Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Noninvasive fetal ECG extraction using doubly constrained block-term decomposition

1 Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran

Special Issues: Computer Methods and Programs in Prenatal Medicine

Fetal electrocardiogram (fECG) monitoring is a beneficial method for assessing fetal health and diagnosing the fetal cardiac condition during pregnancy. In this study, an algorithm is proposed to extract fECG from maternal abdominal signals based on doubly constrained block-term (DoCoBT) tensor decomposition. This tensor decomposition method is constrained by quasiperiodicity constraints of fetal and maternal ECG signals. Tensor decompositions are more powerful tools than matrix decomposition, due to employing more information for source separation. Tensorizing abdominal signals and using periodicity constraints of fetal and maternal ECG, appropriately separates subspaces of the mother, the fetus(es) and noise. The quantitative and qualitative results of the proposed method show improved performance of DoCoBT decomposition versus other tensor and matrix decomposition methods in noisy conditions.
  Article Metrics

Keywords signal extraction; fECG; tensor decomposition; BT decomposition

Citation: Iman Mousavian, Mohammad Bagher Shamsollahi, Emad Fatemizadeh. Noninvasive fetal ECG extraction using doubly constrained block-term decomposition. Mathematical Biosciences and Engineering, 2020, 17(1): 144-159. doi: 10.3934/mbe.2020008


  • 1. G. D. Clifford, I. Silva, J. Behar, et al., Non-invasive fetal ECG analysis, Phys. Meas., 35 (2014), 1521-1536.
  • 2. J. Jezewski, J. Wrobel and K. Horoba, Comparison of doppler ultrasound and direct electrocardiography acquisition techniques for quantification of fetal heart rate variability, IEEE Trans. Biomed. Eng., 53 (2006), 855-864.
  • 3. R. Sameni, Extraction of fetal cardiac signals from an array of maternal abdominal recordings, Sharif University of Technology (SUT), 2008.
  • 4. M. Niknazar, B. Rivet and C. Jutten, Fetal ECG extraction by extended state Kalman filtering based on single-channel recordings, IEEE Trans. Biomed. Eng., 60 (2013), 1345-1352.
  • 5. R. K. Paithane and F. I. Shaikh, A modified approach to FECG extraction using sequential and parallel Kalman filter, Int. Res. J. Eng. Technol. (IRJET), 3 (2016), 2439-2443.
  • 6. D. Panigrahy and P. Sahu, Extraction of fetal ECG signal by an improved method using extended Kalman smoother framework from single channel abdominal ECG signal, Australas. Phys. Eng. Sci. Med., 40 (2017), 191-207.
  • 7. P. Gupta, K. Sharma and S. Joshi, Fetal heart rate extraction from abdominal electrocardiograms through multivariate empirical mode decomposition, Com. Bio. Med., 68 (2016), 121-136.
  • 8. M. G. Jafari and J. A. Chambers, Fetal electrocardiogram extraction by sequential source separation in the wavelet domain, IEEE Trans. Biomed. Eng., 52 (2005), 390-400.
  • 9. A. Khamene and S. Negahdaripour, A new method for the extraction of fetal ECG from the composite abdominal signal, IEEE Trans. Biomed. Eng., 47 (2000), 507-516.
  • 10. Y. Wang, Y. Fu and Z. He, Fetal electrocardiogram extraction based on fast ICA and wavelet denoising, in IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 2nd edition, (2018), 466-469.
  • 11. L. Liao, W. Zhong, X. Guo, et al., A mixed approach for fetal QRS complex detection, in Proceedings of 2018 Chinese Intelligent Systems Conference, (2019), 387-395.
  • 12. L. De Lathauwer, B. De Moor and J. Vandewalle, Fetal electrocardiogram extraction by blind source subspace separation, IEEE Trans. Biomed. Eng., 47 (2000), 567-572.
  • 13. A. K. Rahmati, S. K. Setarehdan and B. N. Araabi, A PCA/ICA based fetal ECG extraction from mother abdominal recordings by means of a novel data-driven approach to fetal ECG quality assessment, J. Biomed. Phys. Eng., 7 (2017), 37-50.
  • 14. V. Zarzoso and A. K. Nandi, Noninvasive fetal electrocardiogram extraction: blind separation versus adaptive noise cancellation, IEEE Trans. Biomed. Eng., 48 (2001), 12-18.
  • 15. L. Yuan, Y. Yuan, Z. Zhou, et al., A fetal ECG monitoring system based on the android smartphone, Sensors, 19 (2019), 446.
  • 16. J. F. Cardoso, Multidimensional independent component analysis, in Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, (1998), 1941-1944.
  • 17. M. Piela and T. Moroń, Spatio-temporal extension of independent component analysis for fetal ECG extraction, in Information Technology in Biomedicine, Springer, (2018), 315-324.
  • 18. M. Ghodsi, H. Hassani and S. Sanei, Extracting fetal heart signal from noisy maternal ECG by singular spectrum analysis, J. Stat. Interface, Spec. Issue Appl. SSA, 3 (2010), 399-411.
  • 19. P. P. Kanjilal, S. Palit and G. Saha, Fetal ECG extraction from single-channel maternal ECG using singular value decomposition, IEEE Trans. Biomed. Eng., 44 (1997), 51-59.
  • 20. A. Cichocki, D. Mandic, L. De Lathauwer,et al., Tensor decompositions for signal processing applications: From two-way to multiway component analysis, IEEE Signal Process. Mag., 32 (2015), 145-163.
  • 21. H. Akbari, M. B. Shamsollahi and R. Phlypo, Fetal ECG extraction using πTucker decomposition, in Systems, Signals and Image Processing (IWSSIP), IEEE, (2015), 174-178.
  • 22. T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), 455-500.
  • 23. L. De Lathauwer, Decompositions of a higher-order tensor in block terms-Part Ⅱ: Definitions and uniqueness, SIAM J. Matrix Anal. Appl., 30 (2008), 1033-1066.
  • 24. N. Vervliet, O. Debals and L. De Lathauwer, Tensorlab 3.0-Numerical optimization strategies for large-scale constrained and coupled matrix/tensor factorization, in 2016 50th Asilomar Conference on Signals, Systems and Computers, (2016), 1733-1738.
  • 25. L. De Lathauwer, Decompositions of a higher-order tensor in block terms-Part I: Lemmas for partitioned matrices, SIAM J. Matrix Anal. Appl., 30 (2008), 1022-1032.
  • 26. L. De Lathauwer and D. Nion, Decompositions of a higher-order tensor in block terms-Part Ⅲ: Alternating least squares algorithms, SIAM J. Matrix Anal. Appl., 30 (2008), 1067-1083.
  • 27. V. X. Afonso, W. J. Tompkins, T. Q. Nguyen, et al., ECG beat detection using filter banks, IEEE Trans. Biomed. Eng., 46 (1999), 192-202.
  • 28. J. Pan and W. J. Tompkins, A real-time QRS detection algorithm, IEEE Trans. Biomed. Eng., (1985), 230-236.
  • 29. R. Sameni, C. Jutten and M. B. Shamsollahi, Multichannel electrocardiogram decomposition using periodic component analysis, IEEE Trans. Biomed. Eng., 55 (2008), 1935-1940.
  • 30. R. Sameni, Open-source ECG toolbox (OSET), 2006.
  • 31. R. Sameni, C. Jutten and M. B. Shamsollahi, A deflation procedure for subspace decomposition, IEEE Trans. Signal Process., 58 (2010), 2363-2374.
  • 32. J. Jezewski, A. Matonia, T. Kupka, et al., Determination of fetal heart rate from abdominal signals: Evaluation of beat-to-beat accuracy in relation to the direct fetal electrocardiogram, Biomed. Tech./Biomed. Eng., 57 (2012), 383-394.
  • 33. D. N. Rutledge and D. J. R. Bouveresse, Independent components analysis with the JADE algorithm, TrAC Trends Anal. Chem., 50 (2013), 22-32.


This article has been cited by

  • 1. Aída Jiménez-González, Norma Castañeda-Villa, Blind extraction of fetal and maternal components from the abdominal electrocardiogram: An ICA implementation for low-dimensional recordings, Biomedical Signal Processing and Control, 2020, 58, 101836, 10.1016/j.bspc.2019.101836
  • 2. Adam Matonia, Janusz Jezewski, Tomasz Kupka, Michał Jezewski, Krzysztof Horoba, Janusz Wrobel, Robert Czabanski, Radana Kahankowa, Fetal electrocardiograms, direct and abdominal with reference heartbeat annotations, Scientific Data, 2020, 7, 1, 10.1038/s41597-020-0538-z

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved