Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Development of a tissue augmented Bayesian model for expression quantitative trait loci analysis

1 Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Mail Stop B119, 13001 E. 17th Place, Aurora, 80045, USA
2 Human Medical Genetics and Genomics Program, School of Medicine, University of Colorado Denver Anschutz Medical Campus, 80045, Aurora, USA
3 Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, 80045, Aurora, USA

Special Issues: Recent Advancements on Quantitative Methods for Genomics and Genetics

Expression quantitative trait loci (eQTL) analyses detect genetic variants (SNPs) associated with RNA expression levels of genes. The conventional eQTL analysis is to perform individual tests for each gene-SNP pair using simple linear regression and to perform the test on each tissue separately ignoring the extensive information known about RNA expression in other tissue(s). Although Bayesian models have been recently developed to improve eQTL prediction on multiple tissues, they are often based on uninformative priors or treat all tissues equally. In this study, we develop a novel tissue augmented Bayesian model for eQTL analysis (TA-eQTL), which takes prior eQTL information from a different tissue into account to better predict eQTL for another tissue. We demonstrate that our modified Bayesian model has comparable performance to several existing methods in terms of sensitivity and specificity using allele-specific expression (ASE) as the gold standard. Furthermore, the tissue augmented Bayesian model improves the power and accuracy for local-eQTL prediction especially when the sample size is small. In summary, TA-eQTL’s performance is comparable to existing methods but has additional flexibility to evaluate data from different platforms, can focus prediction on one tissue using only summary statistics from the secondary tissue(s), and provides a closed form solution for estimation.
  Article Metrics

Keywords eQTL; Bayesian model; allele-specific expression

Citation: Yonghua Zhuang, Kristen Wade, Laura M. Saba, Katerina Kechris. Development of a tissue augmented Bayesian model for expression quantitative trait loci analysis. Mathematical Biosciences and Engineering, 2020, 17(1): 122-143. doi: 10.3934/mbe.2020007


  • 1. A. C. Nica and E. T. Dermitzakis, Expression quantitative trait loci: present and future, Philos. Trans. R. Soc. Lond. B Biol. Sci., 368 (2013), 20120362.
  • 2. L. A. Hindorff, P. Sethupathy, H. A. Junkins, et al., Potential etiologic and functional implications of genome-wide association loci for human diseases and traits, Proc. Natl. Acad. Sci. U S A, 106 (2009), 9362-9367.
  • 3. B. Hrdlickova, R. C. de Almeida, Z. Borek, et al., Genetic variation in the non-coding genome: Involvement of micro-rnas and long non-coding rnas in disease, Biochim. Biophys. Acta, 1842 (2014), 1910-1922.    
  • 4. I. Ricaño-Ponce and C. Wijmenga, Mapping of immune-mediated disease genes, Annu. Rev. Genomics Hum. Genet., 14 (2013), 325-353.
  • 5. R. C. Jansen and J. P. Nap, Genetical genomics: the added value from segregation, Trends Genet., 17 (2001), 388-391.
  • 6. L. J. Carithers, K. Ardlie, M. Barcus, et al., A novel approach to high-quality postmortem tissue procurement: The gtex project, Biopreserv. Biobank., 13 (2015), 311-319,
  • 7. W. Cookson, L. Liang, G. Abecasis, et al., Mapping complex disease traits with global gene expression, Nat. Rev. Genet., 10 (2009), 184-194.
  • 8. A. C. Nica and E. T. Dermitzakis, Using gene expression to investigate the genetic basis of complex disorders, Hum. Mol. Genet., 17 (2008), R129-134.
  • 9. M. V. Rockman and L. Kruglyak, Genetics of global gene expression, Nat. Rev. Genet., 7 (2006), 862-872.
  • 10. F. A. Cubillos, V. Coustham and O. Loudet, Lessons from eqtl mapping studies: non-coding regions and their role behind natural phenotypic variation in plants, Curr. Opin. Plant. Biol., 15 (2012), 192-198.
  • 11. H. B. Fraser, A. M. Moses and E. E. Schadt, Evidence for widespread adaptive evolution of gene expression in budding yeast, Proc. Natl. Acad. Sci. U S A, 107 (2010), 2977-2982.
  • 12. A. L. Dixon, L. Liang, M. F. Moffatt, et al., A genome-wide association study of global gene expression, Nat. Genet., 39 (2007), 1202-1207.
  • 13. H. H. H. Göring, J. E. Curran, M. P. Johnson, et al., Discovery of expression qtls using large-scale transcriptional profiling in human lymphocytes, Nat. Genet., 39 (2007), 1208-1216.
  • 14. E. E. Schadt, C. Molony, E. Chudin, et al., Mapping the genetic architecture of gene expression in human liver, PLoS Biol., 6 (2008), e107.
  • 15. A. Gerrits, Y. Li, B. M. Tesson, et al., Expression quantitative trait loci are highly sensitive to cellular differentiation state, PLoS Genet., 5 (2009), e1000692.
  • 16. G. K. Chen and J. S. Witte, Enriching the analysis of genomewide association studies with hierarchical modeling, Am. J. Hum. Genet., 81 (2007), 397-404.
  • 17. X. Zhang, S. Huang, W. Sun, et al., Rapid and robust resampling-based multiple-testing correction with application in a genome-wide expression quantitative trait loci study, Genetics, 190 (2012), 1511-1520.
  • 18. M. P. Scott-Boyer, G. C. Imholte, A. Tayeb, et al., An integrated hierarchical bayesian model for multivariate eqtl mapping, Stat. Appl. Genet. Mol. Biol., 11 (2012), 10.1515/1544-6115.1760.
  • 19. O. Stegle, L. Parts, R. Durbin, et al., A bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eqtl studies, PLoS Comput. Biol., 6 (2010), e1000770.
  • 20. M. Stephens and D. J. Balding, Bayesian statistical methods for genetic association studies, Nat. Rev. Genet., 10 (2009), 681-690.
  • 21. J.-B. Veyrieras, S. Kudaravalli, S. Y. Kim, et al., High-resolution mapping of expression-qtls yields insight into human gene regulation, PLoS Genet., 4 (2008), e1000214.
  • 22. M. Banterle, L. Bottolo, S. Richardson, et al., Sparse variable and covariance selection for highdimensional seemingly unrelated bayesian regression, bioRxiv, 467019.
  • 23. G. C. Imholte, M.-P. Scott-Boyer, A. Labbe, et al., ibmq: a r/bioconductor package for integrated bayesian modeling of eqtl data, Bioinformatics, 29 (2013), 2797-2798.
  • 24. D. Duong, L. Gai, S. Snir, et al., Applying meta-analysis to genotype-tissue expression data from multiple tissues to identify eqtls and increase the number of egenes, Bioinformatics, 33 (2017), i67-i74.
  • 25. J. H. Sul, B. Han, C. Ye, et al., Effectively identifying eqtls from multiple tissues by combining mixed model and meta-analytic approaches, PLoS Genet., 9 (2013), e1003491.
  • 26. T. Flutre, X. Wen, J. Pritchard, et al., A statistical framework for joint eqtl analysis in multiple tissues, PLoS Genet., 9 (2013), e1003486.
  • 27. G. Li, A. A. Shabalin, I. Rusyn, et al., An empirical bayes approach for multiple tissue eqtl analysis, Biostatistics, 19 (2018), 391-406.
  • 28. A. Das, M. Morley, C. S. Moravec, et al., Bayesian integration of genetics and epigenetics detects causal regulatory snps underlying expression variability, Nat. Commun., 6 (2015), 8555.
  • 29. E. J. Chesler, L. Lu, J. Wang, et al., Webqtl: rapid exploratory analysis of gene expression and genetic networks for brain and behavior, Nat. Neurosci., 7 (2004), 485-486.
  • 30. J. Wang, R. W. Williams and K. F. Manly, Webqtl: web-based complex trait analysis, Neuroinformatics, 1 (2003), 299-308.
  • 31. T. J. Phillips, M. Huson, C. Gwiazdon, et al., Effects of acute and repeated ethanol exposures on the locomotor activity of bxd recombinant inbred mice, Alcohol. Clin. Exp. Res., 19 (1995), 269-278.    
  • 32. B. Tabakoff, L. Saba, K. Kechris, et al., The genomic determinants of alcohol preference in mice, Mamm. Genome., 19 (2008), 352-365.    
  • 33. B. J. Bennett, C. R. Farber, L. Orozco, et al., A high-resolution association mapping panel for the dissection of complex traits in mice, Genome. Res., 20 (2010), 281-290.    
  • 34. R. Alberts, L. Lu, R. W. Williams, et al., Genome-wide analysis of the mouse lung transcriptome reveals novel molecular gene interaction networks and cell-specific expression signatures, Respir. Res., 12 (2011), 61.
  • 35. C. Blauwendraat, M. Francescatto, J. R. Gibbs, et al., Comprehensive promoter level expression quantitative trait loci analysis of the human frontal lobe, Genome Med., 8 (2016), 65.
  • 36. J. A. Webster, J. R. Gibbs, J. Clarke, et al., Genetic control of human brain transcript expression in alzheimer disease, Am. J. Hum. Genet., 84 (2009), 445-458.    
  • 37. S. Lagarrigue, L. Martin, F. Hormozdiari, et al., Analysis of allele-specific expression in mouse liver by rna-seq: a comparison with cis-eqtl identified using genetic linkage, Genetics, 195 (2013), 1157-1166.    
  • 38. A. Gelman, J. B. Carlin, H. S. Stern, et al., Bayesian data analysis, vol. 2, Chapman & Hall/CRC Boca Raton, FL, USA, 2014.
  • 39. P. D. Hoff, A first course in Bayesian statistical methods, vol. 580, Springer, 2009.
  • 40. E. Lesaffre and A. B. Lawson, Bayesian biostatistics, John Wiley & Sons, 2012.
  • 41. X. Robin, N. Turck, A. Hainard, et al., proc: an open-source package for r and s+ to analyze and compare roc curves, BMC Bioinformatics, 12 (2011), 77.
  • 42. E. R. DeLong, D. M. DeLong and D. L. Clarke-Pearson, Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach, Biometrics, 44 (1988), 837-845.
  • 43. S. A. Stouffer, E. A. Suchman, L. C. DeVinney, et al., The american soldier: Adjustment during army life, Princeton University Press, Vol. 1.
  • 44. L. T., On the combination of independent tests, Magyar Tud Akad Mat Kutato Int Közl.
  • 45. M. C. Whitlock, Combining probability from independent tests: the weighted z-method is superior to fisher's approach, J. Evol. Biol., 18 (2005), 1368-1373.
  • 46. D. Bates, M. Mächler, B. Bolker, et al., Fitting linear mixed-effects models using lme4, J. Stat. Software, 67 (2015), 1-48.
  • 47. R. V. Lenth, Least-squares means: The R package lsmeans, J. Stat. Software, 69 (2016), 1-33.
  • 48. RStudio Team, RStudio: Integrated Development Environment for R, RStudio, Inc., Boston, MA, 2015.
  • 49. R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2015.
  • 50. A. A. Shabalin, Matrix eqtl: ultra fast eqtl analysis via large matrix operations, Bioinformatics, 28 (2012), 1353-1358.
  • 51. H. Wickham, ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York, 2009.
  • 52. R. C. Team, D. Wuertz, T. Setz, et al., fBasics: Rmetrics-Markets and Basic Statistics, 2014, R package version 3011.87.
  • 53. D. B. Dahl, xtable: Export Tables to LaTeX or HTML, 2016, R package version 1.8-2.
  • 54. S. Durinck, Y. Moreau, A. Kasprzyk, et al., Biomart and bioconductor: a powerful link between biological databases and microarray data analysis, Bioinformatics, 21 (2005), 3439-3440.
  • 55. H. Wickham, The split-apply-combine strategy for data analysis, J. Stat. Software, 40 (2011), 1-29.
  • 56. M. Dowle, A. Srinivasan, T. Short, et al., data.table: Extension of Data.frame, 2015, R package version 1.9.6.
  • 57. S. Anders and W. Huber, Differential expression analysis for sequence count data, Genome biol., 11 (2010), R106.
  • 58. C. W. Law, Y. Chen, W. Shi, et al., voom: Precision weights unlock linear model analysis tools for rna-seq read counts, Genome Biol., 15 (2014), R29.
  • 59. W. Sun, A statistical framework for eqtl mapping using rna-seq data, Biometrics, 68 (2012), 1-11.
  • 60. L. Bottolo and S. Richardson, Evolutionary stochastic search for bayesian model exploration, Bayesian Anal., 5 (2010), 583-618.
  • 61. N. A. Walter, S. K. McWeeney, S. T. Peters, et al., Snps matter: impact on detection of differential expression, Nature Methods, 4 (2007), 679.


Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved