Research article Special Issues

Threshold dynamics of a time-delayed hantavirus infection model in periodic environments

  • Received: 23 February 2019 Accepted: 17 May 2019 Published: 27 May 2019
  • We formulate and study a mathematical model for the propagation of hantavirus infection in the mouse population. This model includes seasonality, incubation period, direct transmission (contacts between individuals) and indirect transmission (through the environment). For the time-periodic model, the basic reproduction number R0 is defined as the spectral radius of the next generation operator. Then, we show the virus is uniformly persistent when R0>1 while tends to die out if R0<1. When there is no seasonality, that is, all coefficients are constants, we obtain the explicit expression for the basic reproduction number R0, such that if R0<1, then the virus-free equilibrium is globally asymptotically stable, but if R0>1, the endemic equilibrium is globally attractive. Numerical simulations indicate that prolonging the incubation period may be helpful in the virus control. Some sensitivity analysis of R0 is performed.

    Citation: Junli Liu. Threshold dynamics of a time-delayed hantavirus infection model in periodic environments[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4758-4776. doi: 10.3934/mbe.2019239

    Related Papers:

    [1] Ana Isabel Muñoz, J. Ignacio Tello . On a mathematical model of bone marrow metastatic niche. Mathematical Biosciences and Engineering, 2017, 14(1): 289-304. doi: 10.3934/mbe.2017019
    [2] Changxiang Huan, Jiaxin Gao . Insight into the potential pathogenesis of human osteoarthritis via single-cell RNA sequencing data on osteoblasts. Mathematical Biosciences and Engineering, 2022, 19(6): 6344-6361. doi: 10.3934/mbe.2022297
    [3] Swadesh Pal, Malay Banerjee, Vitaly Volpert . Spatio-temporal Bazykin’s model with space-time nonlocality. Mathematical Biosciences and Engineering, 2020, 17(5): 4801-4824. doi: 10.3934/mbe.2020262
    [4] Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl . Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences and Engineering, 2017, 14(3): 625-653. doi: 10.3934/mbe.2017036
    [5] Ali Moussaoui, Vitaly Volpert . The impact of immune cell interactions on virus quasi-species formation. Mathematical Biosciences and Engineering, 2024, 21(11): 7530-7553. doi: 10.3934/mbe.2024331
    [6] Chichia Chiu, Jui-Ling Yu . An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems. Mathematical Biosciences and Engineering, 2007, 4(2): 187-203. doi: 10.3934/mbe.2007.4.187
    [7] Hoang Pham . Analyzing the relationship between the vitamin D deficiency and COVID-19 mortality rate and modeling the time-delay interactions between body's immune healthy cells, infected cells, and virus particles with the effect of vitamin D levels. Mathematical Biosciences and Engineering, 2022, 19(9): 8975-9004. doi: 10.3934/mbe.2022417
    [8] Ana I. Muñoz, José Ignacio Tello . Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences and Engineering, 2011, 8(4): 1035-1059. doi: 10.3934/mbe.2011.8.1035
    [9] Marek Bodnar, Urszula Foryś . Time Delay In Necrotic Core Formation. Mathematical Biosciences and Engineering, 2005, 2(3): 461-472. doi: 10.3934/mbe.2005.2.461
    [10] Changwook Yoon, Sewoong Kim, Hyung Ju Hwang . Global well-posedness and pattern formations of the immune system induced by chemotaxis. Mathematical Biosciences and Engineering, 2020, 17(4): 3426-3449. doi: 10.3934/mbe.2020194
  • We formulate and study a mathematical model for the propagation of hantavirus infection in the mouse population. This model includes seasonality, incubation period, direct transmission (contacts between individuals) and indirect transmission (through the environment). For the time-periodic model, the basic reproduction number R0 is defined as the spectral radius of the next generation operator. Then, we show the virus is uniformly persistent when R0>1 while tends to die out if R0<1. When there is no seasonality, that is, all coefficients are constants, we obtain the explicit expression for the basic reproduction number R0, such that if R0<1, then the virus-free equilibrium is globally asymptotically stable, but if R0>1, the endemic equilibrium is globally attractive. Numerical simulations indicate that prolonging the incubation period may be helpful in the virus control. Some sensitivity analysis of R0 is performed.




    [1] J. A. Reinoso and F. J. de la Rubia, Stage-dependent model for Hantavirus infection: The effect of the initial infection-free period, Phys. Rev. E, 87 (2013), 042706.
    [2] C. H. Calisher, W. Sweeney, J. N. Mills, et al., Natural history of Sin Nombre virus in western Colorado, Emerg. Infect. Dis., 5 (1999), 126–134.
    [3] J. N. Mills, T. G. Ksiazek, C. J. Peters, et al., Long-term studies of hantavirus reservoir populations in the southwestern United States: a synthesis, Emerg. Infect. Dis., 5 (1999), 135–142.
    [4] J. N. Mills, T. G. Ksiazek, B. A. Ellis, et al., Patterns of association with host and habitat: antibody reactive with Sin Nombre virus in small mammals in the major biotic communities of the southwestern United States, Am. J. Trop. Med. Hyg., 56 (1997), 273–284.
    [5] G. E. Glass, W. Livingston, J. N. Mills, et al., Black Creek Canal Virus infection in Sigmodon hispidus in southern Florida, Am. J. Trop. Med. Hyg., 59 (1998), 699–703.
    [6] G. Abramson and V. M. Kenkre, Spatiotemporal patterns in the Hantavirus infection, Phys. Rev. E, 66 (2002), 011912.
    [7] G. Abramson, V. M. Kenkre, T. L. Yates, et al., Traveling Waves of Infection in the Hantavirus Epidemics, Bull. Math. Biol., 65 (2003), 519–534.
    [8] L. J. S. Allen, M. Langlais and C. J. Phillips, The dynamics of two viral infections in a single host population with applications to hantavirus, Math. Biosci., 186 (2003), 191–217.
    [9] V. M. Kenkre, L. Giuggioli, G. Abramson, et al., Theory of hantavirus infection spread incorpo-rating localized adult and itinerant juvenile mice, Eur. Phys. J. B, 55 (2007), 461–470.
    [10] T. Gedeon, C. Bodelón and A. Kuenzi, Hantavirus Transmission in Sylvan and Peridomestic Environments, Bull. Math. Biol., 72 (2010), 541–564.
    [11] F. Sauvage, M. Langlais, N. G. Yoccoz, et al., Modelling hantavirus in fluctuating populations of bank voles: the role of indirect transmission on virus persistence, Journal of Animal Ecology, 72 (2003), 1–13.
    [12] C. Wolf, A mathematical model for the propagation of a hantavirus in structured populations, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 1065–1089.
    [13] C. Wolf, M. Langlais, F. Sauvage, et al., A multi-patch epidemic model with periodic demography, direct and indirect transmission and variable maturation rate, Math. Popul. Stud., 13 (2006), 153–177.
    [14] J. A. Reinoso and F. J. de la Rubia, Spatial spread of the Hantavirus infection, Phys. Rev. E, 91 (2015), 032703.
    [15] J. Buceta, C. Escudero, F. J. de la Rubia, et al., Outbreaks of Hantavirus induced by seasonality, Phys. Rev. E, 69 (2004), 021906.
    [16] L. J. S. Allen, R. K. McCormack and C. B. Jonsson, Mathematical models for hantavirus Infection in rodents, Bull. Math. Biol., 68 (2006), 511–524.
    [17] R. Bürger, G. Chowell, E. Gavilán, et al., Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents, Math. Biosci. Eng., 15 (2018), 95–123.
    [18] R. Ostfeld and F. Keesing, Pulsed resources and community dynamics of consumers in terrestrial ecosystems, Trends in Ecology and Evolution, 15 (2000), 232–237.
    [19] K. D. Abbott, T. G. Ksiazek and J. N. Mills, Long-term hantavirus persistency in rodent popula-tions in central Arizona, Emerg. Infect. Dis., 5 (1999), 102–112.
    [20] A. J. Kuenzi, M. L. Morrison, D. E. Swann, et al., A longitudinal study of Sin Nombre virus prevalence in rodents in southwestern Arizona, Emerg. Infect. Dis., 5 (1999), 113–117.
    [21] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, New York, 1993.
    [22] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,Math. Surveys Monogr. 41, AMS, Providence, RI, 1995.
    [23] X.-Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dyn. Diff. Equat., 29 (2017), 67–82.
    [24] W. Walter,On strongly monotone flows, Ann. Polon. Math., 66 (1997), 269–274.
    [25] P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251–275.
    [26] X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semi-flows with applications, Comm. Pure Appl. Math., 60 (2007), 1–40.
    [27] X. Wang and X.-Q. Zhao, Dynamics of a time-delayed Lyme disease model with seasonality, SIAM J. Appl. Dyn. Syst., 16 (2017), 853–881.
    [28] X.-Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003.
    [29] Y. Yuan and X.-Q. Zhao, Global stability for non-monotone delay equations (with application to a model of blood cell production), J. Differ. Equations, 252 (2012), 2189–2209.
    [30] D. Posny and J. Wang, Computing the basic reproductive numbers for epidemiological models in nonhomogeneous environments, Appl. Math. Comput., 242 (2014), 473–490.
  • This article has been cited by:

    1. James L. Buchanan, Robert Gilbert, Yvonne Ou, Anja Nohe, Rachel Schaefer, The Kinetics of Vitamin D3 in the Osteoblastic Cell, 2013, 75, 0092-8240, 1612, 10.1007/s11538-013-9861-2
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5450) PDF downloads(537) Cited by(6)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog