Citation: Raimund Bürger, Gerardo Chowell, Leidy Yissedt Lara-Díıaz. Comparative analysis of phenomenological growth models applied to epidemic outbreaks[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4250-4273. doi: 10.3934/mbe.2019212
[1] | Mahmoud S. Mehany, Faizah D. Alanazi . An η-Hermitian solution to a two-sided matrix equation and a system of matrix equations over the skew-field of quaternions. AIMS Mathematics, 2025, 10(4): 7684-7705. doi: 10.3934/math.2025352 |
[2] | Abdur Rehman, Muhammad Zia Ur Rahman, Asim Ghaffar, Carlos Martin-Barreiro, Cecilia Castro, Víctor Leiva, Xavier Cabezas . Systems of quaternionic linear matrix equations: solution, computation, algorithm, and applications. AIMS Mathematics, 2024, 9(10): 26371-26402. doi: 10.3934/math.20241284 |
[3] | Vladislav N. Kovalnogov, Ruslan V. Fedorov, Denis A. Demidov, Malyoshina A. Malyoshina, Theodore E. Simos, Spyridon D. Mourtas, Vasilios N. Katsikis . Computing quaternion matrix pseudoinverse with zeroing neural networks. AIMS Mathematics, 2023, 8(10): 22875-22895. doi: 10.3934/math.20231164 |
[4] | Wenxv Ding, Ying Li, Anli Wei, Zhihong Liu . Solving reduced biquaternion matrices equation k∑i=1AiXBi=C with special structure based on semi-tensor product of matrices. AIMS Mathematics, 2022, 7(3): 3258-3276. doi: 10.3934/math.2022181 |
[5] | Abdur Rehman, Cecilia Castro, Víctor Leiva, Muhammad Zia Ur Rahman, Carlos Martin-Barreiro . Solving two-sided Sylvester quaternionic matrix equations: Theoretical insights, computational implementation, and practical applications. AIMS Mathematics, 2025, 10(7): 15663-15697. doi: 10.3934/math.2025702 |
[6] | Yang Chen, Kezheng Zuo, Zhimei Fu . New characterizations of the generalized Moore-Penrose inverse of matrices. AIMS Mathematics, 2022, 7(3): 4359-4375. doi: 10.3934/math.2022242 |
[7] | Abdur Rehman, Ivan Kyrchei, Muhammad Zia Ur Rahman, Víctor Leiva, Cecilia Castro . Solvability and algorithm for Sylvester-type quaternion matrix equations with potential applications. AIMS Mathematics, 2024, 9(8): 19967-19996. doi: 10.3934/math.2024974 |
[8] | Anli Wei, Ying Li, Wenxv Ding, Jianli Zhao . Three special kinds of least squares solutions for the quaternion generalized Sylvester matrix equation. AIMS Mathematics, 2022, 7(4): 5029-5048. doi: 10.3934/math.2022280 |
[9] | Dong Wang, Ying Li, Wenxv Ding . The least squares Bisymmetric solution of quaternion matrix equation AXB=C. AIMS Mathematics, 2021, 6(12): 13247-13257. doi: 10.3934/math.2021766 |
[10] | Qi Xiao, Jin Zhong . Characterizations and properties of hyper-dual Moore-Penrose generalized inverse. AIMS Mathematics, 2024, 9(12): 35125-35150. doi: 10.3934/math.20241670 |
In this paper, we establish the following four symmetric quaternion matrix systems:
{A11X1=B11,C11X1D11=E11,X2A22=B22,C22X2D22=E22,F11X1H11+X2F22=G11, | (1.1) |
{A11X1=B11,C11X1D11=E11,X2A22=B22,C22X2D22=E22,F11X1+H11X2F22=G11, | (1.2) |
{A11X1=B11,C11X1D11=E11,A22X2=B22,C22X2D22=E22,F11X1+H11X2F22=G11, | (1.3) |
{A11X1=B11,C11X1D11=E11,A22X2=B22,C22X2D22=E22,F11X1+X2F22=G11, | (1.4) |
where Aii, Bii, Cii, Dii, Eii, Fii(i=¯1,2), H11, and G11 are known matrices, while Xi(i=¯1,2) are unknown.
In this paper, R and Hm×n denote the real number field and the set of all quaternion matrices of order m×n, respectively.
H={v0+v1i+v2j+v3k|i2=j2=k2=ijk=−1,v0,v1,v2,v3∈R}. |
Moreover, r(A), 0 and I represent the rank of matrix A, the zero matrix of suitable size, and the identity matrix of suitable size, respectively. The conjugate transpose of A is A∗. For any matrix A, if there exists a unique solution X such that
AXA=A,XAX=X,(AX)∗=AX,(XA)∗=XA, |
then X is called the Moore-Penrose (M−P) inverse. It should be noted that A† is used to represent the M−P inverse of A. Additionally, LA=I−A†A and RA=I−AA† denote two projectors toward A.
H is known to be an associative noncommutative division algebra over R with extensive applications in computer science, orbital mechanics, signal and color image processing, control theory, and so on (see [1,2,3,4]).
Matrix equations, significant in the domains of descriptor systems control theory [5], nerve networks [6], back feed [7], and graph theory [8], are one of the key research topics in mathematics.
The study of matrix equations in H has garnered the attention of various researchers; consequently they have been analyzed by many studies (see, e.g., [9,10,11,12]). Among these the system of symmetric matrix equations is a crucial research object. For instance, Mahmoud and Wang [13] established some necessary and sufficient conditions for the three symmetric matrix systems in terms of M−P inverses and rank equalities:
{A1V=C1, VB1=C2,A3X+YB3=C3,A2Y+ZB2+A5VB5=C5,A4W+ZB4=C4,{A1V=C1, VB1=C2,A3X+YB3=C3,A2Z+YB2+A5VB5=C5,A4Z+WB4=C4,{A1V=C1, VB1=C2,A3X+YB3=C3,A2Y+ZB2+A5VB5=C5,A4Z+WB4=C4. | (1.5) |
Wang and He [14] established the sufficient and necessary conditions for the existence of solutions to the following three symmetric coupled matrix equations and the expressions for their general solutions:
{A1X+YB1=C1,A2Y+ZB2=C2,A3W+ZB3=C3,{A1X+YB1=C1,A2Z+YB2=C2,A3Z+WB3=C3,{A1X+YB1=C1,A2Y+ZB2=C2,A3Z+WB3=C3. | (1.6) |
It is noteworthy that the following matrix equation plays an important role in the analysis of the solvability conditions of systems (1.1)–(1.4):
A1U+VB1+A2XB2+A3YB3+A4ZB4=B. | (1.7) |
Liu et al. [15] derived some necessary and sufficient conditions to solve the quaternion matrix equation (1.7) using the ranks of coefficient matrices and M−P inverses. Wang et al. [16] derived the following quaternion equations after obtaining some solvability conditions for the quaternion equation presented in Eq (1.8) in terms of M−P inverses:
{A11X1=B11,C11X1D11=E11,X2A22=B22,C22X2D22=E22,F11X1+X2F22=G11. | (1.8) |
To our knowledge, so far, there has been little information on the solvability conditions and an expression of the general solution to systems (1.1)–(1.4).
In mathematical research and applications, the concept of η-Hermitian matrices has gained significant attention [17]. An η-Hermitian matrix, for η∈{i,j,k}, is defined as a matrix A such that A=Aη∗, where Aη∗=−ηA∗η. These matrices have found applications in various fields including linear modeling and the statistics of random signals [1,17]. As an application of (1.1), this paper establishes some necessary and sufficient conditions for the following matrix equation:
{A11X1=B11,C11X1Cη∗11=E11,F11X1Fη∗11+(F22X1)η∗=G11 | (1.9) |
to be solvable.
Motivated by the study of Systems (1.8), symmetric matrix equations, η-Hermitian matrices, and the widespread use of matrix equations and quaternions as well as the need for their theoretical advancements, we examine the solvability conditions of the quaternion systems presented in systems (1.1)–(1.4) by utilizing the rank equalities and the M−P inverses of coefficient matrices. We then obtain the general solutions for the solvable quaternion equations in systems (1.1)–(1.4). As an application of (1.1), we utilize the M−P inverse and the rank equality of matrices to investigate the necessary and sufficient conditions for the solvability of quaternion matrix equations involving η-Hermicity matrices. It is evident that System (1.8) is a specific instance of System (1.1).
The remainder of this article is structured as follows. Section 2 outlines the basics. Section 3 examines some solvability conditions of the quaternion equation presented in System (1.1) using the M−P inverses and rank equalities of the matrices, and derives the solution of System (1.1). Section 4 establishes some solvability conditions for matrix systems (1.2)–(1.4) to be solvable. Section 5 investigates some necessary and sufficient conditions for matrix equation (1.9) to have common solutions. Section 6 concludes the paper.
Marsaglia and Styan [18] presented the following rank equality lemma over the complex field, which can be generalized to H.
Lemma 2.1. [18] Let A∈Hm×n, B∈Hm×k, C∈Hl×n, D∈Hj×k, and E∈Hl×i be given. Then, the following rank equality holds:
r(ABLDREC0)=r(AB0C0E0D0)−r(D)−r(E). |
Lemma 2.2. [19] Let A∈Hm×n be given. Then,
(1)(Aη)†=(A†)η,(Aη∗)†=(A†)η∗;(2)r(A)=r(Aη∗)=r(Aη);(3)(LA)η∗=−η(LA)η=(LA)η=LAη∗=RAη∗,(4)(RA)η∗=−η(RA)η=(RA)η=RAη∗=LAη∗;(5)(AA†)η∗=(A†)η∗Aη∗=(A†A)η=Aη(A†)η;(6)(A†A)η∗=Aη∗(A†)η∗=(AA†)η=(A†)ηAη. |
Lemma 2.3. [20] Let A1 and A2 be given quaternion matrices with adequate shapes. Then, the equation A1X=A2 is solvable if, and only if, A2=A1A†1A2. In this case, the general solution to this equation can be expressed as
X=A†1A2+LA1U1, |
where U1 is any matrix with appropriate size.
Lemma 2.4. [20] Let A1 and A2 be given quaternion matrices with adequate shapes. Then, the equation XA1=A2 is solvable if, and only if, A2=A2A†1A1. In this case, the general solution to this equation can be expressed as
X=A2A†1+U1RA1, |
where U1 is any matrix with appropriate size.
Lemma 2.5. [21] Let A,B, and C be known quaternion matrices with appropriate sizes. Then, the matrix equation
AXB=C |
is consistent if, and only if,
RAC=0,CLB=0. |
In this case, the general solution to this equation can be expressed as
X=A†CB†+LAU+VRB, |
where U and V are any quaternion matrices with appropriate sizes.
Lemma 2.6. [15] Let Ci,Di, and Z(i=¯1,4) be known quaternion matrices with appropriate sizes.
C1X1+X2D1+C2Y1D2+C3Y2D3+C4Y3D4=Z. | (2.1) |
Denote
RC1C2=C12,RC1C3=C13,RC1C4=C14,D2LD1=D21,D31LD21=N32,D3LD1=D31,D4LD1=D41,RC12C13=M23,S12=C13LM23,RC1ZLD1=T1,C32=RM23RC12,A1=C32C14,A2=RC12C14,A3=RC13C14,A4=C14,D13=LD21LN32,B1=D41,B2=D41LD31,B3=D41LD21,B4=D41D13,E1=C32T1,E2=RC12T1LD31,E3=RC13T1LD21,E4=T1D13,A24=(LA2,LA4),B13=(RB1RB3),A11=LA1,B22=RB2,A33=LA3,B44=RB4,E11=RA24A11,E22=RA24A33,E33=B22LB13,E44=B44LB13,N=RE11E22,M=E44LE33,K=K2−K1,E=RA24KLB13,S=E22LN,K11=A2LA1,G1=E2−A2A†1E1B†1B2,K22=A4LA3,G2=E4−A4A†3E3B†3B4,K1=A†1E1B†1+LA1A†2E2B†2,K2=A†3E3B†3+LA3A†4E4B†4. |
Then, the following statements are equivalent:
(1) Equation (2.1) is consistent.
(2)
RAiEi=0,EiLBi=0(i=¯1,4),RE11ELE44=0. |
(3)
r(ZC2C3C4C1D10000)=r(D1)+r(C2,C3,C4,C1),r(ZC2C4C1D3000D1000)=r(C2,C4,C1)+r(D3D1),r(ZC3C4C1D2000D1000)=r(C3,C4,C1)+r(D2D1),r(ZC4C1D200D300D100)=r(D2D3D1)+r(C4,C1),r(ZC2C3C1D4000D1000)=r(C2,C3,C1)+r(D4D1),r(ZC2C1D300D400D100)=r(D3D4D1)+r(C2,C1),r(ZC3C1D200D400D100)=r(D2D4D1)+r(C3,C1),r(ZC1D20D30D40D10)=r(D2D3D4D1)+r(C1),r(ZC2C1000C4D3000000D1000000000−ZC3C1C4000D2000000D1000D400D4000)=r(D30D100D20D1D4D4)+r(C2C100C400C3C1C4). |
Under these conditions, the general solution to the matrix equation (2.1) is
X1=C†1(Z−C2Y1D2−C3Y2D3−C4Y3D4)−C†1U1D1+LC1U2,X2=RC1(Z−C2Y1D2−C3Y2D3−C4Y3D4)D†1+C1C†1U1+U3RD1,Y1=C†12TD†21−C†12C13M†23TD†21−C†12S12C†13TN†32D31D†21−C†12S12U4RN32D31D†21+LC12U5+U6RD21,Y2=M†23TD†31+S†12S12C†13TN†32+LM23LS12U7+U8RD31+LM23U4RN32,Y3=K1+LA2V1+V2RB1+LA1V3RB2, or Y3=K2−LA4W1−W2RB3−LA3W3RB4, |
where T=T1−C4Y3D4,Ui(i=¯1,8) are arbitrary matrices with appropriate sizes over H,
V1=(Im,0)[A†24(K−A11V3B22−A33W3B44)−A†24U11B13+LA24U12],W1=(0,Im)[A†24(K−A11V3B22−A33W3B44)−A†24U11B13+LA24U12],W2=[RA24(K−A11V3B22−A33W3B44)B†13+A24A†24U11+U21RB13](0In),V2=[RA24(K−A11V3B22−A33W3B44)B†13+A24A†24U11+U21RB13](In0),V3=E†11KE†33−E†11E22N†KE†33−E†11SE†22KM†E44E†33−E†11SU31RME44E†33+LE11U32+U33RE33,W3=N†KE44+S†SE†22KM†+LNLSU41+LNU31RM−U42RE44, |
U11,U12,U21,U31,U32,U33,U41, and U42 are arbitrary quaternion matrices with appropriate sizes, and m and n denote the column number of C4 and the row number of D4, respectively.
Some necessary and sufficient conditions for System (1.1) to be solvable will be established in this section. The general solution of System (1.1) will also be derived in this section. Moreover, we provide an example to illustrate our main results.
Theorem 3.1. Let Aii,Bii,Cii,Dii,Eii,Fii,H11, and G11 (i = 1, 2) be given quaternion matrices. Put
{A1=C11LA11,P1=E11−C11A†11B11D11,B2=RA22D22,P2=E22−C22B22A†22D22,^B1=RB2RA22F22,^A2=F11LA11LA1,^A3=F11LA11,^B3=RD11H11,^A4=LC22,^B4=RA22F22,H11L^B1=^B11,P=G11−F11A†11B11H11−F11LA11A†1P1D†11H11−B22A†22F22−C†22P2B†2RA22F22, | (3.1) |
{^B22L^B11=N1,^B3L^B1=^B22,^B4L^B1=^B33,R^A2^A3=^M1,S1=^A3L^M1,T1=PL^B1,C=R^M1R^A2,C1=C^A4,C2=R^A2^A4,C3=R^A3^A4,C4=^A4,D=L^B11LN1,D1=^B33,D2=^B33L^B22,D4=^B33D,E1=CT1,E2=R^A2T1L^B22,E3=R^A3T1L^B11,E4=T1D,^C11=(LC2,LC4),D3=^B33L^B11,^D11=(RD1RD3),^C22=LC1,^D22=RD2,^C33=LC3,^D33=RD4,^E11=R^C11^C22,^E22=R^C11^C22,^E33=^D22L^D11,^E44=^D33L^D11,M=R^E11^E22,N=^E44L^E33,F=F2−F1,E=R^C11FL^D11,S=^E22LM,^F11=C2LC1,G1=E2−C2C†1E1D†1D2,^F22=C4LC3,G2=E4−C4C†3E3D†3D4,F1=C†1E1D†1+LC1C†2E2D†2,F2=C†3E3D†3+LC3C†4E4D†4. | (3.2) |
Then, the following statements are equivalent:
(1) System (1.1) is solvable.
(2)
RA11B11=0,RA1P1=0,P1LD11=0,B22LA22=0,RC22P2=0,P2LB2=0,RCiEi=0,EiLDi=0(i=¯1,4),R^E11EL^E44=0. |
(3)
r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11), | (3.3) |
r(E11D11)=r(D11),r(B22A22)=r(A22), | (3.4) |
r(E22,C22)=r(C22),r(E22C22B22D22A22)=r(D22,A22), | (3.5) |
r(F220D22A22B11H11A1100C22G11C22F11E22C22B22)=r(F22,D22,A22)+r(A11C22F11), | (3.6) |
r(H110−D1100F2200D22A220C11E11000A11B11D1100C22G11C22F110E22C22B22)=r(C11A11C22F11)+r(H11D1100F220D22A22), | (3.7) |
r(H11000F220D22A220A1100C22G11C22F11E22C22B22)=r(H1100F22D22A22)+r(A11C22F11), | (3.8) |
r(H1100F22D22A22C22G11E22C22B22)=r(H1100F22D22A22), | (3.9) |
r(G11F11B22F220A22B11H11A110)=r(F11A11)+r(F22,A22), | (3.10) |
r(G11F110B22H110−D110F2200A220C11E1100A11B11D110)=r(H11D110F220A22)+r(F11C11A11), | (3.11) |
r(G11F11B22H1100F220A220A110)=r(H110F22A22)+r(F11A11), | (3.12) |
r(G11B22H110F22A22)=r(H110F22A22), | (3.13) |
r(H11000000D110F220000D22A220000H1100000000F22D22A220000F220F2200000A220C1100000−E1100A1100000−B11D110C22G11C22F11000E22C22B2200)=r(H1100000D110F22000D22A22000H110000000F22D22A220000F22F2200000A22)+r(C11A11C22F11). | (3.14) |
Proof. (1)⇔(2): The System (1.1) can be written as follows.
A11X1=B11, X2A22=B22, | (3.15) |
C11X1D11=E11, C22X2D22=E22, | (3.16) |
and
F11X1H11+X2F22=G11. | (3.17) |
Next, the solvability conditions and the expression for the general solutions of Eq (3.15) to Eq (3.17) are given by the following steps:
Step 1: According to Lemma 2.3 and Lemma 2.4, the system (3.15) is solvable if, and only if,
RA11B11=0, B22LA22=0. | (3.18) |
When condition (3.18) holds, the general solution of System (3.15) is
X1=A†11B11+LA11U1, X2=B22A†22+U2RA22. | (3.19) |
Step 2: Substituting (3.19) into (3.16) yields,
A1U1D11=P1, C22U2B2=P2, | (3.20) |
where A1,P1,B2,P2 are defined by (3.1). By Lemma 2.5, the system (3.20) is consistent if, and only if,
RA1P1=0, P1LD11=0, RC22P2=0, P2LB2=0. | (3.21) |
When (3.21) holds, the general solution to System (3.20) is
U1=A†1P1D†11+LA1W1+W2RD11,U2=C†22P2B†2+LC22W3+W4RB2. | (3.22) |
Comparing (3.22) and (3.19), hence,
X1=A†11B11+LA11A†1P1D†11+LA11LA1W1+LA11W2RD11,X2=B22A†22+C†22P2B†2RA22+LC22W3RA22+W4RB2RA22. | (3.23) |
Step 3: Substituting (3.23) into (3.17) yields
W4^B1+^A2W1H11+^A3W2^B3+^A4W3^B4=P, | (3.24) |
where ^Bi,^Aj(i=¯1,4,j=¯2,4) are defined by (3.1). It follows from Lemma 2.6 that Eq (3.24) is solvable if, and only if,
RCiEi=0,EiLDi=0(i=¯1,4),R^E11EL^E44=0. | (3.25) |
When (3.25) holds, the general solution to matrix equation (3.24) is
W1=^A2†T^B11†−^A2†^A3^M1†T^B11†−^A2†S1^A3†TN†1^B22^B11†−^A2†S1V4RN1^B22^B11†+L^A2V5+V6R^B11,W2=^M1†T^B22†+S†1S1^A3†TN†1+L^M1LS1V7+V8R^B22+L^M1V4RN1,W3=F1+LC2^V1+^V2RD1+LC1^V3RD2, or W3=F2−LC4V1−V2RD3−LC3V3RD4,W4=(P−^A2W1H11−^A3W2^B3−^A4W3^B4)^B1†+V3R^B1, |
where Ci,Ei,Di(i=¯1,4),^E11,^E44 are defined as (3.2), T=T1−^A4W3^B4,Vi(i=¯1,8) are arbitrary matrices with appropriate sizes over H,
^V1=(Im,0)[^C11†(F−^C22V3^D22−^C33^V3^D33)−^C11†U11^D11+L^C11U12],V1=(0,Im)[^C11†(F−^C22V3^D22−^C33^V3^D33)−^C11†U11^D11+L^C11U12],V2=[R^C11(F−^C22V3^D22−^C33^V3^D33)^D11†+^C11^C11†U11+U21R^D11](0In),^V2=[R^C11(F−^C22V3^D22−^C33^V3^D33)^D11†+^C11^C11†U11+U21R^D11](In0),^V3=^E11†F^E33†−^E11†^E22M†F^E33†−^E11†S^E22†FN†^E44^E33†−^E11†SU31RN^E44^E33†+L^E11U32+U33R^E33,V3=M†F^E44†+S†S^E22†FN†+LMLSU41+LMU31RN−U42R^E44, |
U11,U12,U21,U31,U32,U33,U41, and U42 are any quaternion matrices with appropriate sizes, and m and n denote the column number of C22 and the row number of A22, respectively. We summarize that System (1.1) has a solution if, and only if, (3.18), (3.21), and (3.25) hold, i.e., the System (1.1) has a solution if, and only if, (2) holds.
(2)⇔(3): We prove the equivalence in two parts. In the first part, we want to show that (3.18) and (3.21) are equivalent to (3.3) to (3.5), respectively. In the second part, we want to show that (3.25) is equivalent to (3.6) to (3.14). It is easy to know that there exist X01,X02,U01, and U02 such that
A11X01=B11, X02A22=B22,A1U01D11=P1, C22U02B2=P2 |
holds, where
X01=A†11B11,U01=A†1P1D†11,X02=B22A†22,U02=C†22P2B†2, |
P1=E11−C11X01D11,P2=E22−C22X02D22, and P=G11−F11X01H11−F11LA11U01H11−X02F22−U02RA22F22.
Part 1: We want to show that (3.18) and (3.21) are equivalent to (3.3) to (3.5), respectively. It follows from Lemma 2.1 and elementary transformations that
(3.18)⇔r(RA11B11)=0⇔r(B11,A11)=r(A11)⇔(3.3),(3.21)⇔r(RA1P1)=0⇔r(P1,A1)=r(A1)⇔r(E11−C11A†11B11D11,C11LA11)=r(C11LA11)⇔r(E11C11B11D11A11)=r(C11A11)⇔(3.3),(3.21)⇔r(P1LD11)=0⇔r(P1D11)=r(D11)⇔r(E11−C11A†11B11D11D11)=r(D11)⇔r(E11D11)=r(D11)⇔(3.4),(3.18)⇔r(B22LA22)=0⇔r(B22A22)=r(A22)⇔(3.4). |
Similarly, we can show that (3.21) is equivalent to (3.5). Hence, (3.18) and (3.21) are equivalent to (3.3) and (3.5), respectively.
Part 2: In this part, we want to show that (3.25) is equivalent to (3.6) and (3.14). According to Lemma 2.6, we have that (3.25) is equivalent to the following:
r(P^A2^A3^A4^B1000)=r(^B1)+r(^A2,^A3,^A4), | (3.26) |
r(P^A2^A4^B300^B100)=r(^A2,^A4)+r(^B3^B1), | (3.27) |
r(P^A3^A4H1100^B100)=r(^A3,^A4)+r(H11^B1), | (3.28) |
r(P^A4H110^B30^B10)=r(H11^B3^B1)+r(^A4), | (3.29) |
r(P^A2^A3^B400^B100)=r(^A2,^A3)+r(^B4^B1), | (3.30) |
r(P^A2^B30^B40^B10)=r(^B3^B4^B1)+r(^A2), | (3.31) |
r(P^A3H110^B40^B10)=r(H11^B4^B1)+r(^A3), | (3.32) |
r(PH11^B3^B4^B1)=r(H11^B3^B4^B1), | (3.33) |
r(P^A200^A4^B30000^B1000000−P^A3^A400H110000^B100^B40^B400)=r(^B30^B100H110^B1^B4^B4)+r(^A20^A40^A3^A4), | (3.34) |
respectively. Hence, we only prove that (3.26)–(3.34) are equivalent to (3.6)–(3.14) when we prove that (3.25) is equivalent to (3.6)–(3.14). Now, we prove that (3.26)–(3.34) are equivalent to (3.6)–(3.14). In fact, we only prove that (3.26), (3.30), and (3.34) are equivalent to (3.6), (3.10), and (3.14); the remaining part can be proved similarly. According to Lemma 2.1 and elementary transformations, we have that
(3.26)=r(P^A2^A3^A4^B1000)=r(^B1)+r(^A2,^A3,^A4)⇔r(G11−F11X01H11−F11LA11U01H11−X02F22−U02RA22F22F11LA11LA1F11LA11LC22RB2RA22F22000)=r(RB2RA22F22)+r(F11LA11LA1,F11LA11,LC22)⇔r(G11−F11X01H11−X02F22−U02RA22F22F11I0RA22F2200B20A110000C220)=r(RA22F22,B2)+r(F11IA1100C22)⇔r(G11F11IU02B20F2200B2A22B11H11A11000C22X02F220C2200)=r(F22,D22,A22)+r(F11IA1100C22)⇔r(F220D22A22B11H11A1100C22G11C22F11E22C22B22)=r(F22,D22,A22)+r(A11F11C22)⇔(3.6). |
Similarly, we have that (3.27)⇔(3.7),(3.28)⇔(3.8),(3.29)⇔(3.9).
(3.30)=r(P^A2^A3^B400^B100)=r(^A2,^A3)+r(^B4^B1)⇔r(G11−F11X01H11−F11LA11U01H11−X02F22−U02RA22F22F11LA11LA1F11LA1RA22F2200RB2RA22F2200)=r(F11LA11LA1,F11LA11)+r(RA22F22RB2RA22F22)⇔r(G11−F11X01H11F11B22F220A220A110)=r(F11A11)+r(F22,A22)⇔r(G11F11B22F220A22B11H11A110)=r(F11A11)+r(F22,A22)⇔(3.10). |
Similarly, we have that (3.31)⇔(3.11),(3.32)⇔(3.12),(3.33)⇔(3.13).
(3.34)=r(P^A200^A4^B30000^B1000000−P^A3^A400H110000^B100^B40^B400)=r(^B30^B100H110^B1^B4^B4)+r(^A20^A40^A3^A4)⇔r(PF11LA11LA100LC22RD11H110000RB2RA22F22000000−PF11LA11LC2200H110000RB2RA22F2200RA22F220RA22F2200)=r(RD11H110RB2RA22F2200H110RB2RA22F22RA22F22RA22F22)+r(F11LA11LA10LC220F11LA11LC22)⇔r(PF11LA1100LC22000H110000D1100RA22F2200000B2000−G11+X02F22+U02RA22F22F11LA11LC2200000H110000000RA22F220000B2RA22F220RA22F22000000A1000000)=r(H110D1100RA2200B200H110000RA22F2200B2RA22F22RA22F22000)+r(F11LA110LC220F11LA11LC22A100)⇔r(H11000000D110F220000D22A220000H1100000000F22D22A220000F220F2200000A220C1100000−E1100A1100000−B11D110C22G11C22F11000E22C22B2200)=r(H1100000D110F22000D22A22000H110000000F22D22A220000F22F2200000A22)+r(C11A11C22F11)⇔(3.14). |
Theorem 3.2. Let System (1.1) be solvable. Then, the general solution of System (1.1) is
X1=A†11B11+LA11A†1P1D†11+LA11LA1W1+LA11W2RD11,X2=B22A†22+C†22P2B†2RA22+LC22W3RA22+W4RB2RA22, |
where
W1=^A2†T^B11†−^A2†^A3^M1†T^B11†−^A2†S1^A3†TN†1^B22^B11†−^A2†S1V4RN1^B22^B11†+L^A2V5+V6R^B11,W2=^M1†T^B22†+S†1S1^A3†TN†1+L^M1LS1V7+V8R^B22+L^M1V4RN1,W3=F1+LC2^V1+^V2RD1+LC1^V3RD2, or W3=F2−LC4V1−V2RD3−LC3V3RD4,W4=(P−^A2W1H11−^A3W2^B3−^A4W3^B4)^B1†+V3R^B1,^V1=(Im,0)[^C11†(F−^C22V3^D22−^C33^V3^D33)−^C11†U11^D11+L^C11U12],V1=(0,Im)[^C11†(F−^C22V3^D22−^C33^V3^D33)−^C11†U11^D11+L^C11U12],V2=[R^C11(F−^C22V3^D22−^C33^V3^D33)^D11†+^C11^C11†U11+U21R^D11](0In),^V2=[R^C11(F−^C22V3^D22−^C33^V3^D33)^D11†+^C11^C11†U11+U21R^D11](In0),^V3=^E11†F^E33†−^E11†^E22M†F^E33†−^E11†S^E22†FN†^E44^E33†−^E11†SU31RN^E44^E33†+L^E11U32+U33R^E33,V3=M†F^E44†+S†S^E22†FN†+LMLSU41+LMU31RN−U42R^E44, |
T=T1−^A4W3^B4,Vi(i=¯4,8) are arbitrary matrices with appropriate sizes over H, U11,U12,U21, U31,U32,U33,U41, and U42 are any quaternion matrices with appropriate sizes, and m and n denote the column number of C22 and the row number of A22, respectively.
Next, we consider a special case of the System (1.1).
Corollary 3.3. [16] Let Aii,Bii,Cii,Dii,Eii,Fii(i=1,2), and G11 be given matrices with appropriate dimensions over H. Denote
T=C11LA11,K=RA22D22, B1=RKRA22F22,A1=F11LA11LT,C3=F11LA11,D3=RD11,C4=LC22,D4=RA22F22,Aα=RA1C3,Bβ=D3LB1,Cc=RAαC4,Dd=D4LB1,E=RA1E1LB1,A=A†11B11+LA11T†(E11−C11A†11B11D11)D†,B=B22A†22+C†22(E22−C22B22A†22D22)K†RA22,E1=G11−F11A−BF22,M=RAαCc,N=DdLBβ,S=CcLM. |
Then, the following statements are equivalent:
(1) Equation (1.8) is consistent.
(2)
RA11B11=0,B22LA22=0,RC22E22=0,E11LD11=0,RT(E11−C11A†11B11D11)=0,(E22−C22B22A†22D22)LK=0,RMRAαE=0,ELBβLN=0,RAαELDd=0,RCcELBβ=0. |
(3)
r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11),r(E11D11)=r(D11),r(B22A22)=r(A22),r(E22,C22)=r(C22),r(E22C22B22D22A22)=r(D22,A22),r(F220D22A22B11A1100C22G11C22F11E22C22B22)=r(F22,D22,A22)+r(A11C22F11),r(0F22D11D22A22C11E1100A11B11D1100C22F11C22G11D11E22C22B22)=r(C11A11C22F11)+r(F22D11,D22,A22),r(G11F11B22F220A22B11A110)=r(F11A11)+r(F22,A22),r(F11G11D11B220F22D11A22C11E110A11B11D110)=r(F22D11,A22)+r(F11C11A11). |
Finally, we provide an example to illustrate the main results of this paper.
Example 3.4. Conside the matrix equation (1.1)
A11=(a111a121),B11=(b111b112b121b122),C11=(c111c121),D11=(d111d121),E11=(e111e121),A22=(a211a212),B22=(b211b212b221b222),C22=(c211c212c221c222),D22=(d211),E22=(e211e221),F11=(f111f121),H11=(h111h112h121h122),F22=(f211f212),G11=(g111g112g121g122), |
where
a111=0.9787+0.5005i+0.0596j+0.0424k,a121=0.7127+0.4711i+0.6820j+0.0714k,b111=0.5216+0.8181i+0.7224j+0.6596k,b112=0.9730+0.8003i+0.4324j+0.0835k,b121=0.0967+0.8175i+0.1499j+0.5186k,b122=0.6490+0.4538i0.8253j+0.1332k,c111=0.1734+0.8314i+0.0605j+0.5269k,c121=0.3909+0.8034i+0.3993j+0.4168k,d111=0.6569+0.2920i+0.0159j+0.1671k,d121=0.6280+0.4317i+0.9841j+0.1062k,e111=0.3724+0.4897i+0.9516j+0.0527k,e121=0.1981+0.3395i+0.9203j+0.7379k,a211=0.2691+0.4228i+0.5479j+0.9427k,a212=0.4177+0.9831i+0.3015j+0.7011k,b211=0.6663+0.6981i+0.1781j+0.9991k,b212=0.0326+0.8819i+0.1904j+0.4607k,b221=0.5391+0.6665i+0.1280j+0.1711k,b222=0.5612+0.6692i+0.3689j+0.9816k,c211=0.1564+0.6448i+0.1909j+0.4820k,c212=0.5895+0.3846i+0.2518j+0.6171k,c221=0.8555+0.3763i+0.4283j+0.1206k,c222=0.2262+0.5830i+0.2904j+0.2653k,d211=0.8244+0.9827i+0.7302j+0.3439k,e211=0.5847+0.9063i+0.8178j+0.5944k,e221=0.1078+0.8797i+0.2607j+0.0225k,f111=0.4253+0.1615i+0.4229j+0.5985k,f121=0.3127+0.1788i+0.0942j+0.4709k,h111=0.6959+0.6385i+0.0688j+0.5309k,h112=0.4076+0.7184i+0.5313j+0.1056k,h121=0.6999+0.0336i+0.3196j+0.6544k,h122=0.8200+0.9686i+0.3251j+0.6110k,f211=0.7788+0.4235i+0.0908j+0.2665k,f212=0.1537+0.2810i+0.4401j+0.5271k,g111=0.4574+0.5181i+0.6377j+0.2407k,g112=0.2891+0.6951i+0.2548j+0.6678k,g121=0.8754+0.9436i+0.9577j+0.6761k,g122=0.6718+0.0680i+0.2240j+0.8444k. |
Computing directly yields the following:
r(B11A11)=r(A11)=2,r(E11C11B11D11A11)=r(C11A11)=2,r(E11D11)=r(D11)=1,r(B22A22)=r(A22)=2,r(E22C22)=r(C22)=2,r(E22C22B22D22A22)=r(D22A22)=3,r(F220D22A22B11H11A1100C22G11C22F11E22C22B22)=r(F22D22A22)+r(A11C22F11)=5,r(H110−D1100F2200D22A220C11E11000A11B11D1100C22G11C22F110E22C22B22)=r(C11A11C22F11)+r(H11D1100F220D22A22)=7,r(H11000F220D22A220A1100C22G11C22F11E22C22B22)=r(H1100F22D22A22)+r(A11C22F11)=6,r(H1100F22D22A22C22G11E22C22B22)=r(H1100F22D22A22)=5,r(G11F11B22F220A22B11H11A110)=r(F11A11)+r(F22,A22)=5,r(G11F110B22H110−D110F2200A220C11E1100A11B11D110)=r(H11D110F220A22)+r(F11C11A11)=6,r(G11F11B22H1100F220A220A110)=r(H110F22A22)+r(F11A11)=5, r(G11B22H110F22A22)=r(H110F22A22)=4,r(H11000000D110F220000D22A220000H1100000000F22D22A220000F220F2200000A220C1100000−E1100A1100000−B11D110C22G11C22F11000E22C22B2200)=r(H1100000D110F22000D22A22000H110000000F22D22A220000F22F2200000A22)+r(C11A11C22F11)=11. |
All rank equations in (3.3) to (3.14) hold. So, according to Theorem 3.1, the system of matrix equation (1.1) has a solution. By Theorem 3.2, the solution of System (1.1) can be expressed as
X1=(0.4946+0.1700i−0.1182j−0.3692k0.4051−0.0631i−0.2403j−0.1875k),X2=(−0.0122+0.2540i−0.3398j−0.3918k0.7002−0.3481i−0.2169j+0.0079k). |
In this section, we use the same method and technique as in Theorem 3.1 to study the three systems of Eqs (1.2)–(1.4). We only present their results and omit their proof.
Theorem 4.1. Consider the matrix equation (1.2) over H, where Aii,Bii,Cii,Dii,Eii,Fii,G11, and H11(i=¯1,2) are given. Put
A1=C11LA11,P1=E11−C11A†11B11D11,B2=RA22D22,P2=E22−C22B22A†22D22,^A1=F11LA11LA1,^A2=F11LA1,^B2=RD11,^A3=H11LC22,^B3=RA22F22,^B4=RB2RA22F22,B=G11−F11A†11B11−F11LA11A†1P1D†11−H11B22A†22F22−H11C†22P2B†2RA22F22,R^A1^A2=A12,R^A1^A3=A13,R^A1H11=A14,^B3L^B2=N1,RA12A13=M1,S1=A13LM1,R^A1B=T1,C=RM1RA12,^C1=CA14,^C2=RA12A14,^C3=RA13A14,^C4=A14,D=L^B2LN1,^D1=^B4,^D2=^B4L^B3,^D3=^B4L^B2,^D4=^B4D,^E1=CT1,^E2=RA12T1L^B3,^E3=RA13T1L^B2,^E4=T1D,C24=(L^C2,L^C4),D13=(R^D1R^D3),C12=L^C1,D12=R^D2,C33=L^C3,D33=R^D4,E24=RC24C12,E13=RC24C33,E33=D12LD13,E44=D33LD13,M=RE24E13,N=E44LE33,F=F2−F1,E=RC24FLD13,S=E13LM,^F11=^C2L^C1,^G1=^E2−^C2^C1†^E1^D1†^D2,F33=^C4L^C3,^G2=^E4−^C4^C3†^E3^D3†^D4,F1=^C1†^E1^D1†+L^C1^C2†^E2^D2†,F2=^C3†^E3^D3†+L^C3^C4†^E4^D4†. |
Then, the following statements are equivalent:
(1) System (1.2) is consistent.
(2)
RA11B11=0,RA1P1=0,P1LD11=0,B22LA22=0,RC22P2=0,P2LB2=0,R^Ci^Ei=0,^EiL^Di=0(i=¯1,4),RE24ELE44=0. |
(3)
r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11),r(E11D11)=r(D11),r(B22,A22)=r(A22),r(E22,C22)=r(C22),r(E22C22B22D22A22)=r(D22,A22),r(G11D11F11H11E11C110B11D11A110)=r(F11H11C110A110),r(G11D11F11H110F22D1100A22E11C1100B11D11A1100)=r(F22,A22)+r(F11H11C110A110),r(H11F11G11D110C11E110A11B11D11)=r(H11F110C110A11),r(H11F110G11D1100A22F22D110C110E110A110B11D11)=r(F22D11,A22)+r(H11F110C110A11),r(G11D11F11H1100F22D1100D22A22E11C1100000C22−E22−C22B22B11D11A11000)=r(F11H11C1100C22A110)+r(F22,D22,A22),r(G11D11F11H11B22F22D110A22E11C110B11D11A110)=r(F11C11A11)+r(F22,A22),r(H11F1100G11D1100D22A22F22D110C1100E110A1100B11D11C220−E22−C22B220)=r(H11F110C110A11C220)+r(D22,A22,F22D11),r(F11H11B22G11D110A22F22D11C110E11A110B11D11)=r(F11C11A11)+r(A22,F22D11),r(G11F1100H1100H5B220F22000000A22000H11F11H110−H11B220G11D1100000D22A220−F22D1100C2200E22000000C110000E11000A110000B11D11B11A110000000)=r(F2200A2200D22A220F22D11)+r(F1100H110H11F11H110C220000C11000A110A11000). |
Under these conditions, the general solution of System (1.2) is
X1=A†11B11+LA11A†1P1D†11+LA11LA1W1+LA11W2RD11,X2=B22A†22+C†22P2B†2RA22+LC22W3RA22+W4RB2RA22, |
where
W1=^A1†(B−^A2W1^B2−^A3W3^B3−H11W4^B4)+L^A1U1,W2=A†12T^B2†−A†12A13M†1T^B2†−A†12S1A†13TN†1^B3^B2†−A†12S1U2RN1^B3^B2†+LA12U3+U4R^B2,W3=M†1T^B3†+S†1S1A†13TN†1+LM1LS1U5+U6R^B3+LM1U2RN1,W4=F1+L^C2V1+V2R^D1+L^C1V3R^D2, or W4=F2−L^C4^V1−^V2R^D3−L^C3^V3R^D4, |
where T=T1−H11W4^B4,Ui(i=¯1,6) are arbitrary matrices with appropriate sizes over H,
V1=(Im,0)[C†24(F−C12V3D12−C33^V3D33)−C†24U11D13+LC24U12],^V1=(0,Im)[C†24(F−C12V3D12−C33^V3D33)−C†24U11D13+LC24U12],^V2=[RC24(F−C12V3D12−C33^V3D33)D†13+C24C†24U11+U21RD13](0In),V2=[RC24(F−C12V3D12−C33^V3D33)D†13+C24C†24U11+U21RD13](In0),V3=E†24FE†33−E†24E13M†FE†33−E†24SE†13FN†E44E†33−E†24SU31RNE44E†33+LE24U32+U33RE33,^V3=M†FE†44+S†SE†13FN†+LMLSU41+LMU31RN−U42RE44, |
U11,U12,U21,U31,U32,U33,U41, and U42 are any quaternion matrices with appropriate sizes, and m and n denote the column number of H11 and the row number of A22, respectively.
Theorem 4.2. Consider the matrix equation (1.3) over H, where Aii,Bii,Cii,Dii,Eii,Fii,G11H11(i=¯1,2) are given. Put
A1=C11LA11,P1=E11−C11A†11B11D11,A2=C22LA22,P2=E22−C22A†22B22D22,^A1=F11LA11LA1,^A2=F11LA11,^B2=RD11,^A11=H11LA22LA2,^A22=H11LA22,^B4=RD22F22,B=G11−F11A†11B11−F11LA11A†1P1D†11−H11A†22B22F22−H11LA22A†2P2D†22F22,R^A1^A2=A12,R^A1^A11=A13,R^A1^A22=A33,F22L^B2=N1,RA12A13=M1,S1=A13LM1,R^A1B=T1,C=RM1RA12,^C1=CA33,^C2=RA12A33,^C11=RA13A33,^C22=A33,D=L^B2LN1,^D1=^B4,^D2=^B4LF22,^D11=^B4L^B2,^D22=^B4D,^E1=CT1,^E2=RA12T1LF22,^E11=RA13T1L^B2,^E4=T1D,C24=(L^C2,L^C22),D13=(R^D1R^D11),C21=L^C1,D12=R^D2,C33=L^C11,D33=R^D22,E11=RC24C21,E22=RC24C33,E33=D12LD13,E44=D33LD13,M=RE11E22,N=E44LE33,F=F2−F1,E=RC24FLD13,S=E22LM,^F11=^C2L^C1,^G1=^E2−^C2^C1†^E1^D1†^D2,^F22=^C22L^C11,^G2=^E4−^C22^C11†^E11^D11†^D22,F1=^C1†^E1^D1†+L^C1^C2†^E2^D2†,F2=^C11†^E11^D11†+L^C11^C22†^E4^D22†. |
Then, the following statements are equivalent:
(1) System (1.3) is consistent.
(2)
RA11B11=0,RA1P1=0,P1LD11=0,RA22B22=0,RA2P2=0,P2LD22=0,R^Ci^Ei=0,R^C11^E11=0,R^C22^E4=0,^EiL^Di=0(i=¯1,2),^E11L^D11=0,^E4L^D22=0,RE11ELE44=0. |
(3)
r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11),r(E11D11)=r(D11),r(B22,A22)=r(A22),r(E22C22B4D22A22)=r(C22A22),r(E22D22)=r(D22),r(G11F11H11B11A110B22F220A22)=r(F11H11A1100A22),r(G11F11H11F2200B11A11000A22)=r(F22)+r(F11H11A1100A22),r(H11F11G11D11A220B22F22D110C11E110A11B11D11)=r(H11F110C110A11A220),r(H11F11G11D1100F22D110C11E110A11B11D11A2200)=r(H11F110C110A11A220)+r(F22D11),r(G11F11H110F2200D22B11A110000C22−E2200A22−B22D22)=r(F11H11A1100C220A22)+r(F22,D22),r(G11F11F220B11A11)=r(F11A11)+r(F22),r(H11F110G11D1100D22F22D11C220−E2200C110E11A2200B22F22D110A110B11D11)=r(H11F11C2200C11A2200A11)+r(D22,F22D11),r(F11G11D110F22D11C11E11A11B11D11)=r(F11C11A11)+r(F22D11),r(G11F11000H110F2200000000−G11D11H11F11H11000F22D11000B22B11A1100000000C2200E2200−E110C110000−B22F22D11A2200000−B11D110A110000000A220)=r(F22000D22F22D11)+r(F1100H110H11F11H110C22000A220000C11000A110A11000000A22). |
Under these conditions, the general solution of System (1.3) is
X1=A†11B11+LA11A†1P1D†11+LA11LA1W1+LA11W2RD11,X2=A†22B4+LA22A†2P2D†22+LA22LA2W3+LA22W4RD22, |
where
W1=^A1†(B−^A2W1^B2−^A11W3F22−^A22W4^B4)+L^A1U1,W2=A†12T^B2†−A†12A13M†1T^B2†−A†12S1A†13TN†1F22^B2†−A†12S1U2RN1F22^B2†+LA12U3+U4R^B2,W3=M†1TF†22+S†1S1A†13TN†1+LM1LS1U5+U6RF22+LM1U2RN1,W4=F1+L^C2V1+V2R^D1+L^C1V3R^D2, or W4=F2−L^C22^V1−^V2R^D11−L^C11^V3R^D22, |
where T=T1−^A22W4^B4,Ui(i=¯1,6) are arbitrary matrices with appropriate sizes over H,
V1=(Im,0)[C†24(F−C21V3D12−C33^V3D33)−C†24U11D13+LC24U12],^V1=(0,Im)[C†24(F−C21V3D12−C33^V3D33)−C†24U11D13+LC24U12],^V2=[RC24(F−C21V3D12−C33^V3D33)D†13+C24C†24U11+U21RD13](0In),V2=[RC24(F−C21V3D12−C33^V3D33)D†13+C24C†24U11+U21RD13](In0),V3=E†11FE†33−E†11E22M†FE†33−E†11SE†22FN†E44E†33−E†11SU31RNE44E†33+LE11U32+U33RE33,^V3=M†FE†44+S†SE†22FN†+LMLSU41+LMU31RN−U42RE44, |
U11,U12,U21,U31,U32,U33,U41, and U42 are any matrices with appropriate sizes, and m and n denote the column number of H11 and the row number of D22, respectively.
Theorem 4.3. Consider the matrix equation (1.4) over H, where Aii,Bii,Cii,Dii,Eii,Fii(i=¯1,2), and G11 are given. Put
^A1=C11LA11,P1=E11−C11A†11B11D11,^A2=C22LA22,P2=E22−C22A†22B22D22,A5=F11LA1L^A1,A6=F11LA11,A7=LA22L^A2,A8=LA22,B5=RD11,B7=RD22F22,B=G11−F11A†11B11−F11LA1^A1†P1D†11−A†22B22F22−LA22^A2†P2D†22F22,RA5A6=A11,RA5A7=A2,RA5A8=A33,F22LB5=N1,RA11A2=M1,S1=A2LM1,RA5B=T1,C=RM1RA11,^C1=CA33,^C2=RA11A33,^C11=RA2A33,^C4=A33,D=LB5LN1,^D1=B7,^D2=B7LF22,^D3=B7LB5,^D4=B7D,^E1=CT1,^E2=RA11T1LF22,^E11=RA2T1LB5,^E4=T1D,C1=(L^C2,L^C4),D13=(R^D1R^D3),D1=L^C1,D2=R^D2,C33=L^C11,D33=R^D4,E11=RC1D1,E2=RC1C33,E33=D2LD13,E44=D33LD13,M=RE11E2,N=E44LE33,F=^F2−^F1,E=RC1FLD13,S=E2LM,F11=^C2L^C1,^G1=^E2−^C2^C1†^E1^D1†^D2,F33=^C4L^C11,^G2=^E4−^C4^C11†^E11^D3†^D4,^F1=^C1†^E1^D1†+L^C1^C2†^E2^D2†,^F2=^C11†^E11^D3†+L^C11^C4†^E4^D4†. |
Then, the following statements are equivalent:
(1) Equation (1.4) is consistent.
(2)
RA11B11=0,R^A1P1=0,P1LD11=0,RA22B22=0,R^A2P2=0,P2LD22=0, R^Ci^Ei=0,^EiL^Di=0(i=¯1,2),R^C11^E11=0,R^C4^E4=0,^E11L^D3=0,^E4L^D4=0,RE11ELE44=0. |
(3)
r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11),r(E11D11)=r(D11), r(B22,A22)=r(A22),r(E22C22B22D22A22)=r(C22A22),r(E22D22)=r(D22),r(B11A11A22G11−B22F22A22F11)=r(A11A22F11),r(F220B11A11A22G11A22F11)=r(F22)+r(A11A22F11),r(C11E11A11B11D11−A22F11B22F22D11−A22G11D11)=r(C11A11A22F11),r(0F22D11C11E11A11B11D11A22F11A22G11D11)=r(C11A11A22F11)+r(F22D11),r(F220D22C22G11C22F11E22B11A110A22G11A22F11B22D22)=r(F22,D22)+r(C22F11A22F11A11),r(G11F11F220B11A11)=r(F11A11)+r(F22),r(0D22F22D11C22F11E22C22G11D11C110E22A22F110A22G11D11−B22F22D11A110B11D11)=r(C22F11C11A22F11A11)+r(D22,F22D11),r(F11G11D110F22D11C11E11A11B11D11)=r(F11C11A11)+r(F22D11), |
r(F22000000F22D110B22B11A11000C22G11C22F11C22G11D11−C22F11E2200−E11C110A22G11A22F11A22G11D11−B22F22D11−A22F11000−B11D11A110A22G11A22F11000)=r(F22000F22D11D22)+r(−C22F11C22F11−A22F11A22F110C110A11A110A110−A22F110). |
Under these conditions, the general solution of System (1.4) is
X1=A†11B11+LA1^A1†P1^B1†+LA1L^A1W1+LA1W2R^B1,X2=A†2B22+LA2^A2†P2^B2†+LA2L^A2W3+LA3W4R^B2, |
where
W1=A†5(B−A6W1B5−A7W3F22−A8W4B7)+LA5U1,W2=A†1TB†5−A†1A2M†1TB†5−A†1S1A†2TN†1F22B†5−A†1S1U2RN1F22B†5+LA1U3+U4RB5,W3=M†1TF†22+S†1S1A†2TN†1+LM1LS1U5+U6RF22+LM1U2RN1,W4=^F1+L^C2V1+V2R^D1+L^C1V3R^D2, or W4=^F2−L^C4^V1−^V2R^D3−L^C11^V3R^D4, |
where T=T1−A8W4B7,Ui(i=¯1,6) are arbitrary matrices with appropriate sizes over H,
V1=(Im,0)[C†1(F−D1V3D2−C33^V3D33)−C†1U11D1+LC1U12],^V1=(0,Im)[C†1(F−D1V3D2−C33^V3D33)−C†1U11D1+LC1U12],^V2=[RC1(F−D1V3D2−C33^V3D33)D†1+C1C†1U11+U21RD1](0In),V2=[RC1(F−C2V3D2−C33^V3D33)D†1+C1C†1U11+U21RD1](In0),V3=E†11FE†33−E†11E2M†FE†33−E†11SE†2FN†E44E†33−E†11SU31RNE44E†33+LE11U32+U33RE33,^V3=M†FE†44+S†SE†2FN†+LMLSU41+LMU31RN−U42RE44, |
U11,U12,U21,U31,U32,U33,U41, and U42 are any quaternion matrices with appropriate sizes, and m and n denote the column number of A22 and the row number of D22, respectively.
In this section, we use the Lemma 2.2 and the Theorem 3.1 to study matrix equation (1.9) involving η-Hermicity matrices.
Theorem 5.1. Let A11,B11,C11,E11,F11,F22, and G11(G11=Gη∗11) be given matrices. Put
A1=C11LA11,P1=E11−C11A†11B11Cη∗11,B2=Aη∗1,P2=Pη∗1,ˆB1=RB2(F22LA11)η∗,ˆA3=F11LA11,ˆA2=ˆA3LA1,ˆA4=LC11,ˆB3=(F11ˆA4)η∗,ˆB4=(F22LA11)η∗,Fη∗11LˆB1=ˆB11,P=G11−F11A†11B11Fη∗11−ˆA3A†1P1(F11C†11)η∗−(F22A†11B11)η∗−C†11P2B†2ˆB4,ˆB22LB11=N1,ˆB3LˆB1=ˆB22,ˆB4LˆB1=ˆB33,RˆA2ˆA3=ˆM1,S1=ˆA3LM1,T1=PL^B1,C=RM1RˆA2,C1=CˆA4,C2=RˆA2ˆA4,C3=RˆA3ˆA4,C4=ˆA4,D=LˆB11LN1,D1=ˆB33,D2=ˆB33LˆB22,D4=ˆB33D,E1=CT1,E2=RˆA2T1LˆB11,E4=T1D,ˆC11=(LC2,LC4),D3=ˆB33LˆB11,ˆD11=(RD1RD3),ˆC22=LC1,ˆD22=RD2, ˆC33=LC3,ˆD33=RD4,ˆE11=RˆC11ˆC22,ˆE22=RˆC11ˆC33,ˆE33=ˆD22LˆD11,ˆE44=ˆD33LˆD11,M=RˆE11ˆE22,N=ˆE44LˆE33, F=F2−F1,E=RˆC11FLˆD11,S=ˆE22LM,^F11=C2LC1,G1=E2−C2C†1E1D†1D2,^F22=C4LC3,G2=E4−C4C†3E3D†3D4,F1=C†1E1D†1+L†C1C†2E2D†2,F2=C†3E3D†3+LC3C†4E4D†4. |
Then, the following statements are equivalent:
(1) System (1.9) is solvable.
(2)
RA11B11=0,RA1P1=0,P1(RC11)η∗=0,RCiEi=0,EiLDi=0(i=¯1,4),RˆE11ELˆE44=0. |
(3)
\begin{align*} &r(B_{11}, A_{11}) = r(A_{11}), r\begin{pmatrix} E_{11} & C_{11} \\ B_{11} C_{11}^{\eta^{*}} & A_{11} \end{pmatrix} = r\begin{pmatrix} C_{11}\\A_{11} \end{pmatrix} ,\ r\begin{pmatrix} E_{11}\\C_{11}^{\eta^{*}} \end{pmatrix} = r(C_{11}),\\ &r\begin{pmatrix} F_{22}^{\eta^{*}} & 0 & C_{11}^{\eta^{*}} & A_{11}^{\eta^{\eta^{*}}} \\ B_{11} F_{11}^{\eta^{*}} & A_{11} & 0 & 0 \\ C_{11} G_{11} & C_{11} F_{11} & E_{11}^{\eta^{*}} & C_{11} B_{11}^{\eta^{*}} \end{pmatrix} = r\left(F_{22}^{\eta^{*}}, C_{11}^{\eta^{*}}, A_{11}^{\eta^{*}}\right)+r\binom{A_{11}}{C_{11} F_{11}},\\ &r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & -C_{11}^{\eta^{*}} & 0 & 0 \\ F_{22}^{\eta^{*}} & 0 & 0 & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} \\ 0 & C_{11} & E_{11} & 0 & 0 \\ 0 & A_{11} & B_{11} C_{11}^{\eta^{*}} & 0 & 0 \\ C_{11} G_{11} & C_{11} F_{11} & 0 & E_{11}^{\eta^{*}} & C_{11} B_{11}^{\eta^{*}} \end{pmatrix} = \\ &r\begin{pmatrix} C_{11} \\ A_{11} \\ 0 \end{pmatrix} +r\begin{pmatrix} F_{11}^{\eta^{*}} & C_{11}^{\eta^{*}} & 0 & 0 \\ F_{22}^{\eta^{*}} & 0 & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} \end{pmatrix},\\ &r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & 0 & 0 \\ F_{22}^{\eta^{*}} & 0 & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} \\ 0 & A_{11} & 0 & 0 \\ C_{11} G_{11} & C_{11} F_{11} & E_{11}^{\eta^{*}} & C_{11} B_{11}^{\eta^{*}} \end{pmatrix} = r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & 0 \\ F_{22}^{\eta^{*}} & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} \end{pmatrix} +r\binom{A_{11}}{C_{11} F_{11}},\\ &r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & 0 \\ F_{22}^{\eta^{*}} & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} \\ C_{11} G_{11} & E_{11}^{\eta^{*}} & C_{11} B_{11}^{\eta^{*}} \end{pmatrix} = r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & 0 \\ F_{22}^{\eta^{*}} & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}}, \end{pmatrix},\\ &r\begin{pmatrix} G_{11} & F_{11} & B_{11}^{\eta^{*}} \\ F_{22}^{\eta^{*}} & 0 & A_{11}^{\eta^{*}} \\ B_{11} F_{11}^{\eta^{*}} & A_{11} & 0 \end{pmatrix} = r\binom{F_{11}}{A_{11}}+r\left(F_{22}^{\eta^{*}}, A_{11}^{\eta^{*}}\right), \\ &r\begin{pmatrix} G_{11} & F_{11} & 0 & B_{11}^{\eta^{*}} \\ F_{11}^{\eta^{*}} & 0 & -C_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & 0 & 0 & A_{11}^{\eta^{*}} \\ 0 & C_{11} & E_{11} & 0 \\ 0 & A_{11} & B_{11} C_{11}^{\eta^{*}} & 0 \end{pmatrix} = r\begin{pmatrix} F_{11}^{\eta^{*}} & C_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & 0 & A_{11}^{\eta^{*}} \end{pmatrix} +r\begin{pmatrix} F_{11} \\ C_{11} \\ A_{11} \end{pmatrix},\\ &r\begin{pmatrix} G_{11} & F_{11} & B_{11}^{\eta^{*}} \\ F_{11}^{\eta^{*}} & 0 & 0 \\ F_{22}^{\eta^{*}} & 0 & A_{11}^{\eta^{*}} \\ 0 & A_{11} & 0 \end{pmatrix} = r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & A_{11}^{\eta^{*}} \end{pmatrix} +r\binom{F_{11}}{A_{11}}, \\ &r\begin{pmatrix} G_{11} & B_{11}^{\eta^{*}} \\ F_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & A_{11}^{\eta^{*}} \end{pmatrix} = r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & A_{11}^{\eta^{*}} \end{pmatrix},\\ &r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & 0 & 0 & 0 & 0 & 0 & C_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & 0 & 0 & 0 & 0 & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} & 0 & 0 \\ 0 & 0 & F_{11}^{\eta^{*}} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & F_{22}^{\eta^{*}} & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} & 0 & 0 & 0 & 0 \\ F_{22}^{\eta^{*}} & 0 & F_{22}^{\eta^{*}} & 0 & 0 & 0 & 0 & 0 & A_{11}^{\eta^{*}} \\ 0 & C_{11} & 0 & 0 & 0 & 0 & 0 & -E_{11} & 0 \\ 0 & A_{11} & 0 & 0 & 0 & 0 & 0 & -B_{11} C_{11}^{\eta^{*}} & 0 \\ C_{11} G_{11} & C_{11} F_{11} & 0 & 0 & 0 & E_{11}^{\eta^{*}} & C_{11} B_{11}^{\eta^{*}} & 0 & 0 \end{pmatrix} \\ & = r\begin{pmatrix} F_{11}^{\eta^{*}} & 0 & 0 & 0 & 0 & 0 & C_{11}^{\eta^{*}} & 0 \\ F_{22}^{\eta^{*}} & 0 & 0 & 0 & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} & 0 & 0 \\ 0 & F_{11}^{\eta^{*}} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & F_{22}^{\eta^{*}} & C_{11}^{\eta^{*}} & A_{11}^{\eta^{*}} & 0 & 0 & 0 & 0 \\ F_{22}^{\eta^{*}} & F_{22}^{\eta^{*}} & 0 & 0 & 0 & 0 & 0 & A_{11}^{\eta^{*}} \end{pmatrix}+r\begin{pmatrix} C_{11} \\ A_{11} \\ C_{11} F_{11} \end{pmatrix}. \end{align*} |
Proof. Evidently, the system of Eq (1.9) has a solution if and only if the following matrix equation has a solution:
\begin{equation} \begin{aligned} &A_{11}\hat{X_1} = B_{11}, C_{11}\hat{X_1}C_{11}^{\eta^{*}} = E_{11},\\ &\hat{X_2}A_{11}^{\eta^{*}} = B_{11}^{\eta^{*}}, C_{11}\hat{X_2}C_{11}^{\eta^{*}} = E_{11}^{\eta^{*}},\\ &F_{11}X_1F_{11}^{\eta^{*}}+\hat{X_2}^{\eta^{*}}F_{22}^{\eta^{*}} = G_{11}. \end{aligned} \end{equation} | (5.1) |
If (1.9) has a solution, say, X_1 , then (\hat{X_1}, \ \hat{X_2}) : = (X_1, \ X_{1}^{\eta^{*}}) is a solution of (5.1). Conversely, if (5.1) has a solution, say (\hat{X_1}, \ \hat{X_2}) , then it is easy to show that (1.5) has a solution
\begin{align*} X_1 : = \dfrac{\hat{X_1}+X_{2}^{\eta^{*}}}{2}. \end{align*} |
According to Theorem 3.1, we can deduce that this theorem holds.
We have established the solvability conditions and the expression of the general solutions to some constrained systems (1.1)–(1.4). As an application, we have investigated some necessary and sufficient conditions for Eq (1.9) to be consistent. It should be noted that the results of this paper are valid for the real number field and the complex number field as special number fields.
Long-Sheng Liu, Shuo Zhang and Hai-Xia Chang: Conceptualization, formal analysis, investigation, methodology, software, validation, writing an original draft, writing a review, and editing. All authors of this article have contributed equally. All authors have read and approved the final version of the manuscript for publication.
This work is supported by the National Natural Science Foundation(No. 11601328) and Key scientific research projects of univesities in Anhui province(No. 2023AH050476).
The authors declare that they have no conflicts of interest.
[1] | G. Chowell, Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecast, Infect. Disease Model., 2 (2017), 379–398. |
[2] | P. F. Verhulst, Notice sur la loi que la population suit dans son accroissement, Corresp. Math. Phys., 10 (1838), 113–121. |
[3] | B. Gompertz, On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Phil. Trans. R. Soc. Lond., 115 (1825), 513–583. |
[4] | F. J. Richards, A flexible growth function for empirical use, J. Exp. Bot., 10 (1959), 290–301. |
[5] | X. S. Wang, J. Wu and Y. Yang, Richards model revisited: Validation by and application to infection dynamics, J. Theor. Biol., 313 (2012), 12–19. |
[6] | J. D. Murray, Mathematical Biology: I. An Introduction, Springer-Verlag, New York, 2002. |
[7] | D. S. Jones and B. D. Sleeman, Differential Equations and Mathematical Biology, Chapman & Hall/CRC, Boca Raton, FL, 2003. |
[8] | N. F. Britton, Essential Mathematical Biology, Springer-Verlag, London, 2003. |
[9] | F. Brauer and C. Castillo-Chavez, Mathematical models in population biology and epidemiology, Second Ed., Springer, New York, 2012. |
[10] | O. Diekmann, J. Heesterbeek and T. Britton, Mathematical tools for understanding infectious dis-ease dynamics, Princeton Series in Theoretical and Computational Biology, Princeton University Press, 2012. |
[11] | L. A. Segel and L. Edelstein-Keshet, A Primer on Mathematical Models in Biology, SIAM, Philadelphia, PA, 2013. |
[12] | F. Brauer and C. Kribs, Dynamical Systems for Biological Modeling: An Introduction, CRC Press, Boca Raton, FL, USA, 2016. |
[13] | L. von Bertalanffy, A quantitative theory of organic growth (Inquiries on growth laws. II), Human Biol., 10 (1938), 181–213. |
[14] | L. von Bertalanffy, Quantitative laws in metabolism and growth, Quart. Rev. Biol., 32 (1957), 217–231. |
[15] | E. Tjørve and K. M. C. Tjørve, A unified approach to the Richards-model family for use in growth analyses: Why we need only two model forms, J. Theor. Biol., 267 (2010), 417–425. |
[16] | K. M. C. Tjørve and E. Tjørve, A proposed family of Unified models for sigmoidal growth, Ecol. Modelling, 359 (2017), 117–127. |
[17] | K.M.C.TjørveandE.Tjørve, TheuseofGompertzmodelsingrowthanalyses, andnewGompertz-model approach: An addition to the Unified-Richards family, PLoS One, 12 (2017), e0178691. |
[18] | C. Viboud, L. Simonsen and G. Chowell, A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks, Epidemics, 15 (2016), 27–37. |
[19] | G. Chowell and C. Viboud, Is it growing exponentially fast? - Impact of assuming exponential growth for characterizing and forecasting epidemics with initial near-exponential growth dynamics, Infect. Disease Model., 1 (2016), 71–78. |
[20] | G. Chowell, L. Sattenspiel, S. Bansal, et al., Mathematical models to characterize early epidemic growth: A review, Physics Life Rev., 18 (2016), 66–97. |
[21] | J. Ma, J. Dushoff, B.M. Bolker, et al., Estimating initial epidemic growth rates, Bull. Math. Biol., 76 (2014), 245–260. |
[22] | G. Chowell and F. Brauer, The basic reproduction number of infectious diseases: Computation and estimation using compartmental epidemic models. In G. Chowell, J.M. Hyman, and L.M.A. Bette-nourt, et al. (eds.), Mathematical and Statistical Estimation Approaches in Epidemiology, Springer, Dordrecht, The Netherlands, (2009), 1–30. |
[23] | G. Chowell, C. Viboud, L. Simonsen, et al., Characterizing the reproduction number for epidemics with sub-exponential growth dynamics, J. Roy. Soc. Interface, 13 (2016), 20160659. |
[24] | H. Nishiura and G. Chowell, The effective reproduction number as a prelude to statistical estima-tion of time-dependent epidemic trends. In G. Chowell, J. M. Hyman, L. M. A. Bettenourt, et al., Mathematical and Statistical Estimation Approaches in Epidemiology, Springer, Dordrecht, The Netherlands, (2009), 103–121. |
[25] | J. Wallinga and M. Lipsitch, How generation intervals shape the relationship between growth rates and reproductive numbers, Proc. Roy. Soc. B: Biol. Sci., 274 (2007), 599–604. |
[26] | P. Román-Román, J. J. Serrano-Pérez and F. Torres-Ruiz, Some notes about inference for the log- normal diffusion process with exogeneous factors, Mathematics, 2018, 85–97. |
[27] | P. Román-Román and F. Torres-Ruiz, The nonhomogeneous lognormal diffusion process as a gen-eral process to model particular types of growth patterns. In Recent Advances in Probability and Statistics, Lect. Notes Semin. Interdiscip. Mat., 12, Semin. Interdiscip. Mat. (S.I.M.), Potenza, Italy (2015), 201–219. |
[28] | R. Gutiérrez-Jáimez, P. Román, D. Romero, et al., A new Gompertz-type diffusion process with application to random growth, Math. Biosci., 208 (2007), 147–165. |
[29] | P. Román-Román, D. Romero and F. Torres-Ruiz, A diffusion process to model generalized von Bertalanffy growth patterns: Fitting to real data, J. Theor. Biol., 263 (2010), 59–69. |
[30] | P. Román-Román and F. Torres-Ruiz, Modelling logistic growth by a new diffusion process: Appli-cation to biological systems, BioSystems, 110 (2012), 9–21. |
[31] | P. Román-Román and F. Torres-Ruiz, A stochastic model related to the Richards-type growth curve. Estimation by means of simulated annealing and variable neighborhood search, Appl. Math. Com-put., 266 (2015), 579–598. |
[32] | I. Luz-Sant'Ana, P. Román-Román and F. Torres-Ruiz, Modeling oil production and its peak by means of a stochastic diffusion process based on the Hubbert curve, Energy, 133 (2017), 455–470. 33. A. Barrera, P. P. Román-Román and F. Torres-Ruiz, A hyperbolastic type-I diffusion process: Pa-rameter estimation by means of the firefly algoritm, BioSystems, 163 (2018), 11–22. |
[33] | 34. S. Ohnishi, T. Yamakawa and T. Akamine, On the analytical solution of the Pütter-Bertalanffy growth equation, J. Theor. Biol., 343 (2014), 174–177. |
[34] | 35. G. Chowell, C. Viboud, J. M. Hyman, et al., The Western Africa Ebola virus disease epidemic exhibits both global exponential and local polynomial growth rates, PLOS Currents Outbreaks, 7 (2015). |
[35] | 36. G. Chowell, C. Viboud, L. Simonsen, et al., Perspectives on model forecasts of the 2014–2015 Ebola epidemic in West Africa: lessons and the way forward, BMC Medicine, 15 (2017), 42–49. |
[36] | 37. B. Pell, Y. Kuang, C. Viboud, et al., Using phenomenological models for forecasting the 2015 Ebola challenge, Epidemics, 22 (2018), 62–70. |
[37] | 38. 2015 Ebola response roadmap-Situation report-14 October 2015. Available from: http://apps.who.int/ebola/current-situation/ebola-situation-report-14-october-2015 (accessed 17 October 2015). |
[38] | 39. J. G. Breman, P. Piot, K.M. Johnson, et al., The epidemiology of Ebola hemorrhagic fever in Zaire, 1976. in Ebola Virus Haemorrhagic Fever. Proceedings of an International Colloquium on Ebola Virus Infection and Other Haemorrhagic Fevers held in Antwerp, Belgium, 6–8 December, 1977 (ed. S.R. Pattyn) Elsevier/North Holland Biomedical Press, Amsterdam, (1978), 103–124. |
[39] | 40. A. Camacho, A. J. Kicharski, S. Funk, et al., Potential for large outbreaks of Ebola virus diease. Epidemics, 9 (2014), 70–78. |
[40] | 41. G. Chowell, N. W. Hengartner, C. Castillo-Chavez, et al., The basic reproductive number of Ebola and effects of public health measure: the cases of Congo and Uganda, J. Theor. Biol., 229 (2004), 119–126. |
[41] | 42. World Health Organization (WHO), Outbreak of Ebola hemorrhagic fever, Uganda, August 2000–January 2001, Weekly Epidemiol. Rec., 76 (2001), 48. |
[42] | 43. B. Bolker, Measles times-series data. Professor B. Bolker's personal data repository at McMaster University. Available from: https://ms.mcmaster.ca/˜bolker/measdata.html. |
[43] | 44. Anonymous, XXII. The epidemiological observations made by the commission in Bombay city, J. Hyg. (London), 7 (1907), 724–798. |
[44] | 45. World Health Organization (WHO), Plague outbreak situation reports, Madagascar, October 2017–December 2017. Available from: http://www.afro.who.int/health-topics/plague/plague-outbreak-situation-reports. |
[45] | 46. A. Sommer, The 1972 smallpox outbreak in Khulna Municipality, Bangledesh. II. Effectiveness of surveillance and continment in urban epidemic control, Am. J. Epidemiol., 99 (1974), 303–313. |
[46] | 47. World Health Organization (WHO), Yellow fever situation reports, Angola, situation reports March 2016–July 2016. Available from: https://www.who.int/emergencies/yellow-fever/situation-reports/archive/en/. |
[47] | 48. G. Chowell, A. L. Rivas, S. D. Smith, et al., Identification of case clusters and counties with high infective connectivity in the 2001 epidemicof foot-and-mouth disease in Uruguay, Am. J. Vet. Res.,67 (2006), 102–113. |
[48] | 49. G. Chowell, A. L. Rivas, N.W. Hengartner, et al., The role of spatial mixing in the spread of foot-and-mouth disease, Prev. Vet. Med., 73 (2006), 297–314. |
[49] | 50. G. Chowell, H. Nishiura, and L. M. A. Bettencourt, Comparative estimation of the reproduction number for pandemic influenza from daily case notification data, J. R. Soc. Interface, 4 (2007), 155–166. |
[50] | 51. G. Chowell, D. Hincapie-Palacio, J. Ospina, et al., Using phenomenological models to characterize transmissibility and forecast patterns and final burden of Zika epidemics, PLoS Currents Outbreaks,Edition 1, (2016). |
[51] | 52. Anonymous, HIV/AIDS in Japan, 2013, Infect. Agents Surv. Rep., 35 (2014), 203–204. |
[52] | 53. Centers for Disease Control and Prevention (CDC). CDC Wonder-AIDS Public Information Dataset U.S. Surveillance. Available from: http://wonder.cdc.gov/aidsPublic.html (accessed 27 september 2016). |
[53] | 54. Det Kongelige Sundhedskollegium Aarsberetning for 18 Uddrag fra Aalborg Physikat. Available from: http://docplayer.dk/11876516-uddrag-af-det-kongelige-sundhedskollegiums-aarsberetning-for-1853.html. |
[54] | 55. M. Kuhn and K. Johnson, Applied Predictive Modeling, Springer, New York, 2013. |
[55] | 56. B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap, CRC Press, Boca Raton, FL, USA, 1994. |
[56] | 57. G. Chowell, C. E. Ammon, N. W. Hengartner, et al., Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical interventions, J. Theor. Biol., 241 (2006), 193–204. |
[57] | 58. G. Chowell, E. Shim, F. Brauer, et al., Modeling the transmission dynamics of Acute Hemorrhagic Conjunctivitis: Application to the 2003 outbreak in Mexico, Stat. Med., 25 (2006), 1840–18 |
[58] | 59. P. Román-Román, D. Romero, M.A. Rubio, et al., Estimating the parameters of a Gompertz-type diffusion process by means of Simulated Annealing, Appl. Math. Comput., 218 (2012), 5131–5131. |
1. | Mahmoud S. Mehany, Faizah D. Alanazi, An \eta -Hermitian solution to a two-sided matrix equation and a system of matrix equations over the skew-field of quaternions, 2025, 10, 2473-6988, 7684, 10.3934/math.2025352 |