Mathematical Biosciences and Engineering, 2022, 19(9): 8804-8832. doi: 10.3934/mbe.2022409 |
[10] | H. Swapnarekha, Janmenjoy Nayak, H. S. Behera, Pandit Byomakesha Dash, Danilo Pelusi . An optimistic firefly algorithm-based deep learning approach for sentiment analysis of COVID-19 tweets. Mathematical Biosciences and Engineering, 2023, 20(2): 2382-2407. doi: 10.3934/mbe.2023112 |
[1] | W. Bender, D. Gruhl, N. Morimoto, et al., Techniques for data hiding, IBM Syst. J., 35 (1996), 313-336. |
[2] | C. N. Yang, S. C. Hsu and C. Kim, Improving stego image quality in image interpolation based data hiding, Comput. Stand. Interfaces, 50 (2017), 209-215. |
[3] | C. Kim, D. Shin, C. N. Yang, et al., Improving capacity of Hamming (n,k)+1 stego-code by using optimized Hamming+k, Digital Signal Process., 78 (2018), 284-293. |
[4] | Y. Q. Shi, X. Li, X. Zhang, et al., Reversible data hiding: Advances in the past two decades, IEEE Access, 4 (2016), 3210-3237. |
[5] | F. Huang, X. Qu, H. J. Kim, et al., Reversible Data Hiding in JPEG Images, IEEE Trans. Circuits Syst. Video Technol., 26 (2016), 1610-1621. |
[6] | J. Mielikainen, LSB matching revisited, IEEE Signal Proc. Let., 13 (2006), 285-287. |
[7] | C. K. Chan and L. M. Cheng, Hiding data in images by simple LSB substitution, Pattern Recognit., 37 (2004), 469-474. |
[8] | C. C. Chang, C. C. Lin, C. S. Tseng, et al., Reversible hiding in DCT-based compressed images, Inf. Sci., 177 (2007), 2768-2786. |
[9] | C. C. Chang, T. S. Chen and L. Z. Chung, A steganographic method based upon JPEG and quantization table modification, Inf. Sci., 141 (2002), 123-138. |
[10] | C. Bergman and J. Davidson, Unitary embedding for data hiding with the SVD, Proceedings Volume 5681, Security, Steganography, and Watermarking of Multimedia Contents VⅡ, (2005). Available from: https://doi.org/10.1117/12.587796. |
[11] | E. Delp and O. Mitchell, Image compression using block truncation coding, IEEE Trans. Commun., 27 (1979), 1335-1342. |
[12] |
W. Hong, T. S. Chen and C. W. Shiu, Lossless steganography for AMBTC compressed images, 2008 Congress on Image and Signal Processing, 2 (2008), 13-17. Available from: https://ieeexplore.ieee.org/document/4566259. doi: 10.1109/CISP.2008.638
![]() |
[13] | J. C. Chuang and C. C. Chang, Using a simple and fast image compression algorithm to hide secret information, Int. J. Comput. Appl., 28 (2006), 329-333. |
[14] |
J. Chen, W. Hong, T. S. Chen, et al., Steganography for BTC compressed images using no distortion technique, Imaging Sci. J., 58 (2010), 177-185. doi: 10.1179/136821910X12651933390629
![]() |
[15] | W. Hong, J. Chen, T. S. Chen, et al., Steganography for block truncation coding compressed images using hybrid embedding scheme, Int. J. Innov. Comput. Inf. Control, 7 (2011), 733-743. |
[16] | D. Ou and W. Sun, High payload image steganography with minimum distortion based on absolute moment block truncation coding, Multimed. Tools Appl., 74 (2015), 9117-9139. |
[17] | J. Bai and C. C. Chang, A high payload steganographic scheme for compressed images with hamming code, Int. J. Netw. Secur., 18 (2016), 1122-1129. |
[18] | Y. H. Huang, C. C. Chang and Y. H. Chen, Hybrid secret hiding schemes based on absolute moment block truncation coding, Multimedia Tools Appl., 76 (2017), 6159-6174. |
[19] | W. Hong, Efficient data hiding based on block truncation coding using pixel pair matching technique, Symmetry, 10 (2018), 1-8. |
[20] | W. Hong, and T. S. Chen, A novel data embedding method using adaptive pixel pair matching, IEEE Trans. Inf. Forensics Secur., 7 (2012), 176-184. |
[21] | K. H. Jung and K. Y. Yoo, Data hiding method using image interpolation, Comput. Stand. Interfaces, 31 (2009), 465-470. |
[22] | Z. Wang, A. C. Bovik, H. R. Sheikh, et al., Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612. |
1. | Qifang Liang, Buping Liu, Chunping Liu, Wenxing Liu, Xiaoxue Han, Limei Wan, Xiaobo Chen, Peng wu, Hongyu Li, Yujiao Sun, Yubin Yang, Weixiong Chen, 2021, Visual analysis based on the research of SARS and COVID-19, 9781450390002, 38, 10.1145/3448748.3448756 | |
2. | Farai Nyabadza, Josiah Mushanyu, Rachel Mbogo, Gift Muchatibaya, Modelling the Influence of Dynamic Social Processes on COVID-19 Infection Dynamics, 2023, 11, 2227-7390, 963, 10.3390/math11040963 | |
3. | Jennifer M. Klasen, Deborah M. Tynes, Caspar J. Peterson, Romano Schneider, Katharina Timper, Ralph Peterli, Cameron L. Randall, Tarik Delko, The Impact of the COVID-19 Pandemic on Patients from a Bariatric Program: A Qualitative Analysis of Their Perceptions of Health and Well-Being, 2022, 10, 2227-9032, 780, 10.3390/healthcare10050780 | |
4. | Fatma Bozkurt, Ali Yousef, Thabet Abdeljawad, Adem Kalinli, Qasem Al Mdallal, A fractional-order model of COVID-19 considering the fear effect of the media and social networks on the community, 2021, 152, 09600779, 111403, 10.1016/j.chaos.2021.111403 | |
5. | Tin Phan, Samantha Brozak, Bruce Pell, Anna Gitter, Amy Xiao, Kristina D. Mena, Yang Kuang, Fuqing Wu, A simple SEIR-V model to estimate COVID-19 prevalence and predict SARS-CoV-2 transmission using wastewater-based surveillance data, 2023, 857, 00489697, 159326, 10.1016/j.scitotenv.2022.159326 | |
6. | Kaiyan Peng, Zheng Lu, Vanessa Lin, Michael R. Lindstrom, Christian Parkinson, Chuntian Wang, Andrea L. Bertozzi, Mason A. Porter, A multilayer network model of the coevolution of the spread of a disease and competing opinions, 2021, 31, 0218-2025, 2455, 10.1142/S0218202521500536 | |
7. | Ali Yousef, A fractional-order model of COVID-19 with a strong Allee effect considering the fear effect spread by social networks to the community and the existence of the silent spreaders during the pandemic stage, 2022, 7, 2473-6988, 10052, 10.3934/math.2022560 | |
8. | Mohammad Masum, M.A. Masud, Muhaiminul Islam Adnan, Hossain Shahriar, Sangil Kim, Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management, 2022, 80, 00380121, 101249, 10.1016/j.seps.2022.101249 | |
9. | Yoh Iwasa, Rena Hayashi, Waves of infection emerging from coupled social and epidemiological dynamics, 2023, 558, 00225193, 111366, 10.1016/j.jtbi.2022.111366 | |
10. | M. Ali Al-Radhawi, Mahdiar Sadeghi, Eduardo D. Sontag, Long-Term Regulation of Prolonged Epidemic Outbreaks in Large Populations via Adaptive Control: A Singular Perturbation Approach, 2022, 6, 2475-1456, 578, 10.1109/LCSYS.2021.3083983 | |
11. | Kirti Jain, Vasudha Bhatnagar, Sadanand Prasad, Sharanjit Kaur, Coupling Fear and Contagion for Modeling Epidemic Dynamics, 2023, 10, 2327-4697, 20, 10.1109/TNSE.2022.3187775 | |
12. | Ali Yousef, Fatma Bozkurt, Thabet Abdeljawad, Emad Emreizeeq, A mathematical model of COVID-19 and the multi fears of the community during the epidemiological stage, 2023, 419, 03770427, 114624, 10.1016/j.cam.2022.114624 | |
13. | S. Manrubia, D. H. Zanette, Individual risk-aversion responses tune epidemics to critical transmissibility ( R = 1) , 2022, 9, 2054-5703, 10.1098/rsos.211667 | |
14. | Giulia De Meijere, Vittoria Colizza, Eugenio Valdano, Claudio Castellano, Effect of delayed awareness and fatigue on the efficacy of self-isolation in epidemic control, 2021, 104, 2470-0045, 10.1103/PhysRevE.104.044316 | |
15. | Wasim Abbas, Masud M. A., Anna Park, Sajida Parveen, Sangil Kim, Siew Ann Cheong, Evolution and consequences of individual responses during the COVID-19 outbreak, 2022, 17, 1932-6203, e0273964, 10.1371/journal.pone.0273964 | |
16. | Musa Rabiu, Sarafa A. Iyaniwura, Assessing the potential impact of immunity waning on the dynamics of COVID-19 in South Africa: an endemic model of COVID-19, 2022, 109, 0924-090X, 203, 10.1007/s11071-022-07225-9 | |
17. | Jinming Wan, Genki Ichinose, Michael Small, Hiroki Sayama, Yamir Moreno, Changqing Cheng, Multilayer networks with higher-order interaction reveal the impact of collective behavior on epidemic dynamics, 2022, 164, 09600779, 112735, 10.1016/j.chaos.2022.112735 | |
18. | Bruce Kuwahara, Chris T. Bauch, Predicting Covid-19 pandemic waves with biologically and behaviorally informed universal differential equations, 2024, 10, 24058440, e25363, 10.1016/j.heliyon.2024.e25363 | |
19. | Peter Miller, Kira Button, Nicholas Taylor, Kerri Coomber, Ryan Baldwin, Travis Harries, Brittany Patafio, Tahnee Guala, Nathan Harris, Ashlee Curtis, Gery C. Karantzas, Petra K. Staiger, Dominique de Andrade, The Impact of COVID-19 on Trends of Violence-Related Offences in Australia, 2023, 13, 2210-6014, 504, 10.1007/s44197-023-00131-2 | |
20. | Matthew Ryan, Emily Brindal, Mick Roberts, Roslyn I. Hickson, A behaviour and disease transmission model: incorporating the Health Belief Model for human behaviour into a simple transmission model, 2024, 21, 1742-5662, 10.1098/rsif.2024.0038 | |
21. | Iulia Martina Bulai, Mattia Sensi, Sara Sottile, A geometric analysis of the SIRS compartmental model with fast information and misinformation spreading, 2024, 185, 09600779, 115104, 10.1016/j.chaos.2024.115104 |