Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Competition for resources may reinforce the evolution of altruism in spatially structured populations

1 Institut de biologie de l’Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
2 Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan

Special Issues: Mathematical Methods in the Biosciences

Spatial structure is known to affect the evolution of social behaviour, but little is known on how this evolution depends on simultaneous competition for resources. In simple models, competition for resources tends to counteract altruism, but ecologically more realistic models suggest that competition for resources might actually reinforce altruism. Here we set up a probabilistic cellular automaton (PCA) model and analyse it using the Correlation Dynamics (CD) approach, to study how competition for resources affects the evolution of altruism. If the resource diffuses across space, spatiallyseparateclustersofrelativesmaystillcompeteforresources, thuscreatingalargercompetitive kernelthantheimmediateneighbourhood. Thisincreasestheseparationofclustersofrelativesandthus reinforces the selection of altruistic behaviour.
  Article Metrics

Keywords evolution; altruism; resource competition; spatial distributions

Citation: Minus van Baalen, Atsushi Yamauchi. Competition for resources may reinforce the evolution of altruism in spatially structured populations. Mathematical Biosciences and Engineering, 2019, 16(5): 3694-3717. doi: 10.3934/mbe.2019183


  • 1. T. G. Platt and J. D. Bever, Kin competion and the evolution of cooperation, TREE, 24 (2009), 370–377.
  • 2. S. A. West, I. Pen and A. Griffin, Cooperation and competition between relatives, Science, 296 (2002), 72–75.
  • 3. S. Lion and M. van Baalen, Self-structuring in spatial evolutionary ecology, Ecol. Lett., 11 (2008), 277–295.
  • 4. A. Yamauchi, M. van Baalen and M. W. Sabelis, Spatial patterns generated by simultaneous cooperation and exploitation favour the evolution of altruism, J. Theor. Biol., 441 (2018), 58–67.
  • 5. S. Kondo and T. Miura, Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616.
  • 6. R. Durrett and S. Levin, The importance of being discrete (and spatial), Theor. Pop. Biol., 46 (1994), 363–394.
  • 7. R. Durrett and S. A. Levin, Stochastic spatial models: A user's guide to ecological applications, Phil. Trans. R. Soc. B, 343 (1994), 329–350.
  • 8. H. Matsuda, N. Ogita, A. Sasaki, et al., Statistical mechanics of population: The lattice Lotka- Volterra model, Prog. Theor. Phys., 88 (1992), 1035–1049.
  • 9. M. Nakamaru, H. Matsuda and Y. Iwasa, The evolution of cooperation in a lattice-structured population, J. Theor. Biol., 184 (1997), 65–81.
  • 10. M. van Baalen and D. A. Rand, The unit of selection in viscous populations and the evolution of altruism, J. Theor. Biol., 143 (1998), 631–648.
  • 11. S. A. H. Geritz, E. Kisdi, G. Meszéna, et al., Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12 (1998), 35–57.
  • 12. S. A. H. Geritz, J. A. J. Metz, E. Kisdi, et al., Dynamics of adaptation and evolutionary branching, Phys. Rev. Lett., 78 (1997), 2024–2027.
  • 13. J. A. J. Metz, R. M. Nisbet and S. A. H. Geritz, How should we define 'fitness' for general ecological scenarios, TREE, 7 (1992), 198–202.
  • 14. W. D. Hamilton, The evolution of altruistic behaviour, Am. Nat., 97 (1963), 354–356.
  • 15. W. Hamilton, Selfish and spiteful behaviour in an evolutionary model, Nature (Lond), 228 (1970), 1218–1220.
  • 16. E. Fehr and K. M. Schmidt, A theory of fairness, competition and cooperation, Q. J. Econom., 114 (1999), 817–868.
  • 17. A. Gardner, S. A. West and G. Wild, The genetical theory of kin selection, J. Evol. Biol., 24 (2011), 1020-1043.
  • 18. A. Gardner and S. West, Spite and the scale of competition, J. Evol. Biol., 17 (2004), 1195-1203.
  • 19. F. Rousset and S. Billiard, A theoretical basis for measures of kin selection in subdivided populations: finite populations and localized dispersal, J. Evol. Biol., 13 (2000), 814–825.
  • 20. P. D. Taylor and S. A. Frank, How to make a kin selection model, J. Theor. Biol., 180 (1996), 27–37.
  • 21. S. Lion and M. van Baalen, From infanticide to parental care: why spatial structure can help adults be good parents, Am. Nat., 170 (2007), E26–E46.
  • 22. J. D. Murray, Mathematical Biology, Springer, Berlin, 1980.
  • 23. M. van Baalen, Pair approximations for different spatial geometries, in The Geometry of Ecological Interactions: Simplifying Spatial Complexity (eds. U. Dieckmann, R. Law and J. A. J. Metz), Cambridge University Press, Cambridge, 2000, 359–387.
  • 24. M. van Baalen, Contact networks and the evolution of virulence, in The Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management (eds. U. Dieckmann, J. A. J. Metz, M. W. Sabelis and K. Sigmund), Cambridge Studies in Adaptive Dynamics, Cambridge University Press, Cambridge, 2002, 85–103.
  • 25. S. D. Mylius and O. Diekmann, On evolutionarily stable life-history strategies, optimization and the need to be specific about density dependence, Oikos, 74 (1995), 218–224.
  • 26. J. A. Fletcher and M. Doebeli, Assortment is a more fundamental explanation for the evolution of altruism than inclusive fitness or multilevel selection: reply to bijma and aanen, Proc R. Soc. Lond. B, 277 (2010), 677–678.
  • 27. J.-F. Le Galliard, R. Ferrière and U. Dieckmann, The adaptive dynamics of altruism in spatially heterogeneous populations, Evolution, 57 (2003), 1–17.
  • 28. D. Claessen and A. M. de Roos, Evolution of virulence in a host-pathogen system with local pathogen transmission, Oikos, 74 (1995), 401–413.
  • 29. E. Renshaw, Modelling Populations in Space and Time, Cambridge University Press, Cambridge, 1991.
  • 30. D. A. Rand, Correlation equations and pair approximations for spatial ecologies, in Advanced Ecological Theory (ed. J. McGlade), Blackwell, Oxford, 1999, 100–142.
  • 31. M. J. Keeling, I. Mezic, R. J. Hendry, et al., Characteristic length scales of spatial models in ecology via fluctuation analysis, Phil. Trans. R. Soc. Lond. B, 352 (1997), 1589–1501.
  • 32. D. A. Rand and H. B. Wilson, Using spatio-temporal chaos and intermediate-scale determinism in artificial ecologies to quantify spatially-extended ecosystems, Proc. R. Soc. Lond. B, 259 (1995), 111–117.
  • 33. E. F. Krause, Taxicab Geometry: An Adventure in Non-Euclidean Geometry, Dover Books (1986) edition, Addison-Wesley, Menlo Park CA, 1975.
  • 34. J. K. Kelly, Restricted migration and the evolution of altruism, Evolution, 46 (1992), 1492–1495.
  • 35. J. K. Kelly, A model for the evolution of communal foraging in hierarchically structured populations, Behav. Ecol. Sociobiol., 35 (1994), 205–212.
  • 36. S. Kéfi, M. Rietkerk, M. van Baalen, et al., Evolution of local facilitation in arid ecosystems, Am. Nat., 172 (2008), E1–E17.
  • 37. M. Rietkerk, M. Boerlijst, F. van Langevelde, et al., Self-organization of vegetation in arid ecosystems, Am. Nat., 160 (2002), 524–530.
  • 38. A. Gardner, The Price equation, Current Biology, 18 (2008), R198–R202.
  • 39. G. R. Price, Selection and covariance, Nature (Lond), 227 (1970), 520–521.
  • 40. S. A. Frank, Foundations of Social Evolution, Princeton University Press, Princeton, NJ, 1998.


Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved