Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Weighted visual secret sharing with multiple decryptions and lossless recovery

National University of Defense Technology, Hefei 230037, China

Traditional visual secret sharing (VSS) encodes the original secret image into n shares, and each share is of equal importance. However, in some scenarios, we need to make a difference between the participants according to the levels of their importance. Therefore, the capability of each share to recover the original secret image will be different. In this paper, we proposed a weighted (k,n)-threshold random grid VSS(RG-VSS) with multiple decrytions and lossless recovery. When we get k or more shares for decryption, we will recover different levels of the original image because of the different weights of the shares. More importantly, the secret information can be recovered by OR and XOR operations in our scheme. When we get all the n shares and using the XOR operation to recover the image, we can recover the secret information losslessly. The experimental results and analyses show that our scheme outperforms the related schemes.
  Figure/Table
  Supplementary
  Article Metrics

Keywords visual secret sharing; random grid; weighted; multiple decryptions; lossless recovery

Citation: Feng Liu, Xuehu Yan, Lintao Liu, Yuliang Lu, Longdan Tan. Weighted visual secret sharing with multiple decryptions and lossless recovery. Mathematical Biosciences and Engineering, 2019, 16(5): 5750-5764. doi: 10.3934/mbe.2019287

References

  • 1. Z.M. Yaseen, S.O. Sulaiman, R.C. Deo, et al., An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction, J. Hydrology, 569 (2019), 387–408.
  • 2. A. Baghban, A. Jalali, M. Shafiee, et al., Developing an anfis-based swarm concept model for estimating the relative viscosity of nanofluids, Eng. Appl. Comput. Fluid Mech., 13 (2019), 26–39.
  • 3. C. Chuntian and K.W. Chau, Three-person multi-objective conflict decision in reservoir flood control, Euro. J. Operational Res., 142 (2002), 625–631.
  • 4. S. Samadianfard, A. Majnooni-Heris, S.N. Qasem, et al., Daily global solar radiation modeling using data-driven techniques and empirical equations in a semi-arid climate, Eng. Appl. Comput. Fluid Mech., 13 (2019) 142–157.
  • 5. C. Wu and K. Chau, Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis, J. Hydrology, 399 (2011), 394–409.
  • 6. R.Moazenzadeh, B.Mohammadi, S.Shamshirband, etal., Couplingafireflyalgorithmwithsupport vector regression to predict evaporation in northern iran, Eng. Appl. Comput. Fluid Mech., 12 (2018), 584–597.
  • 7. M. Naora and A. Shamir, Visual cryptography, Advances in Cryptology-EUROCRYPT'94, Italy: Springer, (1994), 1–12.
  • 8. J. Weir and W. Yan, A comprehensive study of visual cryptography, In: Transactions on DHMS V, LNCS 6010, Berlin: Springer, (2010), 70–105.
  • 9. X. Yan, S. Wang, A.A.A. El-Latif, et al., Visual secret sharing based on random grids with abilities of and xor lossless recovery, Mult. Tools Appl., 74 (2015), 3231–3252.
  • 10. C.N. Yang, New visual secret sharing schemes using probabilistic method, Pattern Recognit. Lett., 25 (2004), 481–494.
  • 11. S. Cimato, R. De Prisco and A. De Santis, Probabilistic visual cryptography schemes, Comp. J., 49 (2006), 97–107.
  • 12. D. Wang, L. Zhang, N. Ma, et al., Two secret sharing schemes based on boolean operations, Pattern Recognit., 40 (2007), 2776–2785.
  • 13. Z. Wang, G.R. Arce and G. Di Crescenzo, Halftone visual cryptography via error diffusion, IEEE Trans. Inf. Forensics Security, 4 (2009), 383–396.
  • 14. P. Li, P.J. Ma, X.H. Su, et al., Improvements of a two-in-one image secret sharing scheme based on gray mixing model, J. Visual Commun. Image Representation, 23 (2012), 441–453.
  • 15. X. Yan, S. Wang, A.A.A. El-Latif, et al., Random grids-based visual secret sharing with improved visual quality via error diffusion, Mult. Tools Appl., 74 (2015), 9279–9296.
  • 16. S. J. Horng, S. F. Tzeng, Y. Pan, et al., b-specs+: Batch verification for secure pseudonymous authentication in vanet, IEEE Trans. Inform. Forensics Security 8 (2013), 1860–1875.
  • 17. H. Ayad and M. Khalil, Qam-dwt-svd based watermarking scheme for medical images, Int. J. Interactive Mult. Artificial Intelligence, 5 (2018), 81–89.
  • 18. F. Lopez, L. Valentn and I. Sarra, Detecting image brush editing using the discarded coefficients and intentions, Int. J. Interactive Mult. Artificial Intelligence InPress, 2018.
  • 19. R. Ito, H. Kuwakado and H. Tanaka, Image size invariant visual cryptography, IEICE Trans. Fundamentals Electronics, Commun. Comp. Sci., 82 (1999), 2172–2177.
  • 20. O. Kafri and E. Keren, Encryption of pictures and shapes by random grids, Optics Letters, 12 (1987), 377–379.
  • 21. P. Tuyls, H.D. Hollmann, J.H. Van Lint, et al., Xor-based visual cryptography schemes, Designs Codes Cryptography, 37 (2005), 169–186.
  • 22. X. Wu and W. Sun, Random grid-based visual secret sharingwith abilities of or and xor decryptions, J. Visual Commun. Image Representation, 24 (2013), 48–62.
  • 23. X. Yan, S. Wang, X. Niu, et al., Random grid-based visual secret sharing with multiple decryptions, J. Visual Comm. Image Representation, 26 (2015), 94–104.
  • 24. Y.C. Hou, Z.Y. Quan and C.F. Tsai, A privilege-based visual secret sharing model, J. Visual Comm. Image Representation, 33 (2015), 385–367.
  • 25. C.N. Yang, J.K. Liao and D.S. Wang, New privilege-based visual cryptography with arbitrary privilege levels, J. Visual Comm. Image Representation 42 (2017), 121–131.
  • 26. T.Y. Fan and H.C. Chao, Random-grid based progressive visual secret sharing scheme with adaptive priority, Digital Signal Process., 68 (2017), 69–80.
  • 27. X.H. Yan and Y.L. Lu, Progressive visual secret sharing for general access structure with multiple decryptions, Mult. Tools Appl., 77 (2017), 1–20.
  • 28. X. Wu, T. Liu and W. Sun, Improving the visual quality of random grid-based visual secret sharing via error diffusion, J. Visual Comm. Image Representation, 24 (2013), 552–566.

 

This article has been cited by

  • 1. Xuehu Yan, Feng Liu, Wei Qi Yan, Guozheng Yang, Yuliang Lu, Weighted visual cryptographic scheme with improved image quality, Multimedia Tools and Applications, 2020, 10.1007/s11042-020-08970-y

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved