Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

The role of self-loops and link removal in evolutionary games on networks

1 Department of Information Engineering and Mathematics, University of Siena, Italy
2 Instituto de Matemática e Estatística, Universidade Federal do Rio Grande do Sul, Brazil
3 Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brazil

Special Issues: Mathematical Methods in the Biosciences

Recently, a new mathematical formulation of evolutionary game dynamics [1] has been introduced accounting for a finite number of players organized over a network, where the players are located at the nodes of a graph and edges represent connections between them. Internal steady states are particularly interesting in control and consensus problems, especially in a networked context where they are related to the coexistence of different strategies. In this paper we consider this model including self-loops. Existence of internal steady states is studied for different graph topologies in two-strategy games. Results on the effect of removing links from central players are also presented.
  Figure/Table
  Supplementary
  Article Metrics

References

1. D. Madeo and C. Mocenni, Game Interactions and dynamics on networked populations, IEEE T. Automat. Contr., 60 (2015), 1801–1810.

2. A. Barrat, M. Barthelemy and A. Vespignani, Dynamical Processes on Complex Networks. Cambridge University Press, UK, 2008.

3. G. Ehrhardt, M. Marsili and F. Vega-Redondo, Diffusion and growth in an evolving network, Int. J. Game Theory, 334 (2006), 383–397.

4. V. Colizza, A. Barrat, M. Barthélemy, et al., The role of the airline transportation network in the prediction and predictability of global epidemics, P. Natl. Acad. Sci. USA, 103 (2006), 2015–2020.

5. V. Colizza and A. Vespignani, Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations, J. Theor. Biol., 251 (2008), 450–467.

6. S. Tully, M. G. Cojocaru and C. T. Bauch, Multiplayer games and HIV transmission via casual encounters, Math. Biosci. Eng., 14 (2017), 359–376.

7. M. D'Orsogna and M. Perc, Statistical physics of crime: A review, Phys. Life Rev., 12 (2015), 1–21.

8. D. Madeo, L. R. Comolli and C. Mocenni, Emergence of microbial networks as response to hostile environments, Front. Microbiol., 5 (2014), 407.

9. N. Quijano, C. Ocampo-Martinez, J. Barreiro-Gomez, et al., The role of population games and evolutionary dynamics in distributed control systems: The advantages of evolutionary game theory, IEEE Contr. Sys. Mag., 37 (2017), 70–97.

10. R. Gray, A. Franci, V. Srivastava, et al., Multi-agent decision-making dynamics inspired by honeybees, IEEE T. Contr. Netw. Sys., 5 (2018), 793–806.

11. F. C. Santos, J. M. Pacheco and T. Lenaerts, Evolutionary dynamics of social dilemmas in structured heterogeneous populations, P. Natl. Acad. Sci. USA, 103 (2006), 3490–3494.

12. H. Ohtsuki and M. A. Nowak, The replicator equation on graphs, J. Theor. Biol., 243 (2006), 86–97.

13. T. Konno, A condition for cooperation in a game on complex networks, J. Theor. Biol., 269 (2011), 224–233.

14. J. Gómez-Gardenes, I. Reinares, A. Arenas, et al., Evolution of cooperation in multiplex networks, Sci. Rep., 2 (2012), 620.

15. S. M. Cameron and A. Cintrón-Arias, Prisoner's Dilemma on real social networks: Revisited, Math. Biosci. Eng., 10 (2013), 1381–1398.

16. D. G. Rand, M. A. Nowak, J. H. Fowler, et al., Static network structure can stabilize human cooperation, P. Natl. Acad. Sci. USA, 11 (2014), 17093–17098.

17. B. Allen, G. Lippner, Y. Chen, et al., Evolutionary dynamics on any population structure, Nature, 544 (2017), 227.

18. B. Fotouhi, N. Momeni, B. Allen, et al., Evolution of Cooperation on Stochastic Block Models, preprint, arXiv:1807.03093.

19. J. Weibull, Evolutionary Game Theory, MIT Press, Cambridge, MA, 1995.

20. J. Hofbauer and K. Sigmund, Evolutionary game dynamics, B. Am. Math. Soc, 40 (2003) 479–519.

21. M. A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life, Belknap Press of Harvard University Press, Harvard, MA, 2006.

22. G. Iacobelli, D. Madeo and C. Mocenni, Lumping evolutionary game dynamics on networks, J. Theor. Biol., 407 (2016), 328–338.

23. D. Pais, C. H. Caicedo-Nùñez and N. E. Leonard, Hopf bifurcations and limit cycles in evolutionary network dynamics, SIAM J. Appl. Dyn. Syst., 11 (2012), 1754–1884.

24. W. Ren and R. Beard, Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE T. Automat. Contr., 50 (2005), 655–661.

25. R. Olfati-Saber, A. Fax and R. Murray, Consensus and cooperation in networked multi-agent systems, P. IEEE, 95 (2007), 215–233.

26. B. Kozma and A. Barrat, Consensus formation on adaptive networks, Phys. Rev. E, 77 (2008), 016102.

27. G. Punzo, G. F. Young, M Macdonald, et al., Using network dynamical influence to drive consensus, Sci. Rep., 6 (2016), 26318.

28. A. Traulsen, F. C. Santos and J. M. Pacheco, Evolutionary Games in Self-Organizing Populations, in Adaptive networks: Theory, Models and Applications (eds. T. Gross and H. Sayama), Springer Berlin Heidelberg, Germany, (2009), 253–267.

29. S. Boccaletti, V. Latora, Y. Moreno, et al., Complex networks: Structure and dynamics, Phys. Rep., 424 (2006), 175–308.

30. Y. Bramoullé and R. Kranton, Games Played on Networks, in The Oxford Handbook of the Economics of Networks (eds. Y. Bramoullé, A. Galeotti and B. Rogers), Oxford University Press. Available from: http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199948277.001. 0001/oxfordhb-9780199948277.

31. A. Banerjee, A. G. Chandrasekhar, E. Duflo, et al., Gossip: Identifying Central Individuals in a Social Network, preprint, arXiv:1406.2293v3.

32. D. Madeo and C. Mocenni, Self-regulation promotes cooperation in social networks, preprint, arXiv:1807.07848.

33. M. Newman, Network: An introduction, Oxford University Press, 2010.

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved